H. Abichou, H. Zahrouni, and M. Potier-ferry, Asymptotic numerical method for problems coupling several nonlinearities, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.51-52, pp.5795-5810, 2002.
DOI : 10.1016/S0045-7825(02)00497-8

W. Aggoune, H. Zahrouni, and M. Potier-ferry, Asymptotic numerical methods for unilateral contact, International Journal for Numerical Methods in Engineering, vol.1, issue.6, pp.605-631, 2006.
DOI : 10.1002/nme.1714

C. Allery, J. Cadou, A. Hamdouni, and D. Razafindralandy, Application of the Asymptotic Numerical Method to the Coanda effect study, Revue Europ??enne des ??l??ments Finis, vol.41, issue.4, pp.57-77, 2004.
DOI : 10.1002/(SICI)1097-0207(19980430)41:8<1365::AID-NME332>3.0.CO;2-Y

K. Bathe, Finite element procedures, 1996.

T. F. Chan and H. Keller, Arc-Length Continuation and Multigrid Techniques for Nonlinear Elliptic Eigenvalue Problems, SIAM Journal on Scientific and Statistical Computing, vol.3, issue.2, pp.173-194, 1982.
DOI : 10.1137/0903012

URL : https://authors.library.caltech.edu/9912/1/CHAsiamjssc82.pdf

I. Charpentier and B. Cochelin, Towards a full higher order AD-based continuation and bifurcation framework, Optimization Methods and Software, vol.5, 2018.
DOI : 10.1007/BF01398649

URL : https://hal.archives-ouvertes.fr/hal-01770314

I. Charpentier, B. Cochelin, and K. Lampoh, Diamanlab-an interactive taylor-based continuation tool in matlab, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853599

I. Charpentier, A. Lejeune, and M. Potier-ferry, The diamant approach for an efficient automatic differentiation of the asymptotic numerical method Advances in Automatic Differentiation, pp.139-149, 2008.

I. Charpentier and M. Potier-ferry, Diff??rentiation automatique de la m??thode asymptotique num??rique typ??e : l'approche Diamant, Comptes Rendus M??canique, vol.336, issue.3, pp.336-340, 2008.
DOI : 10.1016/j.crme.2007.11.022

B. Cochelin, A path-following technique via an asymptotic-numerical method, Computers & Structures, vol.53, issue.5, pp.1181-1192, 1994.
DOI : 10.1016/0045-7949(94)90165-1

B. Cochelin, N. Damil, and M. Potier-ferry, Asymptotic-numerical methods and Pade approximants for non-linear elastic structures, International Journal for Numerical Methods in Engineering, vol.5, issue.7, pp.1187-1213, 1994.
DOI : 10.1007/978-3-642-81589-8_5

B. Cochelin, N. Damil, and M. Potier-ferry, The asymptotic-numerical method: an efficient perturbation technique for nonlinear structural mechanics . Revue européenne des éléments finis, pp.281-297, 1994.
DOI : 10.1080/12506559.1994.10511124

B. Cochelin, N. Damil, and M. Potier-ferry, M??thode asymptotique num??rique, European Journal of Computational Mechanics, vol.17, issue.4, 2008.
DOI : 10.1080/17797179.2008.9737353

B. Cochelin and M. Medale, Power series analysis as a major breakthrough to improve the efficiency of Asymptotic Numerical Method in the vicinity of bifurcations, Journal of Computational Physics, vol.236, pp.594-607, 2013.
DOI : 10.1016/j.jcp.2012.11.016

URL : https://hal.archives-ouvertes.fr/hal-00707513

B. Cochelin and C. Vergez, A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions, Journal of Sound and Vibration, vol.324, issue.1-2, pp.243-262, 2009.
DOI : 10.1016/j.jsv.2009.01.054

URL : https://hal.archives-ouvertes.fr/hal-00315288

E. Doedel, H. B. Keller, and J. P. Kernevez, NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (I): BIFURCATION IN FINITE DIMENSIONS, International Journal of Bifurcation and Chaos, vol.01, issue.03, pp.493-520, 1991.
DOI : 10.1142/S0218127491000397

E. J. Doedel and R. F. Heinemann, Numerical computation of periodic solution branches and oscillatory dynamics of the stirred tank reactor with a yields b yields c reactions, 1982.

L. Duigou, E. Daya, and M. Potier-ferry, Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.11-12, pp.1323-1335, 2003.
DOI : 10.1016/S0045-7825(02)00641-2

M. J. Feigenbaum, The universal metric properties of nonlinear transformations, Journal of Statistical Physics, vol.12, issue.6, pp.669-706, 1979.
DOI : 10.1007/BF01107909

K. Fritzsche and H. Grauert, From holomorphic functions to complex manifolds, 2012.
DOI : 10.1007/978-1-4684-9273-6

L. Guillot, P. Vigué, C. Vergez, and B. Cochelin, Continuation of quasi-periodic solutions with two-frequency Harmonic Balance Method, Journal of Sound and Vibration, vol.394, pp.434-450, 2017.
DOI : 10.1016/j.jsv.2016.12.013

URL : https://hal.archives-ouvertes.fr/hal-01310194

T. J. Hughes, The finite element method: linear static and dynamic finite element analysis, 1987.

S. Karkar, B. Cochelin, and C. Vergez, A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: The case of non-polynomial nonlinearities, Journal of Sound and Vibration, vol.332, issue.4, pp.968-977, 2013.
DOI : 10.1016/j.jsv.2012.09.033

URL : https://hal.archives-ouvertes.fr/hal-00758184

H. Keller, Lectures on numerical methods in bifurcation problems, Applied Mathematics, vol.217, p.50, 1987.

N. Kessab, B. Braikat, H. Lahmam, E. Mallil, N. Damil et al., High order predictor-corrector algorithms for strongly nonlinear problems, pp.587-613, 2006.

T. Li and J. A. Yorke, Period Three Implies Chaos, The American Mathematical Monthly, vol.15, issue.10, pp.985-992, 1975.
DOI : 10.1016/0097-3165(73)90033-2

URL : http://pb.math.univ.gda.pl/chaos/pdf/li-yorke.pdf

M. Medale and B. Cochelin, High performance computations of steady-state bifurcations in 3D incompressible fluid flows by Asymptotic Numerical Method, Journal of Computational Physics, vol.299, pp.581-596, 2015.
DOI : 10.1016/j.jcp.2015.07.021

URL : https://hal.archives-ouvertes.fr/hal-01293671

N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations by taylor series (iii): the daets code, Journal of Numerical Analysis, Industrial and Applied Mathematics, vol.1, issue.1, pp.1-30, 2007.
DOI : 10.1007/s10543-006-0106-8

URL : http://www.cas.mcmaster.ca/~nedialk/PAPERS/DAEs/taylcoeff_I/taylorcoeffsdae.pdf

S. Nezamabadi, J. Yvonnet, H. Zahrouni, and M. Potier-ferry, A multilevel computational strategy for handling microscopic and macroscopic instabilities, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.27-29, pp.2099-2110, 2009.
DOI : 10.1016/j.cma.2009.02.026

URL : https://hal.archives-ouvertes.fr/hal-00692235

R. Seydel, From equilibrium to chaos: practical bifurcation and stability analysis, 1988.

L. T. Watson, A globally convergent algorithm for computing fixed points of C2 maps, Applied Mathematics and Computation, vol.5, issue.4, pp.297-311, 1979.
DOI : 10.1016/0096-3003(79)90020-1

H. Zahrouni, B. Cochelin, and M. Potier-ferry, Computing finite rotations of shells by an asymptotic-numerical method. Computer methods in applied mechanics and engineering, pp.71-85, 1999.
DOI : 10.1016/s0045-7825(98)00320-x

H. Zahrouni, M. Potier-ferry, H. Elasmar, and N. Damil, Asymptotic numerical method for nonlinear constitutive laws. Revue européenne des éléments finis, pp.841-869, 1998.
DOI : 10.1080/12506559.1998.10511344

R. Zucker, Elementary transcendental functions: Logarithmic, exponential , circular and hyperbolic functions. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, pp.65-94, 1965.