A generic and efficient Taylor series based continuation method using a quadratic recast of smooth nonlinear systems

Louis Guillot 1 Bruno Cochelin 2 Christophe Vergez 3
2 M&S - Matériaux et Structures
LMA - Laboratoire de Mécanique et d'Acoustique [Marseille]
3 Equipe Perception et design sonores
STMS - Sciences et Technologies de la Musique et du Son
Abstract : This paper is concerned with a Taylor series based continuation algorithm, ie, the so-called Asymptotic Numerical Method (ANM). It describes a generic continuation procedure that apply the ANM principle at best, that is to say, that presents a high level of genericity without paying the price of this genericity by low computing performances. The way to quadratically recast a system of equation is now part of the method itself, and the way to handle elementary transcendental function is detailed with great attention. A sparse tensorial formalism is introduced for the internal representation of the system, which, when combines with a block condensation technique, provides a good computational efficiency of the ANM. Three examples are developed to show the performance and the versatility of the implementation of the continuation tool. Its robustness and its accuracy are explored. Finally, the potentiality of this method for complex non linear finite element analysis is enlightened by treating 2D elasticity problem with geometrical nonlinearities.
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01827832
Contributeur : Louis Guillot <>
Soumis le : lundi 2 juillet 2018 - 17:04:19
Dernière modification le : jeudi 22 novembre 2018 - 14:06:28
Document(s) archivé(s) le : lundi 1 octobre 2018 - 08:10:03

Fichier

Article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01827832, version 1

Citation

Louis Guillot, Bruno Cochelin, Christophe Vergez. A generic and efficient Taylor series based continuation method using a quadratic recast of smooth nonlinear systems. 2018. 〈hal-01827832〉

Partager

Métriques

Consultations de la notice

222

Téléchargements de fichiers

140