
HAL Id: hal-01827832
https://hal.science/hal-01827832

Submitted on 2 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A generic and efficient Taylor series based continuation
method using a quadratic recast of smooth nonlinear

systems
Louis Guillot, Bruno Cochelin, Christophe Vergez

To cite this version:
Louis Guillot, Bruno Cochelin, Christophe Vergez. A generic and efficient Taylor series based con-
tinuation method using a quadratic recast of smooth nonlinear systems. International Journal for
Numerical Methods in Engineering, 2019, �10.1002/nme.6049�. �hal-01827832�

https://hal.science/hal-01827832
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A generic and efficient Taylor series based continuation

method using a quadratic recast of smooth nonlinear

systems

Louis Guillot, Bruno Cochelin, Christophe Vergez

Aix Marseille Univ, CNRS, Centrale Marseille, LMA, UMR 7031, Marseille, France.

July 2, 2018

Abstract

This paper is concerned with a Taylor series based continuation algorithm, ie, the
so-called Asymptotic Numerical Method (ANM). It describes a generic continuation
procedure that apply the ANM principle at best, that is to say, that presents a high
level of genericity without paying the price of this genericity by low computing per-
formances. The way to quadratically recast a system of equation is now part of the
method itself, and the way to handle elementary transcendental function is detailed
with great attention. A sparse tensorial formalism is introduced for the internal repre-
sentation of the system, which, when combines with a block condensation technique,
provides a good computational efficiency of the ANM. Three examples are developed
to show the performance and the versatility of the implementation of the continuation
tool. Its robustness and its accuracy are explored. Finally, the potentiality of this
method for complex non linear finite element analysis is enlightened by treating 2D
elasticity problem with geometrical nonlinearities.

Keywords : continuation, Taylor series, quadratic recast, asymptotic numerical
method, nonlinear systems, finite element method.

1 Introduction

The so-called Asymptotic Numerical Method (ANM), first described in [12] and [11], is
a continuation technique based on high order Taylor series expansions of the unknowns
with respect to a path parameter. The solution branches are computed step by step
as in a classical predictor-corrector algorithm (see [25], [17] and [31]), but as opposed
to first order prediction, the accuracy of a high order Taylor series prediction is so
high that no correction is needed in general. Each step provides a local continuous
representation of the branch whose length is computed afterward directly from the
convergence properties of the series. Having a continuous description of the branch
makes the continuation very robust and provides some opportunities in the detection
of bifurcations [15].

ANM has first been applied to compute equilibrium branches of geometrically
nonlinear finite elements models in structural mechanics [13] [33] 1. It has been later

1 The term "numerical" stands in the name of the method because of this finite element discretization.

1

extended to more complex and less regular non linearities such as the one associated
to material non linearities [34], [2], contact conditions and friction [26], [3], vibrations
of viscoelastic shells [19] and material instabilities [30]. Stationary solution of Navier-
Stokes flow [4], [28] has also been adressed, showing that very large scale problems
with more than a million degree of freedom can be treated efficiently with this method.
The continuation of periodic solutions of dynamical systems is presented in [16], [24]
where the ANM is combined with a Fourier series expansion known as the harmonic
balance method. Extension to the continuation of quasi-periodic solutions is adressed
in [22]. The continuation solver MANLAB-1.0 [1] has been the first attempt to design
a general purpose continuation software working on the ANM principle. It allows
a user to enter its own algebraic system and to interactively draw the bifurcation
diagram. It works well for systems with a few hundreds of equations but the quadratic
recast of elementary transcendental functions was a little abstruse and finite element
mechanical models could not be implemented because of the lack of performances.

A common denominator of the works mentioned above is the requirement to recast
the governing equations in a quadratic format. The motivation for this recast is that
the Taylor series computation becomes easy and efficient when a system is quadratic.
However, this requirement has turn out to be the most difficult point of the method.
Its misunderstanding has prevented many potential users and developpers from suc-
ceeding in the use of the method, especially when the system of equation contains
elementary transcendental functions (exp, log, sin, cos, power, ...). Introducing Auto-
matic Differentiation (AD) principle inside the ANM process [9], [10] has been the first
elegant way of removing this difficulty. The DiaManlab software [7] allows the users
to write the governing equations in a natural way, without any need of a quadratic
recast. However, once again, the price to pay for this genericity is a reduction of the
computing performance that may be again a drawback for large systems resulting for
instance from the finite element (FE) discretization of a continuous problem.

In this paper, combinig the experiences of twenty years of work on the ANM and
this experience on Automatic Differentiation, we present a generic way to solve an al-
gebraic system with the ANM principle applied at best, ie, providing both genericity
and efficiency. The quadratic recast of the original system is now a part of the method
itself instead of being a pre-processing task left to the user. The declaration of a list
of auxiliary variables that follow the linear declaration rule provides a clear and useful
distinction between the main and the auxiliary variables, and between the main and
the auxiliary equations. Attention is paid to the treatment of elementary transcen-
dental functions [35] and the way their (quadratic) differential form should appear
in the process. Additionally, this results in a clear separation between quadratic and
functional equations. Another important improvement is the use of a sparse tensor
formalism for the internal representation of a quadratic system on a computer. This
allows an efficient construction of the linear systems that have to be solved for the
series computation, including a block inversion for the condensation of the auxiliary
variables. Another key point is that the sparse tensors are automatically constructed
from the equations by using polarization formula. This allows to write the quadratic
equations in a quite natural way.

The generic method described here has been implemented in Matlab as the fourth
version of the Manlab suite. It permits to deal with a very large class of algebraic
systems containing many elementary transcendental functions as it will be shown on
three examples in section 5. Another very important potentiality of this method is
the capacity to implement a FE mechanical model in a quite simple way and, that
time, without suffering from poor computing performances. Only a quadratic writing
of the governing equation, ie, of the residual vector equation, is required.

2

2 Continuation using the Asymptotic Numerical

Method (ANM)

2.1 Definitions, notations and theoretical background

Consider the algebraic system

R(u, λ) = 0 (1)

where R : RNeq+1 7→ R
Neq is a function called the residue, u ∈ R

Neq is the vector of
unknowns and λ ∈ R is a parameter of interest. The notation U = (u, λ) ∈ R

Neq+1

is sometimes used in the following parts. R is a real analytic function and can be
written as a sum, product, composition of rational and elementary transcendental
functions such as polynomials, exp, cos, log, etc... The aim of continuation is to find
the solution set of (1). This is a union of various solution branches that possibly
cross at bifurcation points, which is called the bifurcation diagram. The procedure
to compute a continuation step is now explained.

Let U0 = (u0, λ0) be a regular solution of equation (1). This means that the rank
of the Jacobian matrix at point U0,

∂R

∂U
=

[

∂R

∂u
,
∂R

∂λ

]

(2)

is Neq. Let U0 be the starting point. Let U1 = (u1, λ1) be a unitary tangent vector at
point U0 and a = (u− u0) · u1 + (λ− λ0)λ1 = (U −U0) ·U1 be the pseudo arc-length
parameter introduced in [6], [18]. Note that the definition of a is used as a closing
equation for the system (1). The analytic implicit function theorem (which complex
form can be found in [21]) allows to search the solution branch of equation (1) around
U0 as an analytic functions of a, i.e as Taylor series expansion with respect to a:

U(a) = U0 + aU1 + a2U2 + a3U3 + . . . (3)

Note that in (3) λ is also developed as a series of the path parameter a. In practice,
the series are truncated at an order p. They are then introduced in equation (1) which
gives the Taylor series development of R(U(a)) :

R(U(a)) = R(U(0)) + aR1 + a2R2 + a3R3 + . . . (4)

where

R1 = dR
da

∣

∣

a=0
= ∂R

∂U
U1

R2 = 1
2
d2R
da2

∣

∣

∣

a=0
= ∂R

∂U
U2 − F2(U1)

R3 = 1
3!

d3R
da3

∣

∣

∣

a=0
= ∂R

∂U
U3 − F3(U1, U2)

...
...

...

Rp = 1
p!

dpR
dap

∣

∣

∣

a=0
= ∂R

∂U
Up − Fp(U1, . . . , Up−1)

(5)

with Fk being functions that depend only on already computed terms of the series.
The system (1) then looks like : ∀k ≤ p,Rk = 0. It has to be noticed that all these
equations share the same matrix to inverse that is the Jacobian matrix (2) at point
U0.

When the series (3) is computed up to order p, the domain of utility [0, amax]
is determined. The maximum increase of the residue (1) is set to a small value ε1,

3

such that |R(U(a)) − R(U(0))| < ε1 for all a ∈ [0, amax]. With the approximation
R(U(a))−R(U(0)) = ap+1Rp+1, it gives

amax = (ε1
||Rp+1||

)
1

p+1 (6)

Finally, the ending point of the continuation step U(amax) is computed and it is
used as the starting point of the next continuation step. This approach leads to a
continuous representation of the solution branch. There are almost no corrections
needed to stay on the branch in practice because the Taylor series development (3)
is a very accurate approximation of the true solution branch on its domain of utility.
This domain of utility can be computed directly from the knowledge of the series with
the formula (6).

2.2 Implementation methods

To summarize, the Asymptotic Numerical Method (ANM) is a method to compute a
solution branch from the knowledge of a starting point U0, of a way to compute the
Jacobian matrix (2) of the system and of a procedure to compute the Taylor series (3)
i.e. to compute Uk from Uj, j < k. As explained in the Introduction, there are several
ways to deal with these requirements. One of the solution is the use of automatic
differentiation. In this case, the knowledge of equation (1) only is enough to compute
the bifurcation diagram. It has been done in [8] in an elegant way. The set up is
surprisingly simple for the user, however it becomes computationally expensive when
the size of the system increases above several hundreds of unknowns.

Here we follow the traditional idea of the ANM that is described in the book [14]
and the papers [11], [12] and [13]. The system is written in a quadratic format that
allows direct computation of both the jacobian matrix (2) and of the coefficients of
the Taylor series (3).

3 Recast of the system of equations

In this section the equations (1) are rewritten in a quadratic format in order to apply
the ANM. The general set up follows an explanatory example.

3.1 Explanatory example

Let us consider an academic example containing two elementary transcendental func-
tions, exp and tanh for which the residue function (1) is given by R = (r1, r2) :

{

r1(u1, u2, λ) = u1 + λ exp(u2)
1+u1

r2(u1, u2, λ) = u2 + u1 tanh(
−5u1

1+u1u2
)

(7)

3.2 Definition of the auxiliary variables

The equations (7) are rewritten hereafter in a quadratic format. To achieve this,
auxiliary variables are introduced. These additional variables are defined from the
main variables u1, u2, λ.

To compute r1 from given input values (u1, u2, λ), one first decomposes the process
into elementary operations and stores intermediate results. For instance, an evalu-
ation of exp(u2) is stored. Then, an evaluation of 1 + u1 is stored as well. After,

4

the first result is divided by the second one. This number is multiplied by λ, etc...
Following this, let v1, v2, v3, v4, v5 be:

v1 = exp(u2)
v2 =

v1
1+u1

v3 = 1 + u1u2
v4 = −5u1

v3

v5 = tanh(v4)

(8)

From these definitions we can now write the system (7) with only quadratic non-
linearities :

r1 = u1 + λv2
r2 = u2 + u1v5

(9)

In the definition of auxiliary variables (8) there are different types of equations.
Some are already quadratic, here v3 = 1+u1u2. Some are easily made quadratic, here
v2 =

v1
1+u1

and v4 = −5u1

v3
are respectively rewritten v2(1+u1) = v1 and v4v3 = −5u1

which are equivalent to the first definitions if u1 6= −1 and v3 6= 0. The last type of
auxiliary variables, here v1 = exp(u2) and v5 = tanh(v4) will be treated in the next
section.

The auxiliary variables are defined by following the Linear declaration rule i.e.

only from the main variables and from auxiliary variables with a smaller index. To
write it in a compact way : ∀i, vi = f(u, λ, v1, . . . , vi−1). It ensures that r1, r2 can
be computed from the input u1, u2, λ. The choice of the auxiliary variables is not
unique. For example, the definitions of v3 and v4 could be replace by v3 = u1u2 and
v4 = − 5u1

1+v3
respectively. Of course, this does not change the final result.

The linear declaration rule ensures that the system of equations (7) is equivalent
to the two systems (8) and (9).

3.3 Quadratic recast of the elementary transcendental

functions

The case of v1 = exp(u2) and v5 = tanh(v4) is treated here. To achieve their quadratic
recast, these equations are first differentiated:

dv1 = exp(u2)du2 = v1du2
dv5 = (1 + tanh2(v4))dv4 = (1 + v25)dv4

(10)

Then the auxiliary variable v6 = (1+v25) is defined to obtain the final quadratic recast
of the differentiated equations

dv1 = v1du2
dv5 = v6dv4
v6 = 1 + v25

(11)

This formulation is said to be quadratic because it is quadratic with respect to
(u, v, λ,du,dv). A table of recast of the most common transcendental functions is
available in Appendix A.

3.4 Final recast of the example

The unknowns are now split in two families : U = (u1, u2, λ) for the original main
unknowns and Uaux = (v1, v2, v3, v4, v5, v6) for the auxiliary unknowns. The full vector

5

of unknowns is called Utot = (U,Uaux). From the previous section, the system (7) has
been written

Rtot(Utot) =

























u1 + λv2
u2 + u1v5

v1 − exp(u2)
v1 − v2 − v2u1
1 + u1u2 − v3
−5u1 − v4v3
v5 − tanh(v4)
1 + v25 − v6

























=

























R

Raux

























(12)

where the two first equations correspond to the initial system of equations (7) and the
other ones to the auxiliary variables. The horizontal line materializes this separation
: Rtot = (R,Raux). There is another useful separation of the residue between already
quadratic equations, Rquad, and the other ones, Rfun where an elementary function
appears. Rtot is split up in these two parts :

Rtot(Utot) =

























u1 + λv2
u2 + u1v5

0
v1 − v2 − v2u1
1 + u1u2 − v3
−5u1 − v4v3

0
1 + v25 − v6

























+

























0
0

v1 − exp(u2)
0
0
0

v5 − tanh(v4)
0

























= Rquad +Rfun (13)

To this "total" residue is added the differentiated form of its third and seventh
components, that is of Rfun, in dRfun vector,

dRfun =

























0
0

dv1 − v1du2
0
0
0

dv5 − v6dv4
0

























(14)

The differentiated form of the already quadratic equations does not need to be spec-
ified.

3.5 General formula

From a general point of view, the residue (1) R can be written in the following way:

Rtot(Utot) = Rquad(Utot) + Rfun(Utot)
= [C + L(Utot) +Q(Utot, Utot)] + [Ld(Utot)− f(Utot)]

(15)

where Utot = (u, λ, v) is the vector of all the unknowns, v are the auxiliary variables.
Rquad is the already quadratic part of the residue and Rfun is the part which is
not quadratic (but its differential form is). C is a constant operator, L and Ld are
linear operators, Q is a quadratic operator and each component of f(Utot) is an

6

elementary transcendental function of Utot or zero. f is a non–quadratic function
whose differential form can be written quadratically. Formally it means that the
application (Utot, dUtot) 7→ dUtotf(dUtot), where dUtotf is the differential application
of f at point Utot, is bi–linear. This bi–linear application is called Qd. One has
Qd(Utot, dUtot) = dUtotf(dUtot). To the system (15) is added the differentiated form
of Rfun(Utot) = Ld(Utot)− f(Utot) :

dUtotRfun(dUtot) = Ld(dUtot)−Qd(Utot, dUtot) (16)

This is used in the next section to compute the Jacobian matrix (2) of the system
and the Taylor series (3).

4 Details on the computation of the series

The formulations (15) and (16) and only these, are used for the following computa-
tions.

4.1 Computation of the Jacobian matrix

4.1.1 General computation

From equation (15), the Jacobian matrix can be computed automatically :

∂Rtot

∂Utot
= L+Q(Utot, ·) +Q(·, Utot) + Ld − ∂f

∂Utot
(·)

= L+Q(Utot, ·) +Q(·, Utot) + Ld −Qd(Utot, ·)
(17)

In our example the only non-zero elements of Qd are exp(u1)du1 and (1−tanh(v4)
2)dv4.

They can be written v1du1 and v6dv4 respectively, as in (14).
The Linear declaration rule ensures that the right-bottomed sub-matrix ∂Raux

∂Uaux
that

contains the partial derivatives of the equations defining the auxiliary variables with
respect to the auxiliary variables is triangular (see example below). This information
is used for efficient block–solving in the computation of the series.

4.1.2 Explanatory example

The jacobian matrix is the matrix of partial derivatives of the full residue with re-
spect to all the variables. The jacobian matrix of the example is computed with the
equations (13) and (14).

JUtot =

[

∂R
∂U

∂R
∂Uaux

∂Raux

∂U
∂Raux

∂Uaux

]

=

























1 0 v2 0 λ 0 0 0 0
v5 1 0 0 0 0 0 u1 0

0 −v1 0 1 0 0 0 0 0
−v2 0 0 1 −1− u1 0 0 0 0
u2 u1 0 0 0 −1 0 0 0
−5 0 0 0 0 −v4 −v3 0 0
0 0 0 0 0 0 −v6 1 0
0 0 0 0 0 0 0 2v5 −1

























(18)

7

4.2 Computation of the series

In this section, the subscripts "tot" are omitted : Utot is simply written U .
The focus is on the general case. The equations (15) are written with an already

quadratic part Rquad and a functional part Rfun. For the quadratic part of equa-
tion (15), U is replaced by its series and the expansions are truncated at order N
:

0 = C + L
∑N

k=0 a
kUk +Q

(

∑N
k=0 a

kUk,
∑N

k=0 a
kUk

)

= C +
∑N

k=0 a
k
(

LUk +
∑

i+j=k Q(Ui, Uj)
)

+O(aN+1)
(19)

Equating the coefficients of the series for each power of a to 0,

C + LU0 +Q(U0, U0) = 0
LU1 +Q(U0, U1) +Q(U1, U0) = 0
LU2 +Q(U0, U2) +Q(U2, U0) = −Q(U1, U1)

...

LUk +Q(U0, Uk) +Q(Uk, U0) = −∑k−1
i=1 Q(Ui, Uk−i)

(20)

The first equation is just the definition of a solution point U0 and the second one
the definition of the tangent vector U1 at U0. LUk + Q(U0, Uk) + Q(Uk, U0) is the

first part of the jacobian matrix
∂Rquad

∂U
at point U0 applied at point Uk as shown in

equation (5).
For the non-quadratic part of equation (15), the differentiated form is used :

Ld(dU)−Qd(U,dU) = 0 (21)

Replacing U and dU by their series expansion one gets

0 = Ld(
∂U
∂a

)−Qd

(

U, ∂U
∂a

)

=
∑N−1

k=0 (k + 1)akLdUk+1 −Qd

(

∑N
k=0 a

kUk,
∑N−1

k=0 (k + 1)akUk+1

)

=
∑N−1

k=0 ak
(

(k + 1)LdUk+1 −
∑

i+j=kQd (Ui, (j + 1)Uj+1)
)

+O(aN)

(22)

Equating the coefficients of the series to 0,

1LdU1 −Qd(U0, 1U1) = 0
2LdU2 −Qd(U0, 2U2) = Qd(U1, U1)

...

kLdUk −Qd(U0, kUk) =
∑k−1

i=1 Qd(Ui, (k − i)Uk−i)

(23)

Or dividing by k :

LdU1 −Qd(U0, U1) = 0
LdU2 −Qd(U0, U2) = 1

2Qd(U1, U1)
...

LdUk −Qd(U0, Uk) = 1
k

∑k−1
i=1 (k − i)Qd(Ui, Uk−i)

(24)

LdUk − Qd(U0, Uk) is the second part of the jacobian matrix ∂Rfun

∂U
at point U0

applied at point Uk as shown in equation (5).
Calling JU0

the jacobian matrix of R at point U0 and putting together the pre-
ceding computations, the system to solve at order p ≥ 2 is deduced :

JU0
(Up) =

p−1
∑

i=1

(

−Q(Ui, Up−i) +
p− i

p
Qd(Ui, Up−i)

)

:= Fnl
p (25)

These systems are solved efficiently using a sparse tensorial formalism and a fast
block-solving described hereafter.

8

4.3 Block solving of the linear systems

In the two previous subsections, the computation of the Jacobian matrix (2) of a
system of type (15) was explained. The computation of the Taylor series (3) of a
point solution is also explained. Once Uk, k ≤ p − 1 are known, the formula (25) is
used to compute Up :

Up = J−1
U0

Fnl
p (26)

The focus is on the inversion of the jacobian matrix as it is the most expensive
operation in terms of time computation. The system has been written thanks to
auxiliary variables and is written separating the auxiliary part from the main part:

Rtot(Utot) :=

[

R(Utot)
Raux(Utot)

]

(27)

with Utot = (U,Uaux)
t, U = (u, λ) ∈ R

Neq+1 and Uaux ∈ R
Neqaux . The Jacobian

matrix of Rtot is computed by block :

JU0
=

[

∂R
∂U

∂R
∂Uaux

∂Raux

∂U
∂Raux

∂Uaux

]

:=

[

K B
C Kaux

]

(28)

The Linear declaration rule of the auxiliary variables ensures that Kaux is trian-
gular, hence it is very easy to inverse. This information is used to solve the linear
systems (26) efficiently:

JU0
tot
(Up,tot) = Fnl

p,tot

⇔
[

K B
C Kaux

] [

Up

Up,aux

]

=

[

Fnl
p

Fnl
p,aux

]

(29)

which is equivalent to the system:

{

KUp +BUp,aux = Fnl
p

CUp +KauxUp,aux = Fnl
p,aux

(30)

Now the second line is multiplied by the inverse of Kaux and Up,aux is replaced in the
first line accordingly:

{
(

K −BK−1
auxC

)

Up = Fnl
p −BK−1

auxF
nl
p,aux

Up,aux = K−1
aux

(

Fnl
p,aux − CUp

) (31)

Finally, there are two systems to solve : one of size Neq + 1 and a triangular one of
size Neqaux, instead of one system of size Neq + Neqaux + 1. It goes without saying
that this manipulation improves the time computation a lot.

The Jacobian matrix J of the main system, ie, without auxiliary variables, is
computed with the condensation formula : J =

(

K −BK−1
auxC

)

. In our example, the
jacobian matrix (18) is divided in four blocks as in equation (28)

9

K =

[

1 0 v2
v5 1 0

]

B =

[

0 λ 0 0 0 0
0 0 0 0 u1 0

]

C =

















0 −v1 0
−v2 0 0
u2 u1 0
−5 0 0
0 0 0
0 0 0

















Kaux =

















1 0 0 0 0 0
1 −1− u1 0 0 0 0
0 0 −1 0 0 0
0 0 −v4 −v3 0 0
0 0 0 −v6 1 0
0 0 0 0 2v5 −1

















(32)

As expected, Kaux is triangular. The condensation formula gives :

J =
(

K −BK−1
auxC

)

=

[

1− λv2
u1+1

λv1
u1+1 v2

v5 +
10u1v5v6

v3
+ 2u1u2v4v5v6

v3

2v4v5v6u2
1

v3
+ 1 0

]

(33)

Replacing the auxiliary variables by their values (8), one could check that J is the
jacobian matrix of the original system (7). For clarity, this computation is not shown
here.

4.4 Sparse tensorial formalism

4.4.1 Sparse tensors

The constant, linear and quadratic operators are written using a sparse tensorial
formalism. For R(X) = C + L(X) +Q(X,X) ∈ R

N with X ∈ R
M , we write :

Ri = Ci +

M
∑

j=1

LijXj +

M
∑

j,k=1

QijkXjXk, 1 ≤ i ≤ N. (34)

Constant sparse tensor For C ∈ R
N , a constant operator, the tensorial repre-

sentation is simply : Ci, 1 ≤ i ≤ N . Its sparsity leads to a representation with two
lists : the list of indexes iC = {i|Ci 6= 0} of the positions of non–zero coefficients and
the list of associated values vC = {Ci|i ∈ iC}.

Linear sparse tensor For L : RM 7→ R
N , a linear operator, the tensorial repre-

sentation is Lij, 1 ≤ i ≤ N, 1 ≤ j ≤ M . Its sparsity leads to a representation with
three lists : the list of indexes iL and the list of associated variables jL that are defined
by iL× jL = {(i, j)|Lij 6= 0} with associated values vL = {Lij |(i, j) ∈ iL× jL}.

10

Quadratic sparse tensor For Q : RM × R
M 7→ R

N , a quadratic operator, the
tensorial representation is Qijk, 1 ≤ i ≤ N, 1 ≤ j, k ≤ M . Its sparsity leads to a
representation with four lists : the list of indexes iQ and the two list of associated
variables jQ and kQ that are defined by iQ × jQ × kQ = {(i, j, k)|Qijk 6= 0} with
associated values vQ = {Qijk|(i, j, k) ∈ iQ× jQ× kQ}.

4.4.2 Explanatory example

The sparse tensors of the example are now given with their lists of indexes. The
vector of unknowns is here Utot = (u1, u2, λ, v1, v2, v3, v4, v5, v6) of size M = 9. The
N = 8 equations are written in (12). The lists are

iC = [5 8]
vC = [1 1]

(35)

iL = [1 2 4 4 5 6 8]
jL = [1 2 4 5 6 7 9]
vL = [1 1 1 −1 −1 −5 −1]

(36)

iLd = [3 7]
jLd = [4 8]
vLd = [1 1]

(37)

iQ = [1 2 4 5 6 8]
jQ = [3 1 1 1 6 8]
kQ = [5 8 5 2 7 8]
vQ = [1 1 −1 1 −1 −1]

(38)

The index iQ represents the line of the equation, jQ the number of a variable, kQ
the number of a variable also and vQ the associated value. For example here one can
read that on the first line appears the product between the third variable (U(3) = λ)
and the fifth variable (U(5) = v2) with associated value 1. Indeed, one can read the
term 1× λ× v2 on the first line of the total residue vector (12).

iQd = [3 7]
jQd = [4 9]
kQd = [2 7]
vQd = [-1 −1]

(39)

The index jQd corresponds to the variable which is not differentiated and kQd to the
variable which is differentiated. Here one can read : On the third equation, there is
the product of the fourth variable (U(4) = v1) with the differential of the second

variable (dU(2) = du2) with associated value -1. Indeed, the third equation of (14)
is the differentiated form of the definition of the first auxiliary variable that looks
0 = dv1 − v1du2.

4.4.3 Automatic generation of the tensor lists using polarization

formula

The construction of the tensor lists from the equations can be done by hand for
this simple example, but it is evident that an automated process has to be used

11

to deal with large systems. The key point in this list generation is the separation
between the constant, the linear and the quadratic terms. This can be achieved
by using the polarization formula as follows : C is computed by the evaluation of
R(0) = C + L(0) +Q(0, 0) = C. The vector L(X) is computed by the evaluation of

R(X)−R(−X) = C + L(X) +Q(X,X) − C − L(−X)−Q(−X,−X) = 2L(X).
(40)

The vector Q(X,Y) is computed by the evaluation of

R(X + Y)−R(X − Y) = C + L(X + Y) +Q(X + Y,X + Y)
−(C + L(X − Y) +Q(X − Y,X − Y))

= 2L(Y) + 2Q(X,Y) + 2Q(Y,X)
= 2L(Y) + 4Q(X,Y), if Q is symmetric.

(41)

With the formula R(Y)−R(−Y) = 2L(Y), one gets :

C = R(0)
L(X) = 1

2(R(X) −R(−X))
Q(X,Y) = 1

4 (R(X + Y)−R(X − Y)− (R(Y)−R(−Y)))
(42)

The lists are then constructed by applying the polarization formula (42) to all the
vector of the canonical base. This process is automatic from the knowledge of the
residue function (15).

5 Examples

The objective of this section is twofold. Firstly, to illustrate the quadratic recast on
three more examples, some with elementary transcendental functions. Secondly, to
illustrate the robustness of the continuation and the simple bifurcation detection. The
input files that a user has to provide for running these examples in Manlab-4.0 are not
given for brevity. The input files of the explanatory example, corresponding to (13)
and (14), can be found on the web site Manlab at http://manlab.lma.cnrs-mrs.fr/.

5.1 Logistic map

The first example is the well-known logistic map. The sequence (xn)n∈N is defined by
the following recurrence relation :

xn+1 = µxn(1− xn) := fµ(xn) (43)

0 ≤ µ ≤ 4 is the bifurcation parameter. Depending on its value, the sequence
(xn)n∈N converges towards a fixed point, a periodic orbit or its behaviour is chaotic.
The logistic map undergoes an infinite number of period doubling bifurcation when
µ is increased up to a critical value µcrit ≃ 3.56994567 above which its behaviour is
chaotic [27]. These bifurcations are detected using the method described in [15].

2N–periodic orbits are sought for with N ∈ N ; in other words, fixed points of
f2N
µ :

x1 = f2N
µ (x1) (44)

As this equation (44) is not quadratic, 2N −1 auxiliary variables that are the iterates
of x1 by fµ along the orbit are introduced :

∀n ∈ {1, . . . , 2N − 1}, xn+1 = fµ(xn), (45)

12

Figure 1: Bifurcation diagram of the logistic map obtained with Manlab 4.0. The red dots
are period doubling bifurcations. The x–axis is log(1− µ

µcrit
) where µcrit is the critical value

above which the system becomes chaotic. The 12 first bifurcations were computed.

and λ = 1
µ

is defined so that the equations are recast quadratically as follows :

λx1 = x2N (1− x2N)

λµ = 1
λx2 = x1(1− x1)
λx3 = x2(1− x2)
...

...
λx2N = x2N−1(1− x2N−1)

(46)

The horizontal lines materializes the separation between the main equation and
the auxiliary equations. Feigenbaum [20] showed that the ratio of consecutive intervals
between two period doubling converges toward a constant δ now called Feigenbaum’s
constant. This convergence is shown on figure 2. The last two bifurcations are
closer than the machine precision as can be seen on figure 1. It is probable that the
last bifurcation position was not computed with enough accuracy. This explains the
position of the last point on figure 2.

This example is interesting since when N is set to 12 as it is done here, there is
only one main equation (44) and 2N = 4096 auxiliary variables (46). The inversion
of a sparse triangular matrix of size 4096 is immediate and then the system to solve
becomes of size 1.

13

1 2 3 4 5 6 7 8 9 10
n

-7

-6

-5

-4

-3

-2

-1

0

n

Figure 2: Convergence of the ratio of the length of two consecutive intervals between two

period doubling bifurcations to Feigenbaum constant δ. δn = log10

(

|µn+2−µn+1

µn+1−µn
− δ|

)

is

plotted to show the exponential rate of convergence unambiguously.

5.2 Layne–Watson

The Layne–Watson system of equations has been first introduced in [32]. The problem
is to find the fixed point of a function g with a homotopy technique. This example
has been chosen as it is very tough for continuation algorithms. There are no branch
crossing but the bifurcation diagram is very intricate as can be seen on the last plot
of figure 3. For N ∈ N and x = (x1, . . . , xN) ∈ R

N , g is defined by

∀i ∈ {1, . . . , N} , gi(x) := exp

(

cos

(

i

N
∑

k=1

xk

))

(47)

To find the fixed point, the system

R(x, λ) = x− λg(x) (48)

is introduced. Obviously R(0, 0) = 0. This point is used as a starting point of the
continuation. If λ = 1 is reached throughout the continuation then a fixed point of g
is known. The recast of the equations is, for i ∈ {1, . . . , N},

xi − λgi = 0

ci − cos
(

i
∑N

k=1 xk

)

= 0

si − sin
(

i
∑N

k=1 xk

)

= 0

gi − exp(ci) = 0

(49)

And the differentiated form of the last three vectorial equations, for i ∈ {1, . . . , N},

dci + sid
(

i
∑N

k=1 xk

)

= 0

dsi − cid
(

i
∑N

k=1 xk

)

= 0

dgi − gidci = 0

(50)

For N = 10, 11 fixed points were find. For N = 50, 4000 continuation steps
were needed to find 4 fixed points. The computation time was about 45 seconds on a
laptop computer (two processors 2,5 GHz Intel Core i7 with 16 Go RAM).

14

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Figure 3: Bifurcation diagram of the Layne–Watson homotopy system (48). On the top
with N = 10 and on the bottom with N = 50. On the plots, x1 is in red and xN is in blue.

In [29], the last value tried was N = 130 and some issues appeared while dropping
the tolerance under 10−11. This issue seems to persist here but above N = 150
approximately. For N = 200, a fixed point of g was found at the tolerance 10−11,
after more than 75000 continuation steps i.e. 35 minutes of computation, but it was
not possible to find a fixed point at a smaller tolerance.

5.3 Stick-slip motion of a one d.o.f. oscillator

Let consider a one d.o.f. damped spring-mass oscillator which is driven by a belt with
a constant velocity vb. Its position u(t) is governed by the (dimensionless) Newton
law

ü+ 2η u̇+ u = µ(v) (51)

where η is the damping ratio, µ(v) the friction force and v = u̇ − vb the sliding
velocity. The friction force is assumed to follow a Coulomb law with constant static
and dynamic friction ratio denoted by µS and µd. Precisely, −µs < µ(v) < µs when
v = 0 (stick), µ(v) = −µd when v > 0 and µ(v) = µd when v < 0 (slip). In the
following, we look for a periodic solution made of a single stick phase and a single

15

u(t)

vb

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

u

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

du
/d

t

Phase diagram for =0.1171

Figure 4: Scheme of the system and a phase portrait for η = 0.1171 and vb = 0.1 taken
from the full bifurcation diagram (not shown here).

slip phase.
Without loss of generality, the origin of time is taken at the transition between stick

and slip, where u(0) = µs − 2ηvb and u̇(0) = vb. The slip phase occurs for t ∈ [0, t1]
with µ(v) = µd. The solution to (51) with above mentioned initial conditions is

ug(t) = µd + e−ηt
{

A cos(
√

1− η2 t) +B sin(
√

1− η2 t)
}

(52)

with A = µs − µd − 2 η vb and B = vb+ηA√
1−η2

. The stick phase occurs for t ∈ [−t2, 0]

with u′′(t) = 0, and the solution is

us(t) = (µs − 2ηvb) + vb t (53)

The main equation are the following periodicity conditions involving the two un-
knowns t1, t2 and the two free parameters η and vb (µs and µd are constant).

ug(t1) = us(t2)
u̇g(t1) = u̇s(t2)

(54)

We introduce the following auxiliary variables

ωD =
√

1− η2

θ = ωD t1
C = cos θ
S = sin θ
A = µs − µd − 2 η v − b

B = vb+η A
ωD

D = A ∗ ωD + η B
X = A C +B S
Y = vb C −D S
α = −η t1
E = expα

(55)

and recast the main equations as

r1(t1, t2, η, vb, ωD, . . . , E) = E X + 2η vb + vb t2 + µd − µs

r2(t1, t2, η, vb, ωD, . . . , E) = E Y − vb
(56)

Continuation with respect to η or vb is performed by adding a third equation to
stick one of these two parameters to a constant value. These diagrams are not shown
here.

16

6 Application to finite element analysis in me-

chanics

As mentioned in the introduction, the Asymptotic Numerical Method has first been
design for nonlinear finite element analysis in solid and structural mechanics. Several
specialized finite element programs have been developed by the researcher working
on the ANM each time a new formulation or a new class of nonlinearity was under
study.

The interest of the generic Taylor series based continuation method presented
here is to provide a unified framework for implementing a large class a finite element
analysis whatever the complexity of the formulation or of the constitutive law. Firstly,
recalling that the input of this generic method is only the quadratic recast of the
equation (15) ((13) and (14) for the explanatory example), implementing a finite
element analysis only requires a quadratic writing of the residual equation vector
with suitable auxiliary variables. The consistent tangent stiffness matrix which is
always a key issue in a finite element implementation is here automatically constructed
from the sparse tensor lists and the block solving procedure. Secondly, the internal
representation of the system with the sparse tensor lists allows to keep a very good
performance of the computations even for complex mechanical model.

As an illustration of the performance of this method for finite element nonlinear
analysis, the problem of geometrically nonlinear 2D elasticity in the framework of
large displacements, small strains and a total Lagrangian formulation is addressed.
A linear elastic constitute law is assumed for the simplicity of the presentation.

Consider an elastic body Ω submitted to a load growing proportionally to a load
parameter λ. Let u be the displacement field, X = ∇u the displacement gradient
tensor, F = Id +X the transformation gradient tensor, E = 1

2 (X +Xt +Xt.X) the
Green-Lagrange strain tensor, D the elastic constant tensor, S and P the second and
first Piola-Kirchhoff stress tensor.

Taking the displacement field u as the main variable and the tensor field X, S
and P as the auxiliary variables, a possible formulation of this continuous problem is
: Find u and X, S, P satisfying

Auxiliary equations







X = ∇u
S = D : (12(X +Xt +Xt.X))
P = (Id +X).S

(57)

main equation

∫

Ω
δF : P dv − λ < Fext, δu >= 0 ∀δu (58)

The auxiliary equations are quadratic and follows the linear declaration rule. They
allows to compute P from a given u. The main equation corresponds to the virtual
work theorem and expresses the equilibrium inside Ω. Notice that this equation is
linear with respect to P .

We now introduce a classical displacement based Finite Element method (see
for instance [5],[23]) with classical isoparametric elements. After discretization, the
main variable u becomes the vector of active degree of freedom

[

u
]

that collects
displacements at the free nodes, and the auxiliary variable becomes the value of the
tensor X, S and P at the Gauss point of the elements. Let introduce the notation
[

ue
]

for the vector of d.o.f of an element,
[

P
]

=
[

P11 P12 P21 P22

]T
for the vector of

components of the tensor P , (same notation for X, and S = [S11, S22, S12]
T),

[

G
]

for
the gradient-displacement matrix on an element.

17

The discrete form of the virtual work equation becomes the residual equilibrium
at the free node

∪
∫

Ωe

[

G
]T [

P
]

dv − λ
[

Fext

]

(59)

where ∪ stands for the classical assembly of the elementary internal forces vector. A
classical Gauss integration is performed to evaluate these integrals at element level.

Finally, the discrete problem is : Find U :=
[

u
]

, λ and the auxiliary variables
Uaux = [

[

X
]

,
[

S
]

,
[

P
]

, . . .] at each Gauss point verifying

Auxiliary equations at Gauss point















































[

X
]

=
[

G
] [

ue
]

[

S
]

=
[

D
]





X11 + (X2
11 +X2

21)/2
X22 + (X2

12 +X2
22)/2

(X12 +X21 +X11X12 +X21X22)/2





[

P
]

=









(1 +X11) ∗ S11 +X12 ∗ S12

(1 +X11) ∗ S12 +X12 ∗ S22

X21 ∗ S11 + (1 +X22) ∗ S12

X21 ∗ S12 + (1 +X22) ∗ S22









(60)

main equation ∪
∑

Gauss

[

G
]T [

P
]

det(Je)we − λ
[

Fext

]

(61)

From these quadratic equations, the sparse tensor list are generated thanks to the
use of the polarization formulas (42). Since the main variable is the vector of active
d.o.f of the model, the jacobian matrix J =

(

K −BK−1
auxC

)

which is introduced for
the block solving process is exactly the consistent tangent stiffness matrix of the finite
element model.

In figures 5, the buckling behaviour of a sandwich-like beam with X stiffeners is
considered as an illustrative example. The beam is clamped on the left and submitted
to a uniform compressive force on the right. The bifurcation diagram is composed
of a symmetric fundamental branch from which secondary branches bifurcate. The
fundamental branch has been computed with 23 steps. Six bifurcation points have
been automatically detected and located with the method explained in [15]. The first
three bifurcated branches have been computed with 20 steps of continuation each.
The deformed structure consists of a global buckling mode with local wrinkling of
skins in the compressed parts. The three first deformed modes are shown in figure 5.

For this example, the mesh is composed of 282 quadrilateral 8 nodes elements with
a 2×2 reduced integration scheme, the number of active d.o.f is 2616 and the number
of auxiliary variables is 12408. The number of nonzero coefficients of the quadratic
sparse tensor Q is here 31584. The computing time for these 83 steps of continuation
is 25 seconds on a laptop computer (two processors 2,5 GHz Intel Core i7 with 16 Go
RAM) with the Matlab software Manlab-4.0.

As discussed so far, the formulation of a mechanical model is not unique and it
is also the case for its quadratic recast. A natural question is then "what is the best
recast" and also "is it worth to have a minimal number of auxiliary variables". As
an answer to these questions, the problem considered above has also been written by
taking only the stress tensor S for the auxiliary variables. The consequence of not
storing the gradient X and the first Piola-Kirchhoff P is a tremendous increase of the
size of quadratic sparse tensor Q which pass from 32 terms per Gauss point for the
previous formulation to more than a thousand. This results in a severe increase of the
computing time of the right hand side Fnl

p of the linear systems to be solved (25). The
corresponding gain of the computing time in the block solving procedure that results
from a smaller system is not significant. Hence, it follows that the best formulation

18

0 2 4 6 8 10 12 14 16 18 20 22

vertical displacement of the middle node

0

0.5

1

1.5

2

2.5

3

3.5

4
lo

ad

Bifurcation diagram

C

A

B

0 10 20 30 40 50 60 70 80 90
x

0

10

20

30

40

50

60

y

First deformed mode

0 10 20 30 40 50 60 70 80 90 100
x

-15

-10

-5

0

5

10

15

20

25

30

35

40

y

Second deformed mode

0 10 20 30 40 50 60 70 80 90 100
x

-20

-15

-10

-5

0

5

10

15

20

25

30

y

Third deformed mode

Figure 5: Bifurcation diagram of a sandwich-like beam with X stiffeners showing the three
first deformed modes. Only an excerpt of the bifurcation diagram is shown here. The first,
the second and the third mode are shown here and corresponds respectively to the red dot
A, B and C.

is not the one with a minimal number of auxiliary variables but the one with the
minimal size for the quadratic sparse tensor here.

To finish these comments on the use of the proposed method for finite element
analysis, we come back to the elementary transcendental function. For the sake of
simplicity, the mechanical model used here for the illustration does not contain any
elementary transcendental function. This is however not the case for most non linear
finite element analysis. for instance, the functions ln, exp and power are frequently
used for the modelization of the constitutive law of nonlinear material. For the struc-
tural models such as beams, plates, and shells, rotational degrees of freedom are
frequently introduced to described the rotation of the section, and as a consequence
the functions sines and cosines also frequently appear in the formulation. From the
preceding presentation on how to manage these functions by using the adequate aux-
iliary variables and adequate companion functions (see the table in appendix A), it
is clear that these more complex mechanical models can also be treated with this
generic continuation method. It should be noticed that, whatever the complexity of
the model and whatever the use of transcendental functions, the consistent tangent
stiffness matrix is automatically constructed as explained above.

7 Conclusion

An efficient implementation of a Taylor series based continuation algorithm is pre-
sented. Its need of a quadratic formulation of the equations is explained and extended
to the case of elementary transcendental functions. The decades of experience using
the ANM continuation resulted in fourth version of the continuation software Manlab

19

that is used here to treat successfully different systems. The accuracy of the compu-
tations is shown following the branches of the classical Logistic map and the twelve
first flip bifurcations. The robustness of the method is demonstrated when applied to
the Layne–Watson problem. The algorithm is then applied on a stick–slip problem,
showing the possibility to make the continuation of a smooth by part system with
this method. The last section presents a generic application to mechanical problems
issued from FEM.

The quadratic recast of the system of equations is the key point of this continuation
tool that allows to compute the Jacobian matrix and the Taylor series of the ANM
automatically. The separation of the variables into main or auxiliary variables, the
condensation of the auxiliary variables using a block solving technique and the sparse
tensorial formalism ensure a very significant improvement of the computation time
as compared to the previous versions of generic implementation of the ANM in the
Manlab suite2.

Acknowledgment

The authors want to thank Stéphane Bourgeois for fruitful discussions on the finite
element analysis part.
This work has been carried out in the framework of the Labex MEC (ANR-10-
LABX-0092) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the
Investissements d’Avenir French Government program managed by the French Na-
tional Research Agency (ANR).

Bibliography

[1] Manlab - an interactive path-following and bifurcation alnalysis software.
available at https:\\manlab.lma.cnrs-mrs.fr.

[2] H. Abichou, H. Zahrouni, and M. Potier-Ferry. Asymptotic numerical
method for problems coupling several nonlinearities. Computer methods

in applied mechanics and engineering, 191:5795–5810, 2002.

[3] W. Aggoune, H. Zahrouni, and M. Potier-Ferry. Asymptotic numerical
methods for unilateral contact. International journal for numerical meth-

ods in engineering, 68(6):605–631, 2006.

[4] C. Allery, J.-M. Cadou, A. Hamdouni, and D. Razafindralandy. Applica-
tion of the asymptotic numerical method to the coanda effect study. Revue

Européenne des Eléments, 13(1-2):57–77, 2004.

[5] K.-J. Bathe. Finite element procedures. Prentice-Hall Inc, 1996.

[6] T. F. Chan and H. Keller. Arc-length continuation and multigrid tech-
niques for nonlinear elliptic eigenvalue problems. SIAM Journal on Scien-

tific and Statistical Computing, 3(2):173–194, 1982.

[7] I. Charpentier and B. Cochelin. Towards a full higher order ad-based con-
tinuation and bifurcation framework. Optimization Methods & Software,
2018.

2Manlab 4.0 is available online on the dedicated website https://manlab.lma.cnrs-mrs.fr/ .

20

[8] I. Charpentier, B. Cochelin, and K. Lampoh. Diamanlab-an interactive
taylor-based continuation tool in matlab. 2013.

[9] I. Charpentier, A. Lejeune, and M. Potier-Ferry. The diamant approach for
an efficient automatic differentiation of the asymptotic numerical method.
Advances in Automatic Differentiation, pages 139–149, 2008.

[10] I. Charpentier and M. Potier-Ferry. Différentiation automatique de la
méthode asymptotique numérique typée: l’approche diamant. Comptes

Rendus Mécanique, 336(3):336–340, 2008.

[11] B. Cochelin. A path-following technique via an asymptotic-numerical
method. Computers & structures, 53(5):1181–1192, 1994.

[12] B. Cochelin, N. Damil, and M. Potier-Ferry. Asymptotic–numerical meth-
ods and pade approximants for non-linear elastic structures. International

journal for numerical methods in engineering, 37(7):1187–1213, 1994.

[13] B. Cochelin, N. Damil, and M. Potier-Ferry. The asymptotic-numerical
method: an efficient perturbation technique for nonlinear structural me-
chanics. Revue européenne des éléments finis, 3(2):281–297, 1994.

[14] B. Cochelin, N. Damil, and M. Potier-Ferry. Méthode asymptotique
numérique. 2008.

[15] B. Cochelin and M. Medale. Power series analysis as a major breakthrough
to improve the efficiency of asymptotic numerical method in the vicinity
of bifurcations. Journal of Computational Physics, 236:594–607, 2013.

[16] B. Cochelin and C. Vergez. A high order purely frequency-based harmonic
balance formulation for continuation of periodic solutions. Journal of sound

and vibration, 324(1):243–262, 2009.

[17] E. Doedel, H. B. Keller, and J. P. Kernevez. Numerical analysis and control
of bifurcation problems (i): bifurcation in finite dimensions. International

journal of bifurcation and chaos, 1(03):493–520, 1991.

[18] E. J. Doedel and R. F. Heinemann. Numerical computation of periodic
solution branches and oscillatory dynamics of the stirred tank reactor with
a yields b yields c reactions. Technical report, Wisconsin univ-Madison
mathematics research center, 1982.

[19] L. Duigou, E. Daya, and M. Potier-Ferry. Iterative algorithms for non-
linear eigenvalue problems. application to vibrations of viscoelastic shells.
Computer methods in applied mechanics and engineering, 192:1323–1335,
2003.

[20] M. J. Feigenbaum. The universal metric properties of nonlinear transfor-
mations. Journal of Statistical Physics, 21(6):669–706, 1979.

[21] K. Fritzsche and H. Grauert. From holomorphic functions to complex man-

ifolds, volume 213. Springer Science & Business Media, 2012.

[22] L. Guillot, P. Vigué, C. Vergez, and B. Cochelin. Continuation of quasi-
periodic solutions with two-frequency harmonic balance method. Journal

of Sound and Vibration, 394:434–450, 2017.

[23] T. J. Hughes. The finite element method: linear static and dynamic finite

element analysis. Prentice-Hall Inc, 1987.

21

[24] S. Karkar, B. Cochelin, and C. Vergez. A high-order, purely frequency
based harmonic balance formulation for continuation of periodic solutions:
The case of non-polynomial nonlinearities. Journal of Sound and Vibration,
332(4):968–977, 2013.

[25] H. Keller. Lectures on numerical methods in bifurcation problems. Applied

Mathematics, 217:50, 1987.

[26] N. Kessab, B. Braikat, H. Lahmam, E. Mallil, N. Damil, and M. Potier-
Ferry. High order predictor-corrector algorithms for strongly nonlinear
problems. Revue de, 1(8):587–613, 2006.

[27] T.-Y. Li and J. A. Yorke. Period three implies chaos. The American

Mathematical Monthly, 82(10):985–992, 1975.

[28] M. Medale and B. Cochelin. High performance computations of steady-
state bifurcations in 3d incompressible fluid flows by asymptotic numerical
method. Journal of Computational Physics, 299:581–596, 2015.

[29] N. S. Nedialkov and J. D. Pryce. Solving differential-algebraic equations by
taylor series (iii): the daets code. Journal of Numerical Analysis, Industrial

and Applied Mathematics, 1(1):1–30, 2007.

[30] S. Nezamabadi, J. Yvonnet, H. Zahrouni, and M. Potier-Ferry. A mul-
tilevel computational strategy for handling microscopic and macroscopic
instabilities. Computer methods in applied mechanics and engineering,
198:2099–2110, 2009.

[31] R. Seydel. From equilibrium to chaos: practical bifurcation and stability

analysis. North-Holland, 1988.

[32] L. T. Watson. A globally convergent algorithm for computing fixed points
of c2 maps. Applied mathematics and computation, 5(4):297–311, 1979.

[33] H. Zahrouni, B. Cochelin, and M. Potier-Ferry. Computing finite rotations
of shells by an asymptotic-numerical method. Computer methods in applied

mechanics and engineering, 175(1-2):71–85, 1999.

[34] H. Zahrouni, M. Potier-Ferry, H. Elasmar, and N. Damil. Asymptotic
numerical method for nonlinear constitutive laws. Revue européenne des

éléments finis, 7(7):841–869, 1998.

[35] R. Zucker. Elementary transcendental functions: Logarithmic, exponen-
tial, circular and hyperbolic functions. Handbook of Mathematical Func-

tions with Formulas, Graphs, and Mathematical Tables. New York: Dover,
pages 65–94, 1965.

22

A Table of quadratic recasts of the most com-

mon elementary transcendental functions

auxiliary variable companion variable(s) full quadratic recast differentiated form
(if needed)

v = exp(u) v − exp(u) = 0 dv − vdu = 0

v = log(u) w = 1
u

v − log(u) = 0
u× w − 1 = 0

dv − wdu = 0

v = uα w = v
u

v − uα = 0
w × u− v = 0

dv − αwdu = 0

v = sin(u) w = cos(u)
v − sin(u) = 0
w − cos(u) = 0

dv − wdu = 0
dw + vdu = 0

v = cos(u) w = sin(u)
v − cos(u) = 0
w − sin(u) = 0

dv + wdu = 0
dw − vdu = 0

v = tan(u) w = 1− v2
v − tan(u) = 0
w − 1 + v2 = 0

dv − wdu = 0

v = sinh(u) w = cosh(u)
v − sinh(u) = 0
w − cosh(u) = 0

dv − wdu = 0
dw − vdu = 0

v = cosh(u) w = sinh(u)
v − cosh(u) = 0
w − sinh(u) = 0

dv − wdu = 0
dw − vdu = 0

v = tanh(u) w = 1 + v2
v − tanh(u) = 0
w − 1− v2 = 0

dv − wdu = 0

v = arcsin(u) z =
√
1− u2

w = 1
z

v − arcsin(u) = 0
z2 − 1 + u2 = 0
w × z − 1 = 0

dv − wdu = 0

v = arccos(u) z =
√
1− u2

w = −1
z

v − arccos(u) = 0
z2 − 1 + u2 = 0
w × z + 1 = 0

dv − wdu = 0

v = arctan(u) z = 1 + u2

w = 1
z

v − arctan(u) = 0
z − 1− u2 = 0
w × z − 1 = 0

dv − wdu = 0

v = argsh(u) z =
√
u2 + 1

w = 1
z

v − argsh(u) = 0
z2 − 1− u2 = 0
w × z − 1 = 0

dv − wdu = 0

v = argch(u) z =
√
u2 − 1

w = 1
z

v − argch(u) = 0
z2 + 1− u2 = 0
w × z − 1 = 0

dv − wdu = 0

v = argth(u) z = 1− u2

w = 1
z

v − argth(u) = 0
z − 1 + u2 = 0
w × z − 1 = 0

dv − wdu = 0

23

	Introduction
	Continuation using the Asymptotic Numerical Method (ANM)
	Definitions, notations and theoretical background
	Implementation methods

	Recast of the system of equations
	Explanatory example
	Definition of the auxiliary variables
	Quadratic recast of the elementary transcendental functions
	Final recast of the example
	General formula

	Details on the computation of the series
	Computation of the Jacobian matrix
	General computation
	Explanatory example

	Computation of the series
	Block solving of the linear systems
	Sparse tensorial formalism
	Sparse tensors
	Explanatory example
	Automatic generation of the tensor lists using polarization formula

	Examples
	Logistic map
	Layne–Watson
	Stick-slip motion of a one d.o.f. oscillator

	Application to finite element analysis in mechanics
	Conclusion
	Table of quadratic recasts of the most common elementary transcendental functions

