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Abstract21

Structural sensitivity, namely the sensitivity of a model dynamics to slight changes in its mathematical22

formulation, has already been studied in some models with a small number of state variables. The23

aim of this study is to investigate the impact of structural sensitivity in a food web model. Especially,24

the importance of structural sensitivity is compared to that of trophic complexity (number of species,25

connectance), which is known to strongly influence food web dynamics. Food web structures are built26

using the niche model. Then food web dynamics are modeled using several type II functional responses27

parameterized to fit the same predation fluxes. Food web persistence was found to be mostly determined28

by trophic complexity. At the opposite, even if food web connectance promotes equilibrium dynamics,29

their occurrence is mainly driven by the choice of the functional response. These conclusions are robust to30

changes in some parameter values, the fitting method and some model assumptions. In a one-prey/one-31

predator system, it was shown that the possibility that multiple stable states coexist can be highly32

structural sensitive. Quantifying this type of uncertainty at the scale of ecosystem models will be both a33

natural extension to this work and a challenging issue.34
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1 Introduction35

Predictions made by mathematical models can be sensitive to model formulation (Anderson et al., 2010;36

Fulton et al., 2003b; Fussmann & Blasius, 2005, among others). However, this sensitivity hass rarely been37

tested in theoretical and operational ecosystem models (Arhonditsis & Brett, 2004; Fulton et al., 2003a).38

In ecological models with multiple interacting populations, phenomena observed at the community scale39

are usually represented by simplifying smaller scale processes. For instance, collective and individual40

behaviours as well as physiological processes involved in predation are collapsed into one function, the41

functional response (Gentleman et al., 2003; Jeschke et al., 2002). Numerous mathematical formulations42

of a given biological phenomenon are relevant in the sense that: (i) their properties and assumptions about43

underlying processes are consistent with the knowledge of the system to model, (ii) they equivalently fit44

empirical data (Cordoleani et al., 2011; Mullin et al., 1975). Moreover, some of these functions may45

have the same mathematical properties (pointwise properties, monotonicity, convexity, ...). However, the46

choice of a particular function among relevant ones can affect the dynamics predicted by the same model.47

Differences occur in predicted steady-state values, equilibrium vs. oscillating dynamics and in the system48

response to external disturbances (Aldebert et al., 2016). Uncertainty due to this choice of a function is49

coined as “structural sensitivity” (sensu Cordoleani et al., 2011).50

Structural sensitivity has been theoretically studied in simple models with a few state variables,51

mainly predator-prey and food chain models (Adamson & Morozov, 2012, 2014; Fussmann & Blasius,52

2005; Gross et al., 2004; Myerscough et al., 1996). The aim of this study is to extend these results to53

more complex models such as food webs. Previous results on predator-prey models may suggest that54

food web models are sensitive to the choice of type-II functional response. We propose to compare food55

web dynamics under changes in both functional response formulation and trophic complexity (number of56

trophic species and trophic links).57

Trophic complexity is known to affect food web dynamics and stability. Complexity-stability relation-58

ships have been conceptually studied by MacArthur (1955) and then more formally by May (1972, 1973).59

May’s work has led to a long-standing debate which is still open after decades of field and theoretical60

researches (Loreau, 2010; May, 1999; McCann, 2000). Food webs exhibit a huge number of different61

structures. A relevant analysis of their common properties requires to reproduce their diversity. Numer-62

ous food webs with empirically consistent structural properties and a desired trophic complexity can be63
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built by simple random models (Cattin et al., 2004; Williams & Martinez, 2000, among others). These64

models have been used to statistically investigate complexity-stability relationships in food web models65

based on different ecological phenomena (Brose et al., 2006; Heckmann et al., 2012; Kartascheff et al.,66

2009, 2010; Plitzko et al., 2012; Stouffer & Bascompte, 2010, 2011; Uchida & Drossel, 2007; Williams,67

2008; Williams & Martinez, 2004).68

The questions we address in this paper are: (i) are dynamics predicted by a food web model more im-69

pacted by structural sensitivity or by trophic complexity? (ii) Does structural sensitivity alter complexity-70

stability relationships?71

Next section presents the studied food web model. It is an extension of a predator-prey model in72

which structural sensitivity has already been explored (Aldebert et al., 2016). Structural sensitivity in73

this model is compared to the impact of trophic complexity in section 3.1. Observed results are then74

explained from the knowledge of predator-prey models (section 3.2) and their robustness to changes75

in the method used to fit functional responses is tested (section 3.3). Then, the relative importance76

of trophic complexity, functional response formulation and parameter values is estimated (section 3.4).77

Next, robustness to changes in model assumptions is assessed, and complexity-stability relationships are78

compared to empirical findings (section 3.5). Paper ends with a more general discussion about structural79

sensitivity and modelling of biological systems (section 3.6).80

2 Models81

2.1 Food web structure82

Food webs are composed by S species (sensu trophic species) and one resource. Species are linked by L83

trophic interactions, so that food web connectance is C = L/S2 (directed connectance, Martinez, 1991).84

The niche model (Williams & Martinez, 2000) is used to randomly build numerous food webs with the85

desired number of species and connectance. The niche model generates quickly numerous food webs86

with patterns that are consistent with empirical data (Allesina et al., 2008; Cattin et al., 2004; Williams87

& Martinez, 2000). It is based on the principle of ecological niche (Hutchinson, 1957). A species i is88

characterized by a niche value ni uniformly drawn in the interval [0, 1], the niche axis.89

The niche model is described in section 1 of Supporting Online Material (SOM). Food webs are made90

of distinct species, that are either a primary producer or a predator. Attribution of trophic links allows for91
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cannibalism and trophic loops. We added a rejection step after food webs construction to avoid unrealistic92

patterns. We only studied food webs with a realized connectance that deviated at most by 0.01 of the93

expected one, that are connected (no disconnected parts), and in which all predators feed (as a prey or94

through a food chain) upon at least one primary producer.95

2.2 Food web dynamics96

Food web dynamics is modeled using a dynamical system of S differential equations. It is a bio-energetic97

model extended for a multi-species system (Plitzko et al., 2012; Yodzis & Innes, 1992, among others).98

This deterministic model is continuous in time with unstructured populations. Each species i is described99

by its biomass Bi, with dynamics given by the ordinary differential equation:100

dBi

dt
= λqφi Bi + λ

∑
j∈Ri

Gφi,jBi −
∑
j∈Ci

Gφj,iBj − αiBi − βiB
2
i i = 1, ..., S. (1)

Right terms of model (1) handle respectively a gain in biomass by primary production, sum of gains101

by predation, sum of losses by predation, linear mortality and respiration, density-dependent mortality102

(intra-specific competition, diseases). Species i possesses a set of prey (predator) species denoted as Ri103

(Ci). By definition, primary producers have Ri = ∅ and top-predators have Ci = ∅. The parameter104

λ is the assimilation efficiency. For the sake of simplicity, λ is assumed to be the same for all species.105

Parameter αi is the linear mortality rate and parameter βi is the per-capita intra-specific competition106

rate of species i. The letter φ indicates the specific formulation used for the Holling-type II functional107

response Gφi,j . For simplicity, all species are assumed to have the same formulation. This one is either108

Holling’s disc equation (1959; 1965) denoted as GHi,j or Ivlev’s functional response (1955) denoted as GIi,j109

(later called Holling’s FR and Ivlev’s FR):110

GHi,j =
aHi fi,jBj

1 + hHi a
H
i Ti

, GIi,j =
1

hIi

(
1− exp

(
−hIi aIi Ti

)) fi,jBj
Ti

with Ti =
∑
j∈Ri

fi,jBj .

Both functional responses are extended for a predator with multiple prey species by assuming that it111

does not switch between preys (Gentleman et al., 2003). For Holling’s FR, parameters aHi and hHi are112

respectively the attack rate and the handling time of the predator. For Ivlev’s FR, parameter 1/hIi is the113

maximal digestion rate and aIi h
I
i is the satiation coefficient of the predator. The total amount of prey114
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available for species i is the weighted sum of its prey species biomass Ti. The weighting parameter fi,j115

is constant and it can be considered as the foraging effort or the feeding preference of predator i for its116

prey species j (obviously, fi,j = 0 and Gφi,j = 0 if j /∈ Ri). This means that the total functional response117

of a predator Gφ,toti (Ti) =
∑
j∈Ri

Gφi,j is a function of Ti (figure 1) and that Gφi,j = Gφ,toti fi,jBj/Ti. Both118

functional responses also fulfills properties:119

Gφ,toti ∈ C2, Gφ,toti (0) = 0, Gφ,toti (Ti) ≥ 0, Gφ,toti

′
(Ti) > 0, Gφ,toti

′′
(Ti) < 0, lim

Ti→+∞
Gφ,toti (Ti) < +∞,

with C2 being the class of twice continuously differentiable functions. Other properties means that Gφ,tot120

is null in absence of prey, increases with prey biomass, is concave and saturates at high prey biomass.121

Functional response’s parameters have the same mathematical meaning in both formulations:122

Gφ,toti

′
(0) = aφi , lim

Ti→+∞
Gφ,toti (Ti) =

1

hφi
.

Thus, aφpred gives the slope of the functional response at the origin, and 1/hφpred gives the asymptotic123

value of the functional response when it saturates at high prey biomass.124

The term of primary productivity qφi has the same equation as the functional response Gφi,j with a125

constant pool of resources Bres:126

qHi =


aHi Bres

1 + hHi a
H
i Bres

if i ∈ PI

0 otherwise

, qIi =


1

hIi

(
1− exp

(
−hIi aIiBres

))
if i ∈ PI

0 otherwise.

This term vanishes for predators, with PI being the set of primary producers. Setting a constant pool of127

resource implies two assumptions. First, the time scale of the resource dynamics is such that it is always128

at quasi-equilibrium in comparison to the time scale of population dynamics. Second, the equilibrium129

value is independent of the food web dynamics, it only depends on the environment, which is supposed130

to be constant.131

Let Mi = 10xni be the body mass of species i, with a scale parameter x. We assume that some132

parameter values scale allometrically across species (Brown et al., 2004):133

6



(a)

total functional response  (Gi
φ, tot (Ti))

total prey biomass available  (Ti)
0 5 10 15 20

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ivlev

Holling

(b)

weight function  (ωP (Ti))

0 25 50 500

total prey biomass available  (Ti)

Figure 1. Functional responses used in the model. a: total functional response of species i (total
amount of preys eaten by predator and by time unit) calculated as a function of its total prey biomass
available, using Holling’s disc equation (solid) or Ivlev’s functional response (dashed). The latter is
parameterized in order to minimize the weighted Euclidean distance between the two formulations. For
the sake of visibility, only a part of the fitting range is shown. b: weighting function used to calculate
the distance between formulations. See section 2.2 for formulations and section 2.3 for parameterization.

aφi = aφM
−1/4
i , hφi = hφM

1/4
i , αi = αM

−1/4
i , βi = βM

−1/4
i .

As species abundance is quantified in terms of biomass, the scaling exponent −1/4 corresponds to an134

increase of individual metabolic rate with body mass power 3/4, divided by individual body mass. The135

3/4 exponent is controversial. Empirical data and theoretical studies indicate values between 2/3 and136

1 (Kooijman, 2010). Nevertheless, the exact value of this exponent has a limited impact on species137

extinctions in similar food web models (Kartascheff et al., 2010).138

Note that if two species have the same trophic interactions and parameter values, model (1) is sensitive139

to the aggregation of these identical species as no direct inter-specific competition is considered. It has140

no impact on our numerical results as identical (or infinitely close) species are infinitely rare in food webs141

built by the niche model. This problem in model consistency can be solved by considering an inter-specific142

competition term, with a competition strength that decreases with a measure of distance between species.143
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Table 1. Parameter values used in the food web model. Parameter values from Heckmann et al.
(2012) were estimated from empirical data sets (up to > 700 organisms from unicellular eukaryotes to
plants and mammals, which span 20 orders of magnitude in body mass, Brose et al., 2006; Brown et al.,
2004) using allometric scaling or set to values similar to other studies for comparison (like Kartascheff
et al., 2009, 2010).

biological meaning parameter value source unit
mortality rate α 0.3 (Heckmann et al., 2012) time−1

per-capita competition rate β 0.5 (Heckmann et al., 2012) biomass−1time−1

assimilation efficiency λ 0.65 (Heckmann et al., 2012) -
resource biomass Bres 500 (Heckmann et al., 2012) biomass
magnitude of body mass range x 8 (Plitzko et al., 2012) -
Holling’s disc equation:
attack rate aH 6 (Heckmann et al., 2012) biomass−1time−1

handling time hH 0.35 (Heckmann et al., 2012) time
Ivlev’s functional response:
maximal consumption rate 1/hI 1/0.36 see text time−1

satiation coefficient aIhI 3.17× 0.36 see text biomass−1

2.3 Parameterization and numerical study144

Parameter values are displayed in table 1. The range of trophic complexity (20 to 60 species, connectance145

of 0.10 to 0.30) is set to include values used in previous studies (Gross et al., 2009; Kartascheff et al.,146

2009, 2010; Plitzko et al., 2012, among others) for comparison. The number of simulations is limited by147

assuming that a species i has the same feeding preference fi,j = 1/|Ri| for all its prey species j ∈ Ri (with148

|Ri| being the number of prey species of species i). This choice implies that Ti is the average biomass of149

prey species
∑
j∈Ri

Bj/ |Ri| (weak generalist model, sensu Williams, 2008).150

Parameters in Ivlev’s FR are chosen to minimize the weighted Euclidean distance between both151

functional responses:152

SA,ω
(
aI , hI

)
= d2A,ω

(
GH,toti , GI,toti

)
=

∫
A

ω(Ti)
(
GH,toti (Ti)−GI,toti (Ti)

)2
dTi, (2)

with a weighting function ω(Ti) on a fitting range A of Ti values. Total prey biomass ranges from 0 to153

constant resource biomass for primary producers, so we set A = [0, Bres]. For a fixed amount of total154

prey biomass
∑
j∈Ri

Bj , the resulting Ti depends on |Ri|. To balance this effect a priori, the distance is155
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weighted by (figure 1):156

ωP(Ti) =
1

SmaxTmax

N∑
n=1

n with N = min (bTmax/Tic, Smax) and Tmax = max(A), (3)

which is the frequency distribution of Ti values for
∑
j∈Ri

Bj ∈ A and for a predator’s number of prey157

species which ranges between one and Smax = 60. Minimizing the cost function S[0,Bres],ωP using the158

simplex method by Nelder & Mead (1965) give values aI = 3.17 and hI = 0.36. The sensitivity of our159

results to choices in A and ω(Ti) is discussed in section 3.3.160

Let us recall that, when an equilibrium is reached, the right-hand side of equation (1) vanishes for all161

species, with B∗1 , B
∗
2 , ..., B

∗
S being the species biomass at an equilibrium (and T ∗i the total prey biomass162

available of species i at equilibrium). The jacobian matrix Jφ of system (1) is presented in appendix S1.163

The algorithm presented in section 2 of SOM (with a discussion about its limits) is used to auto-164

matically determine the kind of asymptotic dynamics reached by a food web. The proposed algorithm165

classifies asymptotic dynamics in three types: dynamics in which at least one species goes extinct, equi-166

librium in which all species coexist, fluctuating dynamics (e.g. limit cycle, torus, strange attractor) in167

which all species coexist. The proportion of food webs in which all species coexist (at equilibrium or168

with fluctuating dynamics) is a measure of food web persistence. The proportion of persistent food webs169

(i.e. food webs in which all species coexist) which exhibit a fluctuating dynamics is a measure of food170

web variability. Food webs construction and simulation were achieved by C++ programs using GNU171

Scientific Library for C/C++ (Galassi et al., 2013). Post-simulation analysis and figures were performed172

using R language (R Core Team, 2013).173

3 Results and Discussion174

3.1 Structural sensitivity vs. trophic complexity175

Both functional responses predict similar patterns of food web persistence as a function of trophic com-176

plexity (figure 2a,c). Within this range, Ivlev’s FR predicts less extinctions than Holling’s FR does (from177

−11 % to +1 % food webs with at least one species extinction). With both functional responses, the178

proportion of non-persistent food webs increases with trophic complexity. This increase is higher with179

the number of species (×1.4 with Holling’s FR and ×1.5 with Ivlev’s FR) than with connectance (×1.2180
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and ×1.3). Functional responses are parameterized to predict quantitatively close predation fluxes, which181

explains their similar predictions of food web persistence.182

Conversely, food web variability is mainly driven by functional response formulation within the tested183

range of trophic complexity (figure 2b,d). Ivlev’s FR predicts 2.3 times more equilibrium dynamics (from184

98 % to 99 % of persistent food webs reach an equilibrium) than Holling’s FR does (from 25 % to185

80 %). The proportion of equilibrium dynamics increases more with connectance (on average ×3.2 with186

Holling’s FR and +1 % with Ivlev’s FR) than with the number of species (×1.1 with Holling’s FR, no187

trend with Ivlev’s FR). Even if the effect of trophic complexity can change with other measures of food188

web persistence and variability, the latter is still higher with Ivlev’s FR (section 5 in SOM).189

3.2 Understanding structural sensitivity in food webs190

Model (1) applied to a one-predator/one-prey system owns an equibrium which is stable with Ivlev’s FR191

and unstable with Holling’s FR in 26 % to 49 % of the parameter space explored in Aldebert et al. (2016).192

With Holling’s FR, dynamics converge on a stable limit cycle. Equilibrium stability is different because193

the slope of Holling’s FR at equilibrium is lower. The slope of the functional response at equilibrium in194

food webs can be described by its elasticity:195

γi := gφi
′
(1) ∈ [0, 1] with ti :=

Ti

T ∗i
and gφi (ti) :=

Gφ,toti (tiT
∗
i )

Gφ,toti (T ∗i )
,

where the normalized functional response equals 1 at equilibrium (gφi (1) = 1). A high elasticity γi196

stabilizes equilibria in predator-prey (Aldebert et al., 2016; Yeakel et al., 2011) and food web models197

(section 6 of SOM).198

The elasticity depends on prey biomass at equilibrium, which has a similar distribution between199

functional responses (figure 3). However, Ivlev’s FR has a higher elasticity than Holling’s FR for low200

prey biomass values (figure 4b). As a consequence, the realized γi distribution in food web simulations201

is 1.6 times higher with Ivlev’s FR (γ̄ = 0.60) than with Holling’s FR (γ̄ = 0.37, figure 4a). With the202

latter, one can expect that stable equilibria are closer to a bifurcation threshold (with respect to γi).203

Thus, more food webs are likely to be on the unstable side of this bifurcation with Holling’s FR. This204

can explain why this function leads more frequently to fluctuating dynamics. This reasoning extends the205

previous mechanism found in predator-prey models (Fussmann & Blasius, 2005) to the scale of complex206
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Figure 2. Food web dynamics as a function of trophic complexity predicted by Holling’s (a,
b) and Ivlev’s functional responses (c, d). a, c: proportion of food webs with at least one species
extinction. b, d: proportion of persistent food webs with a stable positive equilibrium. The number of
food webs studied for each pair of parameters is enough to obtain 10 000 food webs with a stable positive
equilibrium.

11



food webs.207

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

species biomass at equilibrium (Bi
*)

pr
ob

ab
ili

ty
 d

en
si

ty

Ivlev

Holling

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

total prey biomass available at equilibrium  (Ti
*)

pr
ob

ab
ili

ty
 d

en
si

ty

Figure 3. Estimated densities of species biomass (a) and total prey biomass available for
predator species (b) in food webs reaching a positive equilibrium with Holling’s (plain) or
Ivlev’s (dashed) functional response. Computed from 160 000 food webs of varying complexity (4
levels of connectance and 4 numbers of species, 10 000 food webs by pair of values). Density estimates
are realized using non-parametric kernel methods (Simonoff, 1996).

3.3 Structural sensitivity and the method used to fit the functional responses208

As the slope of the functional response drives food web variability, one can think about different ways209

to parameterize Ivlev’s FR. The relevance of these different approaches from a biological point of view210

is discussed in section 3.6. Here, we focus on robustness to changes in parameter values estimated for211

Ivlev’s FR. Different parameter sets are estimated by minimizing the weighted distance (2): (i) over212

different ranges of Ti values, and (ii) using either the weighting function ωP (3) (figure 1) or a uniform213

weighting function ωU (Ti). One last parameter set is estimated using the empirical distribution of total214

prey biomass observed in persistent food webs at equilibrium with Holling’s FR (figure 3b).215

Parameter sets that give a better fit to Holling’s FR at low prey biomass (closer aφ value) predict a216

closer value of food web variability between functional responses (table 2 and figure 5). However, they also217

predict more distant primary productivity (≈ 1/hφ value) and predicted value of food web persistence.218

Furthermore, equilibrium dynamics are still more frequent with Ivlev’s FR within the tested range of219

12



(a)

0.0 0.2 0.4 0.6 0.8 1.0

elasticity of the functional response at equilibrium  (γ i)

pr
ob

ab
ili

ty
 d

en
si

ty

IvlevHolling

(b)

elasticity of the functional response  (γ i)

total prey biomass available at equilibrium  (Ti
*)

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. Elasticity of the functional response: estimated density in food webs reaching a
positive equilibrium (a) and as a function of total prey biomass available (b) with Holling’s
(plain) or Ivlev’s (dashed) functional response. Computed for predator species from 160 000 food
webs of varying complexity (4 levels of connectance and 4 numbers of species, 10 000 food webs by pair
of values). Density estimates are realized using non-parametric kernel methods (Simonoff, 1996).

trophic complexity (section 3 in SOM). The parameter set that leads to the closer food web variability220

(ωP within [0, 3.5]) does not lead to the best fit of functional responses within the range of prey biomass221

observed (column SωU ,[0,3.5] in table 2), as it is optimized for even smaller biomass values. In other222

words, this parameter set optimizes only the slope at the origin (aφ), as we know that the functional223

response slope drives food web variability. Only one parameter set is usually considered in previous224

studies on structural sensitivity in predator-prey models (Aldebert et al., 2016; Cordoleani et al., 2011;225

Fussmann & Blasius, 2005; Myerscough et al., 1996). We checked here with different parameter sets that226

functional response formulation influences food web variability, even if this influence is lower with some227

fitting methods.228

3.4 Structural sensitivity vs. parameter sensitivity229

Even with the simplifying assumption that parameter values scale allometrically, a full parameter sensi-230

tivity analysis requires a high computational effort. Indeed, to be reasonably exhaustive it is necessary231

to study thousands of food webs with different numbers of species and connectance levels for each pa-232
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Table 2. Impact of the method used to fit the functional responses. The columns indicate
respectively: the weighting function used, the range of Ti values within which the weighted distance
between functions is minimized, the pair of parameters values obtained (aφ and hφ) for Ivlev’s functional
response, the corresponding distance (computed with the same weighting function for comparison) be-
tween functions at low ([0, 3.5]) and high ([3.5, 500]) total prey biomass available, the predicted dynamics
(proportion of food webs with extinction(s), proportion of persistent food webs reaching an equilibrium)
in 30-species food webs with a connectance of 0.15. The number of food webs studied for each pair
of parameters is enough to obtain 1 000 food webs with a stable positive equilibrium. The bold line
corresponds to the parameters values used in the rest of the study. In addition, one parameter set for
Ivlev’s functional response has been estimated using the empirical distribution of Ti observed in persistent
food webs at equilibrium with Holling’s disc equation (figure 3b). Dynamics predicted by Holling’s disc
equation are indicated for comparison.

weighting function Ti ∈ A aφ hφ SωU ,[0,3.5] SωU ,[3.5,500] extinction(s) equilibrium
[0, 500] 2.70 0.35 0.049 < 0.001 0.79 1.00
[0, 20] 3.12 0.37 0.026 0.021 0.83 0.99

ωU [0, 15] 3.22 0.37 0.025 0.021 0.84 0.98
[0, 10] 3.39 0.38 0.017 0.046 0.85 0.96
[0, 3.5] 4.03 0.41 0.004 0.165 0.89 0.89
[0,500] 3.17 0.36 0.036 0.005 0.83 0.98
[0, 20] 4.67 0.41 0.007 0.165 0.91 0.72

ωP [0, 15] 4.82 0.42 0.007 0.215 0.92 0.68
[0, 10] 4.98 0.43 0.010 0.269 0.92 0.60
[0, 3.5] 5.31 0.45 0.023 0.387 0.93 0.51

Ti distribution from fig. 3b 4.50 0.44 0.015 0.327 0.91 0.80
Holling’s disc equation 6 0.35 0.86 0.43

rameter set. However, we investigate the robustness of our results to the functional response parameter233

values. We vary the parameter values used for Holling’s FR (aH and hH) within a range [−20 %,+20 %]234

(discretized by steps of 10 %) and re-estimate the parameters for Ivlev’s FR by fitting the two functions.235

The relative variation considered is comparable to uncertainties in parameter estimation from empirical236

data (Cordoleani et al., 2011). Food webs with the same numbers of species and connectance levels as237

in figure 2 are studied for each parameter set and each functional response for a total amount of ≈ 6.107238

food webs studied.239

Within the tested range of trophic complexity, food web persistence is strongly correlated (0.76) to240

the number of species, whereas food web variability is strongly correlated (0.82) to functional response241

formulation (3). Both persistence and variability are also correlated (0.37 and 0.36) to connectance.242

In comparison, food web dynamics are weakly correlated to parameter values. A change in parameter243

values has a weaker impact on model dynamics than a change in model formulation, even if both changes244
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Figure 5. Impact of the method used to fit the functional responses. a: Holling’s disc equation
(plain), Ivlev’s functional response with the parameter set used in the study (bold dashed) and with
parameter sets obtained with different fitting methods (thin dashed, see table 2). b and c: food web
dynamics (30 species, connectance of 0.15) predicted for these parameter sets. Gray labels and arrows
summarize the main trend of results: a better fit at low prey biomass (a) leads to a closer predicted food
web variability (c), but also to more distant functions at other prey biomass values (a) and more distant
predicted food web persistence (b).

correspond to a quantitatively similar variation measured between the functional responses (Adamson245

& Morozov, 2012, 2014; Cordoleani et al., 2011; Wood & Thomas, 1999). Indeed, for a quantitatively246

similar variation, a change of formulation may affect the function shape and lead to a higher change in247

functional response slope near equilibrium, i.e. in equilibrium stability.248

3.5 Model assumptions, complexity-stability relationships and biological sys-249

tems250

Different combinations of model assumptions are made by recent studies on food webs, often for sim-251

plifying reasons (Brose et al., 2006; Gross et al., 2009; Heckmann et al., 2012; Kartascheff et al., 2010;252

Plitzko et al., 2012; Stouffer & Bascompte, 2010, 2011; Williams, 2008). The impact of these assumptions253

is detailled in section 4 of SOM and summarized in table 4. In all cases, equilibrium dynamics are more254

frequent with Ivlev’s FR than with Holling’s FR. In addition, both functional responses show the same255

qualitative effect of each assumption.256
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Table 3. Correlations between food web dynamics, trophic complexity, the functional
response used and its parameterization. We simulated food webs of varying complexity (4 num-
bers of species times 4 connectance levels) with different functional response formulation (Holling’s or
Ivlev’s FRs) and parameterization (5 values of aφ times 5 values of hφ), leading to n = 800 combinations.
For each one, food web dynamics is summarized by the proportion of food webs with extinction(s) and
the proportion of persistent food webs reaching a stable equilibrium. A positive correlation with the
functional response corresponds to an increase with Ivlev’s FR. NS means that the corresponding p-value
is higher than 0.01 (Student’s test on the regression coefficient). For each combination, the number of
food webs studied is enough to obtain 1 000 food webs with a stable positive equilibrium. The total
number of food webs simulated is ≈ 6.107.

number of species connectance aφ hφ functional response
extinction(s) 0.76 0.37 0.12 0.07 -0.17
equilibrium NS 0.36 -0.22 0.07 0.82

Table 4. Model assumptions and complexity-stability relationships. Three changes in model
assumptions are tested: studying food webs with a fixed number of five primary producer species (PP),
setting the body mass of primary producers to 1 and deleting cannibalistic links. For each changes,
results (proportion of food webs with extinction(s) and proportion of persistent food webs that reach an
equilibrium) are summarized for Holling’s and Ivlev’s functional responses. Trophic complexity (number
of species S and connectance C) is varied within the same range as in figure 2. The obtained range of
results and the mean impact of trophic complexity are shown. The “-” indicates that the impact of the
number of species is not discussed because the number of persistent food webs studied has been decreased
for computational reasons.

extinction(s) equilibrium
assumption functional response range S C range S C
number of PP Holling [0.48, 1.00] ×1.6 ×0.8 [0.15, 0.78] - ×4.3

Ivlev [0.47, 1.00] ×1.7 ×0.9 [0.92, 0.99] - ×1.03
body mass of PP Holling [0.48, 0.99] ×1.6 ×1.2 [0.38, 0.86] ×1.02 ×2.2

Ivlev [0.43, 1.00] ×1.7 ×1.3 1.00 = =
body mass of PP Holling [0.60, 1.00] ×1.4 ×1.2 [0.35, 0.81] ×1.05 ×2.2
+ no cannibalism Ivlev [0.51, 1.00] ×1.5 ×1.3 1.00 = =
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These changes in model assumptions show that food web persistence decreases with connectance due257

to a decrease of the proportion of primary producer species in food webs made by the niche model (SOM,258

figure 2). However, persistence is increased by the connectance per se, i.e. the number of pathways259

where energy can flow. Furthermore, connectance increases the occurrence of equilibrium dynamics and260

improves species survival by keeping their dynamics far from the extinction threshold. More equilibrium261

dynamics occur at high connectance because it increases the number of weak trophic links. Weak links262

stabilize equilibria by dampening predator-prey oscillations (McCann et al., 1998).263

The impact of the number of species on system dynamics can be related to general questions on the264

effect of biodiversity on ecosystem functioning (May, 1999; McCann, 2000). Jiang & Pu (2009) have made265

a meta-analysis of empirical studies on the effect of biodiversity. Both observational and experimental266

studies on multi-trophic communities indicate that the temporal variability of state variables (biomasses,267

processes, etc.) decreases at the population level (15 studies), and even more at the community level (25268

studies). These trends are predicted by the model, which predicts more equilibrium dynamics (figure 2269

and table 4) and a lower temporal variability of population biomass (section 5 in SOM) in larger persistent270

food webs. In addition, larger food webs have a lower variability of their predicted total biomass (data271

not shown). Note that in the model we used, there is no feedback of population dynamics on the trophic272

structure, which is set a priori. Thus, the link between diversity and ecosystem persistence can be better273

explored using evolutionary models that build persistent networks of interaction based on population274

dynamics (Drossel et al., 2001; Loeuille & Loreau, 2005; Rossberg et al., 2006).275

3.6 Structural sensitivity and modelling biological systems276

We have shown that quantitatively close mathematical functions can lead to qualitatively different food277

web dynamics. However, the amount of differences in dynamics depends on the way the functions were278

parameterized. In general, parameterization is realized by either fitting the functions to data on the279

process itself (Anderson et al., 2010; Cordoleani et al., 2011; Fussmann et al., 2000; Poggiale et al., 2010),280

or fitting the full model predictions (other parameters can be optimized at the same time) to data on the281

temporal evolution of the system (Canale et al., 1973; Kooi & Kooijman, 1994).282

Here, we used the first method in different ways. The most classical ones, namely a fit with a uniform283

weight over the range of biomass observed or a fit using the empirical biomass distribution, lead to284

significant differences in model dynamics between functional responses. These differences become lower285
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only if the fit is done so that functions are close in term of property that drives model dynamics (here286

the functional response slope at the origin). So, model dynamics have to be known a priori to be able287

to use this approach, which is in fact more similar to the second method of fit.288

The second method focuses on the dynamics predicted by the model. Different functions can be289

parameterized in order to predict close dynamics. However, these dynamics are specific to the set of290

environmental conditions (i.e. other parameter values) used. If these conditions are changed (e.g. re-291

source availability, mortality due to external factors), the different functions are likely to predict different292

dynamics as they are outside the range of optimization. The underlying idea is similar to the method of293

generalized modelling (Gross & Feudel, 2006) and the approach proposed by Adamson & Morozov (2012).294

These approaches do not specify model formulation and describe only the local properties of the model295

(like the slope of a function) near an equilibrium. So, results on equilibrium stability are independent of a296

specific formulation. However, these approaches provide no information on the system dynamics far from297

this equilibrium, like the existence of alternative stable states. In conclusion, if different functions are298

parameterized to predict similar dynamics in a given situation, this is likely to work only in the vicinity299

of this given situation (e.g. a given equilibrium). Choosing to do so or to use the first method depends300

on the purpose of the study.301

Stable equilibria and limit cycles can coexist in the food web model applied to a one-predator/one-302

prey system, due to density-dependent mortality (Aldebert et al., 2016). Density-dependent mortality303

allows the coexistence of different asymptotic states that depend on functional response formulation.304

As a consequence, functional response formulation drives model predictions in situations where external305

disturbances and recovery policies are applied (resilience, hysteresis phenomena). Such situations have not306

been investigated in food webs in this study, as we did one dynamical simulation per food web. Multiple307

simulations with different initial conditions are required for each food web to try to detect different308

asymptotic dynamics. Indeed, the existence of such dynamics cannot be fully determined using bifurcation309

analysis in systems with tens of state variables like food webs. However, quantifying uncertainties in food310

web model predictions in situations with external disturbances would be an important step toward more311

accurate model predictions.312
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4 Conclusion313

We investigated the sensitivity of a food web model to the choice of functional response formulation314

(Holling’s or Ivlev’s FRs). We found a little effect of functional response formulation on food web per-315

sistence, whereas food web variability is significantly lower with Ivlev’s functional response. Functional316

response slope at equilibrium explains this lower variability. In addition, food web variability is more317

driven by functional response formulation than by its parameter values and the tested range of trophic318

complexity (number of species, connectance). However, complexity-stability relationships are not qual-319

itatively affected by functional response formulation. These conclusions are robust both to different320

combinations of model assumptions (cannibalism, primary production) and to different fitting methods321

to parameterize functional responses.322

Because of intrinsic data variability and because model formulation is always a simplified represen-323

tation of complex biological processes, the choice of functional response may remain uncertain for many324

species. The results demonstrate that this uncertainty in the formulation of a food web model can lead325

to uncertainties in the type of asymptotic dynamics it predicts. In addition, uncertainties in predicted326

system resilience in case of external disturbances are known to arise in some predator-prey models, and327

so are likely to occur in food web models. The quantification of these potential uncertainties in food web328

resilience may be a challenging way of research toward more accurate model predictions.329
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