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Abstract—This work discusses the modeling of memristive 

devices, for architectures where they are used as synapses. It is 

shown that the most common models used in this context do not 

always accurately reflect the actual behavior of popular devices 

in pulse regime. We introduce a new behavioral model, intended 

towards the nanoarchitecture community. It fits the conductance 

evolution of Univ. Michigan’s synaptic memristive devices. A 

variation of the model fits HP labs’s memristors’ behavior in the 

same conditions. Finally, we discuss using a simple example the 

importance of this type of modeling for learning architectures 

and how it can impact the behavior of the learning. 
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I.  INTRODUCTION 

In recent years, memristive devices have emerged as a 
fantastic opportunity for renewal in electronic systems. 
Memristive devices are a family of two-terminal devices whose 
resistance evolves according to the bias and currents they 
experience [1]. Different applications fields have been targeted 
for such technology. Memory and reprogrammable logic are 
probably the most direct application of memristive devices and 
other nanoscale switches [2]-[9]. A reinvention of logic using 
schemes appropriate to their device physics has also been 
proposed [10]. Most current proposals, however, do not exploit 
the multivalued resistance capability (analog memory) which is 
a fantastic property of some memristive technology. HP lab’s 
original memristors [1] have this feature. It is present in Univ. 
Michigan’s synaptic devices [11], and others [12],[13]. It has 
also been reported in memristive three-terminal devices 
(optically gated carbon nanotube FETs [14],[15], nanoparticle 
organic memory FETs [16], Palermo organic devices [17] and 
UCLA ionic transistors [18]).  

A currently highly researched approach is to use such 
memristive devices as synapses for learning [19], since this 
may be a way to exploit the intermediate resistance states of the 
devices, with relaxed requirements on the controllability of 
such states. Various proposals go into that direction. Some use 
conventional artificial neural networks [20],[21], a concept that 
has been experimentally demonstrated in [15]. Some use novel 
approaches inspired directly by Biology (like amoeba learning 
[22]). Finally, a popular idea is to associate memristive devices 
with spiking neural networks (neural networks that compute 
with asynchronous spikes, like the brain). It has indeed been 

suggested [23],[24],[25] and shown experimentally [11] that 
memristive devices can implement a learning rule observed in 
biological synapses (Spike Timing Dependent Plasticity [26]). 
In different contexts, this rule has been shown to have 
important potential for machine learning [27],[28]. 

Such research could lead to particularly innovative 
electronic architectures and develop intelligent and low power 
electronic systems able to learn and to adapt themselves to their 
environment. Many explorations are now performed in this 
direction, both on devices and architectures. A serious 
difficulty for the “nanoarchitects” working in that field, 
however, is that the many memristive technologies that exist 
rely on different physics. Therefore, they can have extremely 
different behaviors, which can lead to different results if used 
for learning. To invent the applications of memristive 
technology, we have to rely on simplified models of devices. 
Are they sufficient? How do they compare with the actual 
technology developed in device labs, especially in “learning-
type” situations? 

In this paper, we review the most popular device models 
used to develop nano-architectures capable of learning with 
memristive devices and introduce a new one. We then compare 
these models with measurements from two popular 
technologies for use as synapses that rely on different physics: 
Univ. Michigan’s nanoscale synapses [11] and HP Labs’s TiO2 
memristors [1]. We explore strengths and weaknesses of the 
models and conclude how we believe memristive devices 
should be considered for studies involving learning. 

II. MEMRISTOR MODELS FOR LEARNING   

A. The original linear memristor model (model A) 

Different models have been used by nanoarchitects for 
exploratory studies that aim at taking advantage of multivalued 
resistance capability of memristive devices. Actually, 
memristors were introduced by HP Labs using a simple model 
[1] taking inspiration from Chua’s pioneering views on the 
“fourth passive element”, the memristor [29]. In HP’s model, a 
memristor of thickness D has two layers: one of low linear 
resistance RON, and the second (of thickness w) of high 
resistance ROFF. The device resistance is therefore: 

   wRwDRR OFFON   
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The front between the two regions evolves according to 
(where µ is the front mobility) 

  i
D

R

dt

dw ON  

which leads to: 
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(where we have introduced   DRRR ONONOFF   ). The 

resistance is additionally bounded between a minimum and a 

maximum value ( ONDRR min  
and OFFDRR max

respectively). 

Using the devices for learning usually involves repeated, 
short voltage pulses that aim at changing the conductance of 
the devices only moderately [20]-[23]. Some learning 
proposals also involved more complex voltage pulses [24], but 
understanding the effect of constant voltage pulses is an 
important step in order to grasp how learning could be done 
with memristive devices. In addition, we focus primarily on 
conductance because it corresponds to the synaptic weights in 
the context of neural networks and thus has more significance 
than resistance for learning. If the voltage V during such a pulse 
is constant, the conductance of the device evolves as  


3

3
VG

R

V

dt

dG
   

This law leads to small conductance steps when 
conductance is low, and to large conductance steps when 
conductance is already high. The two top plots of Fig. 1 
illustrate how this behaves in situation (the model parameters 
are listed in Table 1). On the left graph we apply a series of 
short “potentiating” (i.e. V<0 with the convention used within 
this paper) identical pulses and plot the conductance of the 
device after each pulse. The conductance increase starts slowly 
and accelerates sharply after 70 pulses until conductance 
reaches the maximum conductance of the device. On the right 
graph we apply a series of “depressing” (i.e. V>0) pulses. In 
this case, the conductance decrease starts rapidly and then 
slows down after 10 pulses. In both cases, the envelope of the 
curve conductance vs. N is in 1/N

2 
(where N is the number of 

pulses). In this paper, these two series of repeated pulses are 
the reference experiments to identify how memristive devices 
behave in a learning situation. 

If we plot the device resistance instead of its conductance 
(top plots of Fig. 2), the same qualitative behavior is seen, but 
is not as sharp, the resistance steps being in 1/R. The envelope 
of the curve is in log N. 

 

Figure 1.  Conductance vs pulse number for a serie of “potentiating” (V=-1V) 
voltage pulses (left) and depressive (V=+1V) pulses (right) with the four 

devices models (pulse durations: 1 ms). From top to bottom: linear memristor 

(model A), threshold models (models B and C), asymmetric model (model D). 
Model parameters are listed in Table I. 

 

Figure 2.  Same as Fig 1 with resistance plotted instead of conductance. 



B. Threshold model (models B and C) 

Though particularly helpful to understand how memristive 
devices work, the linear memristor model lacks important 
properties of actual devices. In this model, the time derivative 
of resistance is proportional to the current. This is not the case 
for actual devices that are all deeply nonlinear. Most devices 
even have a threshold voltage below which they experience no 
or little change [10],[11]. This makes a huge difference for 
nanoarchitectures since this allows probing the resistance state 
without changing it, and should be accounted for when 
designing them. Therefore, other models have been developed 
that include a threshold effect. We introduce the most 
commonly used model, for example by Snider [30], Pershin 
[22] or Linares-Barranco [24] (model B). The device resistance 
evolves as: 

  Vf
dt

dR
  

where f is generally nonlinear, typically a hyperbolic or 
piecewise linear function, as illustrated on Fig. 3. This leads to 
(for a constant voltage pulse) 

  VfG
dt

dG 2  

 

Figure 3.  Examples of typically used f functions for equations (5) to (11), to 

model the nonlinearity of resistance change depending on the voltage applied 
across the device.  

On the second line of Fig. 1 and 2, we illustrate the 
behavior of this model in the same test situation used for the 
linear memristor model. Conductance evolution (Fig. 1) is 
actually similar: potentiation (left graph) starts slow and 
accelerates, and depression (right graph) starts rapidly and 
decelerates. The envelope of the curve is 1/N instead of 1/N² in 
the linear memristor case. The resistance (Fig. 2) has, however, 
a distinct and characteristic feature: it is a linear function of 
pulse number. This should be recognizable immediately on 
measured devices if they behave consistently with this model. 

A variation (model C) is also used by nanoarchitects [21]. It 
consists of the same model, with conductance instead of 
resistance: 

   Vf
dt

dG
  

which leads to  

  VfR
dt

dR 2  

As illustrated on the third line of Figs. 1 and 2, the behavior 
is identical to model B, but with conductance and resistance 
inverted. On experimental devices, this behavior should be 
easily recognizable by the linear behavior of the conductance 
with pulse number. 

C. Asymmetric model (model D) 

We finally introduce a new model that we will show to 
have value in matching with device measurements. Unlike all 
the other models, the conductance change is asymmetric for 
potentiation and depression. For negative voltages (leading to 
increase of the conductance, or potentiation), we model the 
change of conductance with: 

   minmax
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The more potentiated it is, the smaller the step. For positive 
voltages (depression), the expression is similar: 
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For the resistance, this translates to 


dt

dG
R

dt

dR 2  

The behavior of this model is illustrated on the last lines of 
Figs. 1 and 2. The conductance (Fig. 1) curves are different 
from that of the other models. Depression (left graph) starts 
rapidly and then slows down (in models A and B it starts 
slowly and accelerates, in model C it is linear). Potentiation 
also starts rapidly and then slows down (which is similar to 
models A and B). This asymmetry of potentiation and 
depression should be easy to recognize in experiments. 

Resistance behavior (Fig. 2) is different due to the 
competition between R² and exponential in the resistance 
derivative, and may look different depending on the parameters 
of the model. 

III. CONFRONTATION WITH CURRENT TECHNOLOGY 

 

Figure 4.  Schematization of the two kind of devices considered . a) Univ 

Michigan nanoscale synapses. The position of the front between Ag-rich and 
Ag-poor regions determines conductance, b) HP Labs’ TiO2 

memristors.Conductance is determined by the thickness of a barrier at the 

end of an electroformed conductive channel. 



A. Univ. Michigan’s nanoscale synapses 

We first study devices from [11]. They are a variation of 
the devices introduced in previous works [31],[32], but 
specifically targeted toward synaptic operation with continuous 
variation of the resistance (whereas the original devices had 
binary resistance, i.e. distinct low and high resistance states). 
The physics of these devices actually seems close to the 
original memristor model. Silver is cosputtered with the device 
thin film material (silicon), on top of a silver-free layer of thin 
film. An electric field moves the silver atoms giving rise to Ag-
rich and Ag-poor regions, the width of which defining the 
device conductance (Fig. 4, a). Thus, unlike many resistive 
memory technologies and the group’s previous samples, these 
devices do not switch by rupturing or reforming filaments (in 
which case a more binary switching behavior is obtained). 

Fig. 5 plots (red diamonds) measurements on these devices 
reproduced from [11]. On the left plot, devices were subjected 
to brief -3.2 V potentiating pulses, and the conductance after 
each pulse (measured by 1 V read pulses) is plotted. On the 
right plot the same is done with depressing (2.8 V) pulses. 
Fig. 6 plots the corresponding resistance data. As seen on Fig 5 
conductance can indeed be tuned finely by the short voltage 
pulses. However, neither the conductance nor the resistance is 
linear in respect to pulse number. This invalidates both models 
B and C for this technology. We also notice an extremely 
asymmetric behavior between potentiation and depression. 
They both start rapidly and then slow down. This invalidates 
model A. By contrast model D can fit the measurements (blue 
line in Fig. 1 and Fig. 2) and thus seems appropriate for 
architectural studies. More experimental data will be needed 
however to fit f+(V) and f-(V) for other voltages than those 
reported in [11]. 

 

 

Figure 5.  Evolution of the conductance for the devices from Michigan, fitted 

with the model D. Left: device conductance (measured at 1 V) after each pulse 

in a serie of potentiating (V=-3.2V)  pulses. Right: same with depressing 

(V=2.8V) pulses. Diamond: experimental data, reproduced from [11]. Full 

line: Model D (parameters listed in Table I). 

 

Figure 6.  Same as Fig. 5 with resistance. 

B. HP TiO2 memristors 

 

Figure 7.  Tunneling gap width w as a function of time in a serie of 

potentitation (left) or depressing (right) pulses on HP memristors (symbols: 

experimental data from [33], full line: Model D), for different pulse voltages 
(left: -1.4 and -1.25 V; right: 4, 3.5 and 3 V). Insets show details of the figure 

for short times. Model D parameters are listed in Table I. 

 

Figure 8.  Low field conductance computed from tunneling gap width w from 

Fig 7 in the same conditions. For depressing pulse, conductance is shown in a 
log scale because of its abrupt change. The insets (details for short time) are 

both in linear scale. 

HP Labs’ TiO2 memristors were first introduced with a 
simple physical interpretation [1]. The physical view has 
largely progressed with subsequent experiments and analysis 
[34],[35],[36]. Comprehensive characteristics of their 
dynamical behavior at room temperature were introduced in 
[33] and are used as a reference in this paper. The devices 
appear to operate via modulation of tunnel barrier width at the 
end of a conductive channel that was obtained by 
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electroformation (Fig. 4, b) [33]. The tunnel width w is the 
essential state parameter that can be connected to current by the 
model presented in [37] and in the supplementary information 
of [33].  

In [33], the authors extracted the parameter w as a function 
of time t after potentiating and depressing voltage pulses. This 
is plotted on Fig. 7 (left: potentiating, right: depressing). This 
data was obtained by repeating voltage pulses whose duration 
was not constant. That is why the graphs are plotted as a 
function of time and not pulse number, and can still be read 
similarly to the previous plots of this paper. On Fig. 8, we 
converted w into a low field conductance using the well-
established model given in [33]. Potentiation (left) starts with 
an extremely abrupt increase of conductance and then becomes 
a lot slower. Similarly depression (right) starts with an 
extremely abrupt decrease of conductance, and then becomes a 
lot slower. Among our models, only model D has this behavior. 
The initial increase or decrease of conductance is however so 
abrupt that Fig. 8 cannot be fitted by model D. Without any 
change, none of our device model is thus appropriate. 

Interestingly, however, the evolution of w can be fitted 
roughly by the equations of model D, with w taking the place 
of conductance G (full lines of Fig. 7). The fit is not perfect, 
but can give an acceptable model of device behavior for 
architectural studies. Alternatively the full model given in [33] 
may be used, but is a lot more complex than model D.  

The reason for which these devices (unlike Michigan’s) 
cannot be fitted by model D directly seems to be due to the 
tunneling aspect of transport. If the conductance had a linear 
dependence on w, model D would work, but the conductance is 
rather an exponential function of w. This extremely abrupt start 
of the potentiation and depression would have significant 
impact if the device is used for learning. 

IV. DISCUSSION 

 

Figure 9.  Conductance as a function of the potentiating / depressing pulses 

ratio for the four models described above. From top-left to bottom-right: linear 
memristor (model A, top, left), threshold models (models B, top, right, and 

C,bottom, left) and asymmetric model (model D, bottom, right). The dashed 

red curve is the probability Ppot of the pulse to be a potentiating pulse and the 
blue curve is a moving average of the conductance of the device. 

We have seen in part II that the different models used for 
designing learning architectures with memristive devices lead 
to qualitatively different conductance evolution dynamics when 
voltage pulses are used to change the conductance (these pulses 
constituting a baseline at evaluating memristive device 
modeling for learning architectures). In that regard, a 
significant difference between the common models (A, B, C) 
and the new model D is that models A, B, C use symmetric 
equations for potentiating (V<0) and depressing (V>0) pulses, 
whereas model D uses asymmetric equations. In particular, for 
models A and B, this implies that if a device is in low 
conductance state, potentiating pulses (pulses that increase the 
conductance) have a small effect and a number of them is 
required before potentiation becomes efficient. Whereas with 
model D, for a device with a low conductance, the first 
potentiating pulses cause the most conductance change, and 
then potentiation slows down (assuming identical pulses). In 
part III, we have seen how two popular devices actually behave 
more like the new model D. Michigan’s devices can be fitted 
by model D. In HP’s devices, the state’s variable w may be 
roughly modeled by model D, and the conductance switches 
abruptly when the device is in a low or high conductance state. 

Now, how important is it to catch this behavior correctly 
when developing nanoarchitectures capable of learning? It 
seems to be significantly, in that the considered memristive 
device behavior can have significant repercussions on the 
learning strategy that needs to be put in place. To illustrate this 
point, we performed a simple computational experiment. We 
simulated the behavior of the four models for a series of 2000 
pulses of either potentiating type (with a probability of Ppot) or 
depressing type (with a probability of 1 - Ppot). In Fig. 9, we 
show the evolution of the conductance for each model for 
different values of the probability Ppot (0.8, 0.2, 0.6, and 0.4 
successively). It is noteworthy that the mean conductance 
approximates the probability Ppot for the asymmetric model 
(model D). For the models A and B, the initial increase in 
conductivity being very slow compared to its initial decrease, 
the mean conductance stay close to zero for low values of the 
probability Ppot. The model C has a different behavior: since 
the conductivity change is independent of the current state of 
the device, the conductivity always tends to increase when Ppot 
> 0.5 and decrease when Ppot < 0.5 .The conductance of the 
device therefore does not stabilize to intermediate values with 
this simple scheme. 

This illustrates that the type of learning will be different 
depending on the model used. In model A and B, low 
conductance states are extremely stable. In model C, the 
memristive device is naturally led to low or high conductance 
states that are more stable. In model D, depending on the model 
parameters, any intermediate resistance can be stable. Of 
course, the simple computational experiment presented above 
does not preclude the learning of stable arbitrary conductance 
states with devices best modeled by models A, B or C. It 
suggests, however, that the commonly used models that may 
look similar will give very different results regarding the final 
state of learning.  



V. CONCLUSION 

In this work, we first saw that the equations (linear 
memristor A, and threshold models B and C) commonly used 
to model the conductance change of memristive device in 
nanoarchitectures lead to significantly different behaviors when 
used with short voltage pulses. Such pulses are fundamental for 
nanoarchitectures involving learning. We then presented two 
memristive technologies targeted towards learning, and saw 
that their behavior matched none of these common models. For 
both devices, potentiation (the process that increases the 
conductance of the memristors) and depression (the processes 
that decreases it) are extremely asymmetric, which none of the 
three models captures. The new model that we introduced 
(asymmetric model D) corrects this issue and fits 
measurements on Univ. Michigan’s synaptic devices directly, 
and after an adaptation measurements on HP Labs’ original 
memristors. Finally, we pointed with a simple simulation that 
using one or the other of the models will change the stability of 
the memristors’ states in a learning situation. All this suggests 
that existing memristors’ models should be used with caution 
when developing this kind of architectures. 

TABLE I.  MODEL PARAMETERS USED IN THIS PAPER 

Figure Model parameters 

Fig. 1, 2 

model A 
1.25.1012

 ²/V/ms 

Fig. 1, 2 

 model B 
f(1V)=-f(-1V)=0.85 M/ms 

Fig. 1, 2 
model C 

f(1V)=-f(-1V)=12.5 nS/ms 

Fig. 1, 2 
model D 

 = 2.0,  = 3.5, f+(1V)= 40 nS/ms, f-(-

1V)=150 nS/ms 

Fig. 1,2 
all models 

Gmin = 10 nS, Gmax = 1 µS 

Fig. 5,6 
 = 3.0,  = 2.8, f+(1V)= 600 nS/ms, f-(-

1V)=900 nS/ms, Gmin = 3.3 nS, Gmax = 40 nS 

Fig. 7 

Potentation:  = 20.0, f+ (-1.4V)= 0.1 mm/s, f+ (-

1.25V)= 0.9 mm/s, wmin=1.3nm, wmax=1.8 nm 

Depression: (4 V, 3.5 V, 3 V) = 14.2, 13.0, 14.8, 

f(4 V, 3.5 V, 3 V) = 0.0026, 0.0028, 0.23 mm/s, 

wmin=1.1nm, wmax=1.65nm 
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