D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature, vol.4, issue.7191, pp.80-83, 2008.
DOI : 10.1038/nature06932

F. Alibart, L. Gao, B. D. Hoskins, and D. B. Strukov, High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm, Nanotechnology, vol.23, issue.7, p.75201, 2012.
DOI : 10.1088/0957-4484/23/7/075201

URL : http://arxiv.org/pdf/1110.1393

G. Agnus, W. Zhao, V. Derycke, A. Filoramo, Y. Lhuillier et al., Two-Terminal Carbon Nanotube Programmable Devices for Adaptive Architectures, Advanced Materials, vol.5, issue.6, pp.702-706, 2010.
DOI : 10.4324/9780203451519

URL : https://hal.archives-ouvertes.fr/hal-00548986

K. Kim, S. Gaba, D. Wheeler, J. M. Cruz-albrecht, T. Hussain et al., A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neuromorphic Applications, Nano Letters, vol.12, issue.1, pp.389-395, 2011.
DOI : 10.1021/nl203687n

E. Marder and J. Goaillard, Variability, compensation and homeostasis in neuron and network function, Nature Reviews Neuroscience, vol.15, issue.7, pp.563-574, 2006.
DOI : 10.1016/j.neuint.2005.12.029

J. V. Arthur and K. A. Boahen, Learning in silicon: Timing is everything Advances in neural information processing systems, pp.281-1185, 2006.

G. Indiveri, E. Chicca, and R. Douglas, A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses With Spike-Timing Dependent Plasticity, IEEE Transactions on Neural Networks, vol.17, issue.1, pp.211-221, 2006.
DOI : 10.1109/TNN.2005.860850

URL : https://pub.uni-bielefeld.de/download/2426586/2459959

F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant et al., An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse, Advanced Functional Materials, vol.1, issue.2, pp.330-337, 2010.
DOI : 10.1002/adfm.200901335

URL : https://hal.archives-ouvertes.fr/hal-00548959

J. Perez-carrasco, C. Zamarreno-ramos, T. Serrano-gotarredona, and B. Linares-barranco, On neuromorphic spiking architectures for asynchronous STDP memristive systems, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.1659-1662, 2010.
DOI : 10.1109/ISCAS.2010.5537484

G. Snider, Spike-timing-dependent learning in memristive nanodevices, 2008 IEEE International Symposium on Nanoscale Architectures, pp.85-92, 2008.
DOI : 10.1109/NANOARCH.2008.4585796

A. Afifi, A. Ayatollahi, and F. Raissi, Implementation of biologically plausible spiking neural network models on the memristor crossbarbased CMOS/nano circuits, European Conference on Circuit Theory and Design (ECCTD), pp.563-566, 2009.
DOI : 10.1109/ecctd.2009.5275035

D. Querlioz, O. Bichler, and C. Gamrat, Simulation of a memristorbased spiking neural network immune to device variations, Proc. of the Int. Joint Conf. on Neural Networks (IJCNN), pp.1775-1781, 2011.
DOI : 10.1109/ijcnn.2011.6033439

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder et al., Nanoscale Memristor Device as Synapse in Neuromorphic Systems, Nano Letters, vol.10, issue.4, pp.1297-1301, 2010.
DOI : 10.1021/nl904092h

URL : http://www.eecs.umich.edu/~wluee/LuJo_Synapse_NL2010.pdf

M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola et al., Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction, 2011 International Electron Devices Meeting, 2011.
DOI : 10.1109/IEDM.2011.6131488

URL : https://hal.archives-ouvertes.fr/hal-00799997

K. Seo, I. Kim, S. Jung, M. Jo, S. Park et al., Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device, Nanotechnology, vol.22, issue.25, p.254023, 2011.
DOI : 10.1088/0957-4484/22/25/254023

S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H. P. Wong, An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation, IEEE Transactions on Electron Devices, vol.58, issue.8, pp.2729-2737, 2011.
DOI : 10.1109/TED.2011.2147791

D. Kuzum, R. G. Jeyasingh, B. Lee, and H. P. Wong, Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing, Nano Letters, vol.12, issue.5, pp.2179-2186, 2012.
DOI : 10.1021/nl201040y

O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. Desalvo et al., Visual Pattern Extraction Using Energy-Efficient ???2-PCM Synapse??? Neuromorphic Architecture, IEEE Transactions on Electron Devices, vol.59, issue.8, pp.1-9, 2012.
DOI : 10.1109/TED.2012.2197951

URL : https://hal.archives-ouvertes.fr/hal-00787385

H. Markram, J. Lubke, M. Frotscher, and B. Sakmann, Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs, Science, vol.275, issue.5297, pp.213-215, 1997.
DOI : 10.1126/science.275.5297.213

G. Bi and M. Poo, Synaptic Modification by Correlated Activity: Hebb's Postulate Revisited, Annual Review of Neuroscience, vol.24, issue.1, pp.139-166, 2001.
DOI : 10.1146/annurev.neuro.24.1.139

Y. Dan and M. Poo, Spike Timing-Dependent Plasticity of Neural Circuits, Neuron, vol.44, issue.1, pp.23-30, 2004.
DOI : 10.1016/j.neuron.2004.09.007

URL : https://doi.org/10.1016/j.neuron.2004.09.007

G. Snider, R. Amerson, D. Carter, H. Abdalla, M. S. Qureshi et al., From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain, Computer, vol.44, issue.2, pp.21-28, 2011.
DOI : 10.1109/MC.2011.48

D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango, A. J. Sherbondy et al., Cognitive computing, Communications of the ACM, vol.54, issue.8, p.62, 2011.
DOI : 10.1145/1978542.1978559

Y. V. Pershin and M. D. Ventra, Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements, Proceedings of the IEEE, vol.100, issue.6, 2010.
DOI : 10.1109/JPROC.2011.2166369

URL : http://arxiv.org/pdf/1009.6025

K. Cantley, A. Subramaniam, H. Stiegler, R. Chapman, and E. Vogel, Hebbian Learning in Spiking Neural Networks With Nanocrystalline Silicon TFTs and Memristive Synapses, IEEE Transactions on Nanotechnology, vol.10, issue.5, pp.1066-1073, 2011.
DOI : 10.1109/TNANO.2011.2105887

J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart et al., ???Memristive??? switches enable ???stateful??? logic operations via material implication, Nature, vol.20, issue.7290, pp.873-876, 2010.
DOI : 10.1038/nature08940

S. Yu, X. Guan, H. Wong, L. Bottou, Y. Bengio et al., On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, monte carlo simulation , and experimental characterization Gradient-based learning applied to document recognition, Electron Devices Meeting (IEDM) Proc. IEEE, pp.2278-2324, 1998.

J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology, Science, vol.280, issue.5370, pp.1716-1721, 1998.
DOI : 10.1126/science.280.5370.1716

J. H. Lee and K. K. Likharev, Defect-tolerant nanoelectronic pattern classifiers, International Journal of Circuit Theory and Applications, vol.441, issue.3, pp.239-264, 2007.
DOI : 10.1016/B978-044451494-3/50002-0

D. Chabi, W. Zhao, D. Querlioz, and J. Klein, Robust neural logick block (NLB) based on memristor crossbar array, Proc. of IEEE/ACM Int. Symp. Nanoscale Architectures, 2011.
DOI : 10.1109/nanoarch.2011.5941495

R. Guyonneau, R. Vanrullen, and S. J. Thorpe, Neurons Tune to the Earliest Spikes Through STDP, Neural Computation, vol.76, issue.4, pp.859-879, 2005.
DOI : 10.1038/25665

URL : https://hal.archives-ouvertes.fr/hal-00330516

J. M. Brader, W. Senn, and S. Fusi, Learning Real-World Stimuli in a Neural Network with Spike-Driven Synaptic Dynamics, Neural Computation, vol.82, issue.11, pp.2881-2912, 2007.
DOI : 10.1126/science.1082212

URL : http://www.zora.uzh.ch/id/eprint/93166/1/E2881.pdf

B. Nessler, M. Pfeiffer, and W. Maass, STDP enables spiking neurons to detect hidden causes of their inputs, Advances in Neural Information Processing Systems (NIPS'09), pp.1357-1365

S. Yu, B. Gao, Z. Fang, H. Y. Yu, J. F. Kang et al., A neuromorphic visual system using RRAM synaptic devices with Sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling, 2012 International Electron Devices Meeting, 2012.
DOI : 10.1109/IEDM.2012.6479018

G. S. Snider, Self-organized computation with unreliable, memristive nanodevices, Nanotechnology, vol.18, issue.36, p.365202, 2007.
DOI : 10.1088/0957-4484/18/36/365202

G. Snider, Instar and outstar learning with memristive nanodevices, Nanotechnology, vol.22, issue.1, p.15201, 2011.
DOI : 10.1088/0957-4484/22/1/015201

J. Liang and H. S. Wong, Cross-Point Memory Array Without Cell Selectors???Device Characteristics and Data Storage Pattern Dependencies, IEEE Transactions on Electron Devices, vol.57, issue.10, pp.2531-2538, 2010.
DOI : 10.1109/TED.2010.2062187

E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Complementary resistive switches for passive nanocrossbar memories, Nature Materials, vol.5, issue.5, pp.403-406, 2010.
DOI : 10.1063/1.1823026

J. Yang, M. X. Zhang, M. D. Pickett, F. Miao, J. Paul-strachan et al., Engineering nonlinearity into memristors for passive crossbar applications, Applied Physics Letters, vol.100, issue.11, pp.113501-113501, 2012.
DOI : 10.1103/PhysRev.187.828

M. Suri, O. Bichler, D. Querlioz, B. Traoré, O. Cueto et al., Physical aspects of low power synapses based on phase change memory devices, Journal of Applied Physics, vol.18, issue.5, pp.54904-054904, 2012.
DOI : 10.1109/IMW.2012.6213674

URL : https://hal.archives-ouvertes.fr/hal-00787372

P. Lichtsteiner, C. Posch, and T. Delbruck, A 128$\times$128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor, IEEE Journal of Solid-State Circuits, vol.43, issue.2, pp.566-576, 2008.
DOI : 10.1109/JSSC.2007.914337

V. Chan, S. Liu, and A. Van-schaik, AER EAR: A Matched Silicon Cochlea Pair With Address Event Representation Interface, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, issue.1, pp.48-59, 2007.
DOI : 10.1109/TCSI.2006.887979

D. Querlioz, P. Dollfus, O. Bichler, and C. Gamrat, Learning with memristive devices: How should we model their behavior?, 2011 IEEE/ACM International Symposium on Nanoscale Architectures, p.150, 2011.
DOI : 10.1109/NANOARCH.2011.5941497

P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar et al., A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm, 2011 IEEE Custom Integrated Circuits Conference (CICC), pp.1-4, 2011.
DOI : 10.1109/CICC.2011.6055294

URL : http://www.modha.org/papers/012.CICC1.pdf

C. Bartolozzi, O. Nikolayeva, and G. Indiveri, Implementing homeostatic plasticity in VLSI networks of spiking neurons, 2008 15th IEEE International Conference on Electronics, Circuits and Systems, pp.682-685, 2008.
DOI : 10.1109/ICECS.2008.4674945

URL : http://www.zora.uzh.ch/id/eprint/17606/1/Bartolozzi_VLSI_V.pdf

O. Bichler, D. Querlioz, S. J. Thorpe, J. Bourgoin, and C. Gamrat, Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity, Neural Networks, vol.32, pp.339-348, 2012.
DOI : 10.1016/j.neunet.2012.02.022

URL : https://hal.archives-ouvertes.fr/hal-00706681

D. Querlioz, W. S. Zhao, P. Dollfus, J. Klein, O. Bichler et al., Bioinspired networks with nanoscale memristive devices that combine the unsupervised and supervised learning approaches, Proceedings of the 2012 IEEE/ACM International Symposium on Nanoscale Architectures, NANOARCH '12, 2012.
DOI : 10.1109/5.726791

D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, Deep big simple neural nets excel on handwritten digit recognition, 2010.