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Abstract. The data fidelity term is a key component of shape registra-
tion pipelines: computed at every step, its gradient is the vector field that
drives a deformed model towards its target. Unfortunately, most classical
formulas are at most semi-local: their gradients saturate and stop being
informative above some given distance, with appalling consequences on
the robustness of shape analysis pipelines.

In this paper, we build on recent theoretical advances on Sinkhorn en-
tropies and divergences [6] to present a unified view of three fidelities
between measures that alleviate this problem: the Energy Distance from
statistics; the (weighted) Hausdorff distance from computer graphics; the
Wasserstein distance from Optimal Transport theory. The ε-Hausdorff
and ε-Sinkhorn divergences are positive fidelities that interpolate be-
tween these three quantities, and we implement them through efficient,
freely available GPU routines. They should allow the shape analyst to
handle large deformations without hassle.

Keywords: shape registration · kernel · energy distance · hausdorff dis-
tance · optimal transport · GPU

1 Introduction

Shape registration as a variational problem. Given a source shape A and
a target B, a key problem in medical image analysis is to register the former
onto the latter. That is, to estimate a mapping ϕ (a change of coordinates) that
maps the source A into a model ϕ(A) which is “close enough” to the target.

Most classical registration algorithms strive to minimize an energy

E(ϕ) = Reg(ϕ)︸ ︷︷ ︸
regularizer

+ d (ϕ(A), B)︸ ︷︷ ︸
fidelity

which is the sum of a regularization term – encoding a prior on acceptable
mappings – and a data attachment term – or fidelity – that measures how far
the model ϕ(A) is from the target B.



2 J. Feydy, A. Trouvé

The need for robust fidelities and gradients. Unfortunately, as of today,
most fidelities can at best be described as semi-local. Relying on small convolu-
tion filters or kernel functions that saturate at long range [8], they stop being
informative when parts of the shapes are far away from each other. In recent
years, finely crafted formulas have been proposed to alleviate this problem [9];
but they were probably too hard to implement and did not meet widespread
adoption. As a result, most users today still rely on finely tuned coarse-to-fine
schemes to register shape populations.

Contribution. At MICCAI 2017, we introduced the theory of Optimal Trans-
port to the medical imaging community [5]. Leveraging the ideas and algorithms
presented in [11], we showed that using globally optimal spring systems to drive
a registration routine is tractable, and improves the robustness of pipelines to
large deformations. The present paper is about taking advantage of new ad-
vances in the field [6] that let us bridge the gap between Optimal Transport and
the standard shape analysis toolkit.

In section 1, we review the standard theory of measures and kernel distances
(also known as blurred Sums of Squared Distances). We stress the relevance of the
scale-invariant kernel k(x) = −‖x‖, which induces the global Energy Distance
between shapes. We also notice that kernel distances rely on linear potentials
(influence fields) generated by the shapes.

In section 2, we show how to use and compute non-linear potentials. We
introduce a family of cheap fidelities between measures, the ε-SoftMin costs, that
interpolate between the Energy Distance (ε = +∞) and the weighted Hausdorff
distance (ε = 0) borrowed from computer graphics.

Finally, in section 3, we come back to the optimal transport cost and show
that it is nothing but a “Hausdorff” distance under a mass repartition constraint.
We interpret the celebrated Sinkhorn algorithm as a balancing scheme on dis-
tance fields and put an emphasis on two fidelities: the cheap ε-Hausdorff and the
high-quality ε-Sinkhorn divergence, with a guarantee of positivity for both.

(a) data (b) segmentations (c) energy distance (d) optimal transport

Fig. 1: We focus this paper on the registration of thin segmented volumes (a,
from the OsteoArthritis Initiative) encoded as measures on the ambient space
(b). We provide efficient GPU routines to compute long-range gradients, from
cheap kernel distances (c) to high-quality optimal transport plans (d).
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In practice. Most importantly, we provide efficient CUDA routines – with
Matlab, numpy and pytorch bindings – that can be used to implement these
new data attachment terms. As shown in section 4, our KeOps library [2] allows
users to process curves, surfaces and segmentation maps with up to 100,000
actives vertices on a cheap laptop’s GPU. Our code is freely available:

Please visit github.com/jeanfeydy/global-divergences.

These new tools fit seamlessly into the standard shape analyst’s toolkit; they
should help the reader to improve with little to no overhead the robustness to
large deformations of its shape analysis pipeline.

1.1 Representing shapes as measures on a space of features

In this paper. We choose to focus this paper on a setting that is understood
well by all researchers in medical image analysis: the registration of normalized
density maps. Our source bitmap A (in red) and target B (in blue) will be
encoded as measures

α =

N∑
i=1

αiδxi
and β =

M∑
j=1

βjδyj , with

N∑
i=1

αi = 1 =

M∑
j=1

βj ,

where the xi’s (respectively yj ’s) are the coordinates of the N (resp. M) nonzero
pixels of A (resp. B), with positive weights αi (resp. βj) summing up to one.

In most figures, we will display the gradient ∇xi
d(α, β) of a fidelity “d” as

a green vector field supported by the xi’s. This descent direction is meant to be
used by registration algorithms and is thus the primary information to look at
in our pictures. In the background, depending on the section, we also display
the level lines of the linear potential “k ? (α − β)” (in blue) or of the influence
fields “a” (in red) and “b” (in blue) – more about that later.

Extensions. The results presented in this paper can be extended to other use
cases fairly easily. First, we may wish to use an image-based registration of
segmentation maps instead of the mass preserving “Jacobian-free” action. To do
so, we should simply compute the gradient ∇αi

d(α, β) of fidelities with respect
to the weights of the atomic dirac masses; the presence of long-range interactions
is equally important to the robustness of the registration algorithm, with mass
contraction (i.e. deletion) replacing the spreading out phenomenon observed in
Figure 3.(a-b).

Most of our results still hold when the source and the target don’t have the
same mass – the only noticeable changes would be located in section 3, and we
recommend [11] as an introduction to the theory of unbalanced optimal trans-
port. Going further, these new tools and GPU routines can also be used to handle
fiber tracks, curves and surfaces through the varifold framework presented in [8].
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Notations. In order to let our results be useful to researchers working with
curves and surfaces – which are best represented as measures on a product space
(position,orientation,curvature) – we will refer to the ambient space R2 or R3

as to an abstract feature space X . The letters x, y and z will denote points in
the feature space, while α, β or µ stand for finitely supported positive measures;
finally, a, b and m denote real-valued functions on X understood as influence
fields generated by their respective measures.

If (zi)i∈[[1,N]] is a collection of N points in X and if m : X → R is a function
on the feature space, we will also write “mzi” to denote the length-N vector
(m(zi))i∈[[1,N]] of values of m sampled on the point cloud zi.

Finally, if µ =
∑N
i=1 µiδzi is a finitely supported measure and if m : X → R

is a function on the feature space, we will write

〈µ , m 〉 = (µi | mzi ) =

N∑
i=1

µi m(zi).

Here, (µi)i∈[[1,N]] and (mzi)i∈[[1,N]] are two vectors of RN: the measure-function
duality bracket 〈 · , · 〉 is thus understood as a simple scalar product ( · | · ) in RN.

1.2 Kernel distances

If α and β represent two shapes in the feature space X , using standard information-
theoretic fidelities such as the symmetrised Kullback-Leibler divergence

KLsym(α, β) = 1
2KL(α, β) + 1

2KL(β, α) = 1
2

〈
α− β , log

(
dα
dβ

)〉
> 0 (1)

is not recommended: shape analysis routines should take into account the geom-
etry of the feature space.

Kernel norms. A common way of doing so is to endow the feature space X
with a symmetric kernel function k : X × X → R and to use

dk(α, β) = 1
2 〈α− β , k ? (α− β) 〉 = 1

2

〈
α− β , bk − ak

〉
, (2)

where ak(z) = − (k ? α)(z) = −
∑N

i=1
αi k(xi, z) (3)

and bk(z) = − (k ? β)(z) = −
∑M

j=1
βj k(yj , z). (4)

In practice, these summations can be implemented as matrix-vector products
or, as advocated in Figure 11, by using the online map-reduce routines of the
KeOps library [2]. Popular choices include the Gaussian and Laplacian kernels:

Gaussianσ(x− y) = exp(−‖x− y‖2/σ2)

and Laplacianσ(x− y) = exp(−‖x− y‖/σ).

However, as ∇xidk(α, β) is given by the gradient of the linear potential (bk−ak)
sampled on the xi’s and weighted by the αi’s, we argue in Figures 2-3 that a more
robust baseline could be given by the Energy Distance kernel from statistics [12]:

Energy(x− y) = − ‖x− y‖.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

−0.1

0

0.1

0.2

α β

k ? (α− β) on the ambient space, the line of real numbers

Gaussian kernel, σ = .1

Laplacian kernel, σ = .1

Energy Distance

Fig. 2: The linear potential k ? (α − β), for standard kernel functions.
Here, α and β are sampled from the standard Lebesgue measures on the segments
[.2, .35] and [.65, .8], respectively. Out of these three curves, the third is the only
one whose (minus) gradient always points from α towards β.

(a) Gaussian, σ = .1 (b) Laplacian, σ = .1 (c) Energy Distance

Fig. 3: The Energy Distance is scale-invariant and robust to large de-
formations. This is the 2D equivalent of Figure 2, with level lines of k ? (α−β)
displayed in the background. Notice the spreading out effect in (a-b).

(a) Energy Distance (b) SoftMin, ε = .05 (c) SoftMin, ε = .05

Fig. 4: Linear potentials can only take you so far. (a) As it faces a mass
imbalance, the global gradient of the Energy Distance tries to split up the largest
red mass into pieces. (b-c) The SoftMin fidelity, introduced in section 2, allows
us to induce a more “focused” behavior into our algorithms.
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2 Computing non-linear potentials

The log-sum-exp trick. In order to build tractable algorithms, restricting
ourselves to potentials a and b that depend linearly on the measures α and β
seems to be a necessary evil... But we can go further. Indeed, on top of the
“summation” operation of Eqs. (3-4), we can implement on the GPU another
differentiable reduction operator: the log-sum-exp or SoftMax, defined through

log
∑N
i=1 exp(vi) = V + log

∑N
i=1 exp(vi − V ),

with V = maxi vi taken out of the expression for numerical stability. The KeOps
library implements an online variant of this “max-factorization” trick, and lets
us scale this operation to large values of N – see Figure 11.

Definition. Then, we propose to endow the ambient space X with a symmetric
cost function C : X × X 7→ C(x, y) – say, ‖x − y‖ – a regularization strength
ε > 0 and a kernel function kε = exp(− 1

εC( · , · )) to define

minε
x∼α

C(x, z) = − ε log(kε ? α)(z)

= − ε log
∑N
i=1 exp

(
log(αi)− 1

εC(xi, z)
)
.

Mimicking Eq. (2), we propose to see the SoftMin functions as non-linear influ-
ence fields, analogous to the linear potentials ak and bk. Hence, we introduce the
ε-SoftMin cost through

dε-SoftMin(α, β) = 1
2 〈α− β , b

ε − aε 〉
= 1

2

(
αi | bεxi

− aεxi

)
+ 1

2

(
βj | aεyj − b

ε
yj

)
,

where aε(z) = minε
x∼α

C(x, z) and bε(z) = minε
y∼β

C(y, z).

Interpretation. Simple calculations show that if C(x, y) = ‖x − y‖, the ε-
SoftMin cost converges towards the Energy distance as ε goes to infinity. At the
other end of the spectrum, if C(x, y) > 0 with equality if x = y,

dε-SoftMin(α, β)
ε→0−−−−→ 1

2

N∑
i=1

αi min
j

C(xi, yj) + 1
2

M∑
j=1

βj min
i

C(xi, yj)

As shown in Figures 5-6, the SoftMin operators is thus allowing us to interpolate
between statistics and computer graphics.

Positivity. Unfortunately, one cannot guarantee the positivity of the ε-SoftMin
fidelity: linearizing the cost, we find pairs of measures such that dε-SoftMin(α +
δα, α) < 0. However, if λ is a reference measure on the feature space X (say, the
Lebesgue measure on RD), then

εKLsym((kε ? α) · λ, (kε ? β) · λ) = 1
2

〈
λ · kε ? (α− β) , ε log

kε ? α

kε ? β

〉
= 1

2 〈λ · kε ? (α− β) , bε − aε 〉 > 0.

In practice, if (α − β) is close enough to its ε-blurred image λ · kε ? (α − β),
dε-SoftMin(α, β) is thus positive too.
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Fig. 5: The SoftMin operator. The log-sum-exp trick allows us to interpolate
between two kinds of distance fields to a measure: the “Energy potential” | · |?α
– for ε = +∞ – and the distance field to the support {.25, .75} of α – for ε = 0.

(a) SoftMin, ε = +∞ (b) SoftMin, ε = .05 (c) SoftMin, ε = .01

Fig. 6: The ε-SoftMin fidelity interpolates between the Energy Distance
and a weighted Hausdorff distance between the supports [1]. Here, we
use the simple Euclidean cost C(x, y) = ‖x− y‖.

(a) SoftMin,
√
ε = .1 (b) Sinkhorn,

√
ε = .1

Fig. 7: Naive projection isn’t the panacea. Using an ε-SoftMin cost is equiv-
alent to encoding our shapes through their distance images – the so-called influ-
ence fields, displayed in the background. (a) Unfortunately, such a cost is prone
to giving a disproportionate importance to the extremities of both shapes, as
points are only influenced by their nearest neighbors. (b) Presented in section 3,
the Sinkhorn loop lets us introduce a mass distribution constraint to allevi-
ate this problem: we shift the influence fields a (in red) and b (in blue) to retrieve
balanced gradient fields. Figures computed with C(x, y) = ‖x− y‖2.
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3 Balancing distance fields: the Sinkhorn algorithm

As seen in Figure 7, adding a mass distribution constraint to SoftMin dis-
tances can improve the quality of our descent directions. Thankfully, this is
now possible thanks to the theory of Optimal Transport, which generalizes the
Wasserstein distance – we recommend the recent handbook [11] for reference.

Primal “Monge” problem. As illustrated in Figure 8, Optimal Transport is
about solving a convex registration problem: for ε > 0, we strive to minimize a
primal cost OTε defined through

OTε(α, β) = min
πxi,yj

∈RN×M
>0

∑
i,j

πxi,yj C(xi, yj)︸ ︷︷ ︸
transport cost 〈π,C〉

+ ε
∑
i,j

πxi,yj log
πxi,yj

αi βj
− πxi,yj + αiβj︸ ︷︷ ︸

entropic regularization, εKL(π, α⊗ β)

,

under a linear constraint – α should be fully transported onto β:

∀ i ∈ [[1,N]] , αi =
∑M
j=1 πxi,yj and ∀ j ∈ [[1,M]] , βj =

∑N
i=1 πxi,yj .

The Sinkhorn algorithm. Strong duality holds on OTε. The major contribu-
tion from [3] was to show that the dual problem can be solved efficiently on the
GPU. In a nutshell, we run the following algorithm:

Algorithm 1 Sinkhorn Iterative Algorithm: Sink(αi, xi, βj, yj)

Parameters : symmetric cost C : (x, y) 7→ C(x, y), regularization ε > 0

Input : source α =
∑N
i=1 αiδxi , target β =

∑M
j=1 βjδyj

Output : influence fields aα→β and bβ→α, sampled on the yj ’s and xi’s respectively

1: ayj ← zeros(M) ; bxi ← zeros(N) . Vectors of size M and N, respectively
2: for it = 1 to nits do . In practice, nits = 10 to 30 is enough
3: ayj ← minε,x∼α[C(x, yj)− b(x)] = −ε log

∑N
i=1 exp

[
log(αi)− 1

ε
(C(xi, yj)− bxi)

]
4: bxi ← minε,y∼β [C(xi, y)− a(y)] = −ε log

∑M
j=1 exp

[
log(βj)− 1

ε
(C(xi, yj)− ayj )

]
5: return ayj , bxi . Vectors of size M and N, respectively

And at convergence, with (aα→βyj , bβ→αxi
) = Sink(αi, xi, βj , yj), we get

OTε(α, β) =
〈
α , bβ→α

〉
+
〈
β , aα→β

〉
=
(
αi | bβ→αxi

)
+
(
βj | aα→βyj

)
.

Interpretation. The Sinkhorn algorithm is a block-coordinate ascent on the
dual variables. Mathematically speaking, these are Lipschitz functions defined
on the ambient space X and sampled on the measures’ supports. As illustrated in
Fig. 9 and detailed in [6], we propose to understand them as influence fields aα→β

and bβ→α that encode an implicit transport plan π = exp
[

1
ε (b⊕a−C)

]
· α⊗β.
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Fig. 8: Looking for a low-cost mapping, from α to β. As we solve the
Optimal Transport problem, we find a transport plan π whose marginals are
equal to α and β respectively. In practice, we solve a regularized problem whose
dual solution is easy to compute on the GPU.

(a) it. 1 1/2 (b) it. 4 1/2 (c) it. 9 1/2 (d) it. 29 1/2

(e) it. 2 (f) it. 5 (g) it. 10 (h) it. 30

Fig. 9: The (standard) Sinkhorn algorithm brings balance to the force.
On top of α, β, aα→β (in red) and bβ→α (in blue), we display the mean “springs”
linking the xi’s to β (in red) and the yj ’s to α (in blue). Algorithm 1 is all about
normalizing the blue (line 3) and red (line 4) springs until reaching equilibrium.

(a) ε-Hausdorff,
√
ε = .1 (b) ε-Sinkhorn,

√
ε = .1

Fig. 10: Computing ε-Hausdorff and ε-Sinkhorn divergences. On this
page, we use a quadratic cost C(x, y) = ‖x− y‖2 so that ε is homogeneous to a
squared distance. As evidenced in (b), the gradient of the ε-Sinkhorn divergence
is good enough for one-shot registration in simple cases.
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Towards a positive Optimal Transport cost. In [5], we advocated the use
of OTε(α, β) as a data attachment term for diffeomorphic registration. Unfortu-
nately though, just as if we used an ε-SoftMin fidelity, the minimum of the loss
functional α 7→ OTε(α, β) is not reached when α is exactly equal to β.

With collaborators [6], we thus decided to shift our attention towards a new
geometric entropy:

Fε(α) = − 1
2OTε(α, α) = ε min

µi∈RN
>0

〈
α , log dα

dµ

〉
+ 1

2 〈µ , kε ? µ 〉 −
1
2 , (5)

with µ =
∑N
i=1 µiδxi

– this identity stands thanks to a change of variable “µi =
exp(axi/ε)αi”. We let SymSink denotes the symmetrized Sinkhorn algorithm:

Algorithm 2 Symmetric Sinkhorn Algorithm: SymSink(αi, xi, yj)

Parameters : symmetric cost C : (x, y) 7→ C(x, y), regularization ε > 0

Input : source α =
∑N
i=1 αiδxi , target point cloud (yj)j∈[[1,M]]

Output : influence field aα↔α sampled on the xi’s and the yj ’s

1: axi ← zeros(N) . Vector of size N
2: for it = 1 to nits − 1 do . In practice, nits = 3 is enough
3: axi ← 1

2
(axi + minε,x∼α [C(xi, x)− a(x)])

= 1
2

(
axi − ε log

∑N
k=1 exp

[
log(αk)− 1

ε
(C(xi, xk)− axk )

])
4: a′xi ← minε,x∼α[C(xi, x)− a(x)] = −ε log

∑N
k=1 exp

[
log(αk)− 1

ε
(C(xi, xk)− axk )

]
5: a′′yj ← minε,x∼α[C(yj , x)− a(x)] = −ε log

∑N
k=1 exp

[
log(αk)− 1

ε
(C(yj , xk)− axk )

]
6: return a′′yj , a

′
xi . Vectors of size M and N, respectively

The ε-Sinkhorn divergence. Then, we can define

dε-Hausdorff(α, β) = 1
2 〈α− β , ∇Fε(α)−∇Fε(β) 〉

= 1
2

(
αi | bβ↔βxi

− aα↔αxi

)
+ 1

2

(
βj | aα↔αyj − bβ↔βyj

)
,

dε-Sinkhorn(α, β) = OTε(α, β)− 1
2OTε(α, α)− 1

2OTε(β, β)

=
(
αi | bβ→αxi

− aα↔αxi

)
+
(
βj | aα→βyj − bβ↔βyj

)
,

with (aα↔αyj , aα↔αxi
) = SymSink(αi, xi, yj), (bβ↔βxi

, bβ↔βyj ) = SymSink(βj , yj , xi)

and (aα→βyj , bβ→αxi
) = Sink(αi, xi, βj , yj).

The ε-Hausdorff divergence is the symmetrized Bregman divergence associ-
ated to Fε on the space of probability measures on X , and can be shown to
behave like the ε-SoftMin cost at the small and large ε limits. Meanwhile, the
ε-Sinkhorn divergence is an “unbiased” Optimal Transport cost that has been
recently introduced in the Machine Learning community [7].

The intuition here is that since OTε(α, β) converges towards a kernel scalar
product 〈α,C ? β〉 when ε goes to infinity, adding the self-correlation corrective
terms lets us converge towards a genuine kernel squared norm 1

2‖α − β‖
2
−C –

say, the Energy Distance if C(x, y) = ‖x− y‖. Most importantly, we are able to
prove that both formulas define positive divergences for ε > 0 :
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Fig. 11: The KeOps library lets shape analysis routines scale up to real
data. Performances on a cheap laptop’s GPU (GTX 960M). (a) As it provides
CUDA routines for online map-reduce operations, our “KErnelOPerationS” li-
brary – developed with Benjamin Charlier and Joan A. Glaunès – allows Matlab,
numpy and pytorch users to compute huge N-by-N convolutions without having
to store large kernel matrices in the GPU memory. (b) Experiments performed
on point clouds in R3, endowed with a Euclidean cost C(x, y) = ‖x− y‖.

(a) sagittal (b) coronal (c) 3D Slicer view [4]

Fig. 12: On real data. Our routines could be used to registrate thin structures
such as these knee caps from the OsteoArthritis Initiative – special thanks to
Zhenlin Xu and Marc Niethammer for letting us know about this dataset. Here,
the source and target volumes are respectively made up of 52,319 and 34,966
voxels – out of a 192-192-160 volume. As advertised in Figure 11, this Energy
Distance’s gradient was computed in half a second on the author’s laptop.

Theorem 1 (Positivity). Let α and β be two positive measures with finite
support and same total mass on a feature space X . Let us choose a smoothing
scale ε > 0 and a cost function C on X × X such that

kε(x, y) = exp(−C(x, y)/ε)

defines a positive kernel function on X . Then, one can show that

0 6 dε-Hausdorff(α, β) 6 dε-Sinkhorn(α, β),

with a null value if and only if α = β.

Proof. The proof of this result is given in [6].
In a nutshell: the first inequality relies on the positivity of the kernel kε, as it
ensures the convexity of the potential Fε – Eq. (5) – and the positivity of the
associated Bregman divergence. The second inequality derives from the convexity
of OTε(α, β) with respect to α and β varying independently.
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4 Conclusion

Overview. All things considered, we introduced three positive divergences to
the shape analysis community: the cheap and global Energy Distance; the high-
quality ε-Sinkhorn cost; and, sitting in-between, a brand new ε-Hausdorff diver-
gence inspired by computer graphics. All of them define well-posed, differentiable
loss functions for registration problems.

As we linked these theories with each other in sections 2 and 3, we were
able to provide important theoretical guarantees and efficient GPU routines. In
practice, we advocate the use of the PyTorch + KeOps combination [10,2] that
provides automatic differentiation and scalability to shapes with up to 100,000
active vertices.
Going further. Now, which one of these formulas should we use in practice?
As seen in Figure 10, using an ε-Sinkhorn divergence is equivalent to performing
a full convex registration – with no guarantee of topology preservation – every
time we need a descent direction... Do we really need to go that far?

The answer to this question is highly dependent on the remainder of the
registration pipeline. In months to come, we thus plan to test our new fidelities
in a wide range of settings – from standard LDDMM to Deep Learning based
methods – as we strive to provide our colleagues with reliable tools.
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