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Abstract

Poloidal asymmetries of the E x B plasma flow are known to play a role in neoclassical
transport. Omne obvious reason is that an asymmetrical potential can produce a flux. Also
the associated distribution function may correlate with the magnetic drift velocity to enhance
the neoclassical flux. Finally, poloidal variation of the electric potential can produce poloidal
asymmetries of the density of an impurity, which in turn may enhance its neoclassical flux.
According to conventional neoclassical theory, the level of poloidal asymmetry of the electric
potential is expected to be very small. Conversely, poloidal flow asymmetries can be driven
by small scale turbulence via non linear coupling, and therefore change this result. In the
present work, a general framework for the generation of axisymmetric structures of potential by
turbulence is presented. Zonal flows, geodesic acoustic modes and convective cells are described
by a single model. This is done by solving the gyrokinetic equation coupled to the quasi-
neutrality equation. This calculation provides a predictive calculation of the frequency spectrum
of flows. It also shows that the dominant mechanism comes from zonal flow compression at
intermediate frequencies, while ballooning of the turbulence Reynolds stress appears to be the
main drive at low frequency.

1 Introduction

Poloidal asymmetries of the ' x B plasma flow are usually neglected in neoclassical transport. Indeed the
predicted level of asymmetry is quite small in conventional neoclassical theory, so that its effect is considered
as negligible [14, 12]. Toroidal momentum transport is however an exception, since it appears to be sensitive
to poloidal asymmetries, even at the neoclassical level [23]. This picture changes somewhat if poloidal vari-
ations of the electric potential are generated by turbulence. Steady or slowly varying structures may then
boost neoclassical fluxes. We will call these structures ”poloidal convective cells”, since once isolated from
axisymmetric flows (mean and zonal flows), and turbulence vortices (helical patterns), poloidal asymmetries
of the electric potential are usually characterized by closed streamlines with typically a few lobes in the



poloidal plane of a tokamak, and no variation in the toroidal direction. In other words, convective cells are
modes with a toroidal wave number n = 0 and poloidal wave numbers m # 0 (usually m = 1 prevails). In
this classification , zonal flows are n = 0, m = 0 modes, while turbulent vortices are characterized by n # 0,

m # 0.

One obvious mechanism for the effect of convective cells on neoclassical transport is the modification of
the distribution function by the asymmetric potential, that correlates with its associated E x B electric drift
velocity, and/or with the magnetic drift velocity to produce additional fluxes to the standard neoclassical
value. Also poloidal variations of the electric potential induce asymmetries of the density of an impurity,
which in turn enhance its neoclassical flux [1].This effect is expected to be particularly large for heavy
impurities in core plasmas, since a Boltzmann type response is proportional to the charge number. It was
proposed as an explanation for synergies between turbulent and neoclassical fluxes of impurities observed
with the GYSELA code [19, 8]. Another reason for investigating poloidal flow asymmetries is their potential
role in turbulence self-organisation, via vortex shearing. The understanding of turbulence self-organization
has been an active area of research in the past decades. It is well known that zonal flows are instrumental in
these processes. Indeed they are generated by turbulence via the Reynolds stress, and in turn self-regulate
turbulence by transferring energy from large scale to small scales [5]. The intensity of Zonal Flows is quite
large compared with other helical turbulent structures, because they are not Landau damped [18, 19]. An-
other player in turbulence self-regulation is the Geodesic Acoustic Mode (GAM) [22] , which is the sum
of two axisymmetric components of the potential: a zonal plus an up-down asymmetric component, i.e. a
combination of n = 0, m = 0 and n = 0, m = +1 modes. The whole GAM structure oscillates at a frequency
that scales with an acoustic frequency, and is driven by perpendicular flow compression, proportional to the
geodesic curvature (hence the name [22; 11]. These modes are also driven by turbulence via mode coupling,
and can back-react on the turbulence background. GAMs have been shown however to be less effective
than zonal flows in this retro-action process, due to their high frequency [10]. Moreover they are Landau
damped in contrast with Zonal Flows. One open issue therefore is whether low frequency poloidal flow
asymmetries can have an impact on turbulence in a way similar to Zonal Flows, as proposed in [20]. Let
us note that some recent turbulence simulations seem to indicate that this effect is weak, while the synergy
with neoclassical fluxes appears to be prominent in most transport channels, except momentum transport [2].

Quite curiously a predictive calculation of the dynamics and amplitude of poloidal convective cells is not
available in the literature, to the authors knowledge. We note a previous attempt [9], originally intended to
explain the anti-correlation between fluxes of momentum driven by F x B and magnetic drifts seen in several
gyrokinetic simulations. However this calculation does not account for the coexistence of convective cells
with zonal flows and GAMSs, an important expected character of a comprehensive theory. We propose here
a model that allows a simultaneous estimate of Zonal Flows, GAMs and convective cells. A complete theory
of convective cells generation is out of scope here, as it requires to keep the whole dynamics of trapped
and passing particles and the inclusion of collisions, to recover the correct dynamics of zonal flows at low
frequency [18, 13]. Instead we use here a simpler model that keeps only passing particles, and neglects the
effect of trapped particles. The Vlasov gyrokinetic equation can then be solved for n = 0, m = 0, +1 modes,
assuming non linear terms are given. The latter corresponds to the turbulence drive, and can be shown to
be related to the turbulent Reynolds stress. This method allows one to recover exactly the GAMs dispersion
relation, and to compute poloidal convective cells in an intermediate range of frequencies that goes down
to the trapping frequency. Two mechanisms of generation are identified: the generation of cells due to
compressional effect of zonal flows, and the poloidal asymmetry of the Reynolds stress due to turbulence
ballooning. The first one is dominant in the range of frequency of the order of the curvature frequency, while
the latter appears to be prominent at very low frequency. One interesting finding is that the asymmetry
of poloidal convective cells is in-out at low frequencies, and up-down at intermediate and high frequencies
(GAMs).

The remainder of the paper is organised as follows. The method used to calculated poloidal asymmetries
of the electric potential is described in section 2. The link between the turbulence drive term and the
turbulent Reynolds stress is established in section 3. The main properties of poloidal convective cells are
given in section 4, and a conclusion follows in section 5 .



2 Poloidal asymmetries of the electric potential

2.1 Equilibrium field and particle trajectories

The unperturbed part of the magnetic field is written in Clebsch representation,
B, = Vax Vy

where a = ¢ — q(v¥)0, and ¢(v)) is the safety factor. In the special case of a large aspect ratio tokamak with

circular concentric magnetic surfaces labeled by their minor radius , the function 1) is given by - dv — (T ) gg

where Ry is the major radius. The inverse aspect ratio ¢ = RLO is considered as a small pararneter and
calculations are done at first order in e. The unperturbed equation of motion is integrable, since there exists
three invariants of motion, namely the unperturbed Hamiltonian H.,, the magnetic moment p, and the
kinetic toroidal momentum P, = —et + mRv, where v, = %UH. This implies that a set of conjugated
Hamiltonian variables can be built. The first couple is the cyclotron pulsation and the corresponding action
is “*u. It is of little use since in gyrokinetics the Hamiltonian does not depend on the cyclotron phase, thus
leaving p invariant. In the spirit of the ballooning representation, we choose the second and third variables
as 6 and «, where 0 plays the role of a coordinate along the unperturbed field lines. The corresponding
actions are the parallel adiabatic action Jj = % | %‘%mmb and the canonical toroidal momentum F,.
The second Hamiltonian frequency is a poloidal transit frequency €; = q(:ﬁ, while the third Hamiltonian
frequency is related to curvature and will be neglected here as it plays little role for passing particles. The
action J is not handy, and can be efficiently replaced by the unperturbed Hamiltonian He,. {1 is a poloidal
transit frequency in quasi-cylindrical geometry.

2.2 Evolution equation for the axisymmetric mode

function is written as F = Feqg + f, where the unperturbed distribution function F,.; depends on the
motion invariants only (Heq, Py, i1, sign (’UH)), while f also depends on # and «. Moreover the perturbed

distribution function is split in adiabatic plus resonant parts f = —LFeq + g, where the ”temperature”

Ti = —31= H In F¢; depends on the motion invariants only. T¢, is the usual local temperature when F, is a

Maxwellian. This is the case that will be considered in the following. The resonant part is solution of the
equation

05 .- . 0g
Fra H,g} = 6t+UIIVHg+VE Vg+vp-Vg
Feq o .0\ -
= o* h 1
<at+ aa> (v

where Q* = TeqaglPF M is the kinetic diamagnetic frequency and the relevant B/Teq < 1 limit has been
considered. We now separate the electric potential between an axisymmetric component (¢) o (1,0) and a

helical perturbation ¢ (10,0, @), i.e. ¢ = (@) ot é. The axisymmetric part is written as a Fourier series

Zm ) exp {i (M6 — 1)}

We use a ballooning representation for the non axisymmetric part [21, 17, 4], i.e

B(1h,0,0,1) = bn(6k, 0 + 2pr) (2)

kw
x exp {in[p — q(¢) (6 — Ok + 2p7)] — iwt}

where k = (n, 0, p). The integer p spans the interval | — oo, +00], however for a ballooned turbulence, it is
sufficient to keep the component p = 0 only. In this case, a useful reformulation of Eq.(2) in the set of field
aligned coordinates is

oY, a0, 1) Z Pxw (0) exp {i [nOrq(y)) + no — wt]}



Note the different notations for the frequencies 2 and poloidal wave numbers M of the axisymmetric potential
on the one hand, and the toroidal wave numbers and frequencies n,w of the helical perturbations. We omit
to specify n = 0 for the axisymmetric perturbation, which is made distinct from helical fluctuations by
the different notations. Taking the Fourier transform in radial position and assuming % < K, one can
compute the linear solution of the Vlasov equation for the axisymmetric perturbations

—1(Q—=MY) grua + o (Gr+1.0 — Gr-1,0)

. F 7 ~ ~
= —iQ="hava — [0F - Vil yq (3)
Teq
2 2
where Qp = % <2v'2 + vé) Note that we have chosen the direct basis to be (er,ep,e,). The non
0 v v
linear term [(VE> oV <§>¢} ~ ( is neglected, since 1st order terms only are kept. However this term
may play a role in the dynamics, and could actually provide a saturation mechanism that does not have a
counter-part for zonal flows. Keeping only the modes M = —1,0, 1, the relation (3) can be written
- . —1 Feq 7 —1 =~ =~
{g} = -G = {h} - G~ {[vp - Vg]} (4)
eq
where
J-1,0
{g} =1 %0
gi1,0
T
{hy =1 hoo
h1,0
o 05 - V] 10
{lve-Vgl} = | [ve-Vdla
[VE - Vil g
and
—iQy  Qp 0
G= —Qp —iQ Qp
0 —Qp Q-

where Q4 = Q; £ Q. The determinant of the G matrix is det G:—iQ(Q+Q_ + QQQD). A useful quantity is
the transpose of its comatrix, given by

0_Q+Q2 —iQpQ_ 02
com G'= [ iQpQ. Q.0 iQpQy
02 —iQpQy —Q,.Q 402

Assuming adiabatic electrons and keeping a single hydrogenoid (charge number Z = 1) ion species, the
quasi-neutrality equation reads

Neg
Teq

1+ (1= 6 (M) 7] {h} = / 7 {g} d*v (5)

where 7 = % is the ratio of ion to electron temperatures, and 7 is the gyro-average operator. Combining the
quasi-neutrality condition Eq.(5) with the equation on {g} Eq.(4), and assuming the gyroaverage operator

commutes with all quantities at all frequencies, one gets

Neg
Ty

—— [ 679 {(oe- Vil i

1+ 1—6(M))7]{h} +z’Q/G_I§ZJQ {h} d3v (6)



Eq.(6) is the formal solution that gives the amplitude of the poloidal convective cells. It can be expressed

as £-{h} = {S}. Defining (-), = [ -%dg’v and using the fact that (g), = 0 whatever g odd with respect to
v||, one can show that

E, —i&E. &y
E = % i€ & —i&
eq Es i€ &,
where
Ea=14+7+Lo(Q) — Ly ()
&=(1-T%),+2L2(Q)
E=L1(Q)
Eqs=—L2(0) (7)
where
QQ gQJ
L:(Q - D _ g2
i () = <Q+Q +2(22j> (8)

Assuming that J [0p - V], o is an even function of vy, it can be shown that

1 51,0+ (So,—1 — S2,—1 — S2,1)
{S} = a —iS" — S1,1 4 S1,1 +2iS2p
—S10+1(S0,1 — S2,-1 — S2.1)

where

2—50J
Sjm _/ el T [0r - Vil dv
» (210 +202) :

and

= /j[{)E - Vglyqd*v

N (U)TRO Qpin =
parameters K = K, p; and Q= Q . In the following we assume K < 1. In this limit, one has <1 -J 2> =
K2

We introduce typical frequencies Q= KT}’;”T = qK,p;p, and two dimensionless

2.2.1 GAMs

We assume that Q = O(1). In this case, noting that J = 1+ O (K 2), and the fact that whatever the
function f even with respect to v

(ohe), 3 () ()3,

one can show that the coefficients L; (2)(8) become at leading order

Lo () = f} (f})
L (Q) = f; V20 + <1+Q2)§<\%>
Ly (Q) = 34+0%+ ‘f (%4 + Q%+ 1) ¢ (\%) (10)
where (( f f ~ o3 d:n is the plasma dispersion function. The simplification (9) implies also
Sim = f it j [0E - V3§l MO d3v at leading order. We define the following quantities




Neg

Xo= 72 [L+7+ Lo (©)]
eq
N,
X ==-49L,(Q
1 T, 1(2)
_Neq 2
X2—Teq[K +2Ly (©)] (11)

where the functions L; () are given by Eq.(10) when Q = O(1). At this stage, one should remark that

notations have been chosen such that X; = O (K J ) and Sj = O (K J ) These properties greatly simplify
the computation. With these notations, the determinant of £ is given by

det€ = Xo [XoXy — 2X2] + O (K"*) (12)

One should notice that the relation det€ = 0 gives the kinetic GAM dispersion relation. Indeed, replacing
the coefficients X; (11) in the expression Eq.((12)) leads to

AP RUCGRERT <3 >~ 1+T]
C(ﬁ){ﬂ+ﬂ[29+ 2 T T) 0 g
) > [q
+1+T+;q292+2q2(1+7)+q4<2<\/§>:0

which is the fully kinetic dispersion relation of GAMs[24, 19, 25]. Assuming that the order of J [vg - V] MO
is independent of M, it appears that

iQh_1 odeté = 1 XoX1S" + XoX1(S1,-1— S11)
+ (X§ — X0X2) So—1 + XiSo1 + O <I~(3)

iQhLQdetS = — iXOXlsl + Xo X1 (51’1 — Sl,—l)
+ (X12 - X0X2) So,—1 + X%SOJ +0 (f(g)

iQho odeté = X3S +iX3 (S11 — $1,-1) + 0 (K?)

At leading order, one has h_j o = —hj . Hence the mode poloidal dependence is sinf (up-down
asymmetry), as expected for GAMs. We will show in the section 3 that S’ is linked to the turbulent
Reynolds stress tensor. This calculation shows that for the GAM limit, the side bands M = +1 are mainly
fed via the toroidal coupling with the mode M = 0. This result is new and non trivial, as one could have
also expected a direct feeding via a source of the form J [Up - Vé]m to be competitive.

2.2.2 Pololoidal convective cells

consider the low frequency limit the limit Q <« K < 1. We restrict the analysis to the first order terms in
Q). Using the property

f _ b f
<Q% +2ﬂ%>v V2 <QD (% - iv2Qp) > "

for any even function f(vj), it turns out that at leading order the functions L; (8) become

LO(Q):—ﬁQ;In<i Q~>

q qgK
Li(Q) = \f )
Ly (Q) = ‘qu (14)



. 2—j0i—1 ~ -
The simplification (13) leads to the redefinition of the source term S; yr = —\% i %‘7 [vE - Vg]M,Q d3v =

0 (R’ Y *1> x O (QQ*J' ) Using this ordering, one can compute the potential at leading order

; _ Teq /
ZQh,LQ = Neq (1+7')qK (ZQS + qK (SQ 1+ 55 1))
; _ Teq 1 O Q! 7%
Zth,Q = Neq (1+r)ak ( S+ qK (527_1 + Sz,l)>
/
1Qho o = Teg 25 =
7 Neq ﬁqK

Two limit cases are found. In the intermediate frequency regime K2 < Q) < K, one gets

T,
Neg (14 7) qK Qup

—h_10=hgo=—

This corresponds to a sin(f) poloidal structure (up-down asymmetry). It appears that the main drive comes
from the source S’ that is a N = 0, M = 0 component of the source. It is shown in the next section that it
is related to the flux surface average of the turbulent Reynolds stress , i.e. the same source as zonal flows.
The underlying mechanism is flow compressibility, that results in a pumping of N = 0, M = 41 modes by
N =0, M = 0 zonal flows - i.e. a sideband effect.

The second limit corresponds to quasi-stationary structures, i.e. very low frequencies < K2, for which
at leading order

L b Teq (S2,—1+ S2.1)
B T Y S

It corresponds to a cos(f) poloidal variation (in-out asymmetry). The source terms S +; corresponds to
M = 41 components of the turbulent source. Hence the drive rather comes from turbulence ballooning,
which induces in turn a ballooning of the turbulence source, i.e. non zero poloidal harmonics of the turbulent
drive.

3 Link between source terms and turbulent Reynolds stress
tensor

is often proportional to the source term S’. In this part we establish the connection between this quantity
and the Reynolds stress tensor. In other words we demonstrate a kinetic version of the Taylor identity [16].
The first step, detailed in Appendix A con51sts in demonstrating that the turbulent source J Vg - Vgl 0
can be written as a flux, J [Vg - Vgl = 3 4+, where the flux I'y is a flux of vorticity

Tt (77 d0 _inpyior da
= 7] 5 [ e

= BW is the o component of the gyroaverage electric field. Therefore

9 Tat . 2T 46
r__ we it
S_aw Vo T° /0 2 ] (15)

where o = f f dBoT (5 f) One is left with the computann of o. From now on, the calculation is

restricted to the Wavelength limit k; p; < 1. Using J ~ 1+ 62 B V2, one finds

T (Eaf) = EaTf

/1/ —
QBeq vlga : VJ_f

It is convenient to calculate the contribution of J f by using the Poisson equation that writes

N, €2 Negm -
Te(,]eq (¢ - <¢>¢> - v ' < quq VL(ZS) - 6/d3vjf

7



Then

/d3vj (5 f) Ea eqe (¢* <¢>¢>

e7eq

Negm
&V < B, W)

m _
+ @V . (PJ_VJ_(‘:Q)

where P| = i d3queq f. The next step consists in integrating with respect to a. The terms proportional

to (ng — <<Z>>¢> is obviously not contributing. The terms ]Zg‘;n are varying at large scales and so their
eq

derivatives can be neglected. Then

Negm [P da [ =V - (PLV &)
- eq
eBqu 0 27 &V - (V10)

Using integration by part and the fact that £,V - (V1¢) = V- (E,V10) — %80[ |VL¢|2. One can show
that

Negm [*™ da Pa
o=y () v

where P, = 83%. We then use the definition of the divergence in ballooning coordinates

U= 5 (VAU )+ 2o (/U - V)

where /g = ﬁ is the Jacobian. The 1) dependence of g can be neglected. One then finds

9 Neqm/da <a eE‘;q)
7T o0 | B, 5x(5w\w|2+5av¢-va)

where &y, = g—fﬁ. We note that V¢ - Va = —¢V) - VO — (697(/])9 |V¢]2. Moreover one has the following
properties in ballooning representation

¢ = ou(0, 1) exp {i [nfrq(v)) + nal}
Kk
&y = Z inii&k¢k(0, t)exp {i [nbrq(¥) + nal}
Kk

Ea =3 indi(0,t) exp {i [nfg() + nal}

k

where it is reminded that negy > 9%k - Similar relations can be derived for the perpendicular pressure.
Using also the limit ) <« w, one gets

:i Negm (¢k Plk) o
9 | eB2, 4 x(%(e—eknvm +qv¢-ve)

If we moreover assume the distribution function is mainly advected by the turbulent E x B drift velocity,

then fkw = TZZ ”S*h k., and one has
0 [Nm n? (1 —”Q*)Ieb §
o0 | eB2, & x(aw(G 0,) |V |% + gV ve)




It then appears that o is close to —% <%ZEI$HRS>7 where IIrs = (vgr (vEe + Vj")) is the turbulent

Reynolds stress tensor, with FLR effects. It is a function of radius r, poloidal angle #, and time ¢. Using
Eq.(15), source S’ is then shown to be related to the M = 0 component of the stress tensor

NegeBeq o 02
Sl = —765_‘ cq '012787«2 HRS,O (’I“, Q)
€q

where p; is the thermal ion gyroradius. Radial variations of % and all equilibrium quantities have been
ignored compared to variations of the turbulence intensity to get this estimate. Other source components
S;.m are more difficult to estimate accurately, but can be shown to scale as the Reynolds stress tensor.

4 Discussion

4.1 Phase and amplitude of poloidal convective cells

examine the results obtained for poloidal convective cells. In the intermediate frequency regime Q < Qp,
the level of of the M = 1 mode is given by

$re _ d-10 _ o Urso()

Beg Beg RS

This corresponds to an up-down asymmetric potential, i.e. sin # structure. This level is finite. For 2 ~ Qp,
the level of zonal flow is given by ¢g o ~ vlgfl%o‘ Hence the level of poloidal convective cell is smaller than a
typical saturated zonal flow by a factor K,p;. The main drive mechanism is in this case the perpendicular
compressibility of the flow.

The low frequency regime Q < QpKp; is more intriguing. Admitting that the source term (S2 —1 + S2,1)

is of the order of S’ times a factor fy, representative of the level of turbulence ballooning, one gets the

estimate p p Mps(Q)
K9] -1,0 . RS
= = _ZKE pZQ Joal
Beq Beq (1 + 7') Q
No convergence is found for {2 — 0 unless the Reynolds stress frequency spectrum vanishes at low frequency,
which is unlikely. The same behavior occurs for zonal flows. This indicates a lack of dissipative processes,
probably due to a break-down of the theory in absence of particle trapping. We note however that the ratio

z;—’z is regular and of the order of K,p;. The poloidal asymmetry is of the form cos#, i.e. in-out, and the

drive appears to be the asymmetry of the turbulent stress tensor due to turbulence ballooning.

4.2 Numerical solution

We assume that the source terms are separable in energy, 2 and M , i.e. we prescribe the following form

{[0p - Vl} = FeqsnS(Q)

where s_j; = sy is real, and the frequency spectrum S(€2) is chosen as a Lorentzian

-1 AQ
SO = ey A

All matrix Eprpp and source elements Sy can then be expressed as combinations of the functions L;(2).
The latter can be calculated numerically using a collocation method (see appendix B )[3, 7]. Inverting nu-
merically the matrix £ then provides the values of h = £~1-S. In the following, parameters are safety factor
q = 1.5, normalised radial wavenumber K,p; = 0.1 , ion to electron temperature ratio 7; = 1 , amplitude of
source term sy = —1, sideband ratios s1/sg = s—1/s9 = 0.5, and frequency width of the source AQ =0.1.

Fig.1 shows the frequency spectra of Qhoq and Qhiqo. A GAM signature appears clearly at high
frequency, while zonal flows and poloidal convective cells appear at low frequencies. The level of poloidal
Qhi g
Qhg o

convective cells is about 10% lower than zonal flows, in agreement with the estimate above, i.e. ’
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Figure 1: Absolute value of Qhyq and Qhy g

h1.0
h_10

K,p;. Fig.2 and Fig.3 show respectively the ratio hhj—f; and the phase of Z;—’Z. It appears that the ratio

is about —1 in the GAM range, while the angle of Z

;’g is 90° (up-down asymmetry). At lower frequency

Qg—fo ~ K,p;, the ratio hh_liﬂg is again close to —1, i.e. up-down asymmetry, but with a polarity closer to

—90°, i.e. opposite to GAMs. The very low frequency limit ngo < (K,p;)? is more difficult to assess. The
collocation method imposes to choose a frequency mesh with the same mesh size as the velocity variable.
Low frequency then means a highly resolved velocity space, and therefore a large computation time. The
difficulty is circumvented by increasing the value of K,.p; up to 0.25. It can then be checked in Fig.4 that
. hl Q . . . . . . . .
the ratio g 1S close to 1 at vanishing frequency, in agreement with a mostly in-out asymmetrical poloidal
convective cells. In summary, GAMs and convective cells in the intermediate frequency range are up-down
asymmetrical, while low frequency cells are in-out asymmetrical. It also stressed that the polarity of a

poloidal convective cell is rarely as clean cut as a GAM, i.e. it varies continuously with the frequency.
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Figure 2: Real and imaginary parts of the ratio hhj—lg; vs )

4.3 Limits of the model

The model does not account for trapped particles. This is visible by considering the limit Qp < © and
looking at the dynamics of the mode M = 0. In this case, at leading order in K = K,.p;, one gets

iQhoodetE = X3S

2

q s V2
1+ (1 :
T3 < T2 0 g )

where

Neg\? .
det€ ~ <Tq> (147)*K?

eq
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Figure 4: Real and imaginary parts of the ratio hhjiﬂﬂ vs Q for K,p; = 0.25

Since the source S’ is equal to I%QM%LZBWHRS,O (©), where IIrg(t) is the M = 0, component of the
turbulent Reynolds stress at scale K, one finds the following equation for the zonal flow

q2 ™ 0 do . T qur Po
5 (s a () = s - 55 5

The right hand side of the equation is the expected value with a neoclassical damping in plateau regime.
The factor in front of the time derivative corresponds to the renormalisation of inertia due to the passing
particles. It differs from the fluid classical value 1+ 2¢? [15] since the prefactor of ¢? is of the order of 1, i.e.

twice smaller. If the trapped particles were taken into account, this factor should be 1 + 1.63726 [18], where

=
E—RO.

Trapping is important when the frequency € is of the order of the bounce frequency q%o\/é. If we want

the present model to be valid for 2 ~ Qp, this implies K, p; > %. This obviously excludes large scale flows,
and requires small values of the inverse aspect ratio. The very low frequency regime €2 ~ QpK,p; seems

even more difficult to reach since is requires K? p? > \f, which would only occur for highly corrugated flows

in the radial direction. We also recall that the non linear term [(VE>@ V{9, o = 0, which represents the

advection by the convective cell of the associated distribution function, was ignored in this analysis, though
it may play some role in the dynamics. Recent numerical simulations actually suggest that its amplitude is
comparable to the Reynolds stress tensor S’ in some cases [2].
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5 Conclusion

a comprehensive calculation of zonal flows, GAMs and poloidal convective cells over a large range of fre-
quencies, for a prescribed turbulent source. Poloidal convective cells are related to poloidal asymmetries of
the electric potential at low frequency. They which advect matter via their associated F x B drift velocity.
These asymmetries have to be differentiated from Geodesic Acoustic Modes, which are coherent modes, with
a well defined polarity. The calculation is based on a linearised solution of the gyrokinetic Vlasov equation
for a prescribed spectrum of helical fluctuations, coupled to a Poisson equation. Two mechanisms have been
identified that generate poloidal convective cells. The first one is due to flow compressibility, that results in
a pumping of N =0, M = +1 modes by N =0, M = 0 zonal flows - i.e. a sideband effect. In this case, the
main drive is the flux surface averaged Reynolds stress, as for zonal flows. It is found to dominate over a
large range of frequencies, down to the curvature frequency. A signature of this mechanism is a polarity that
is mainly an up-down asymmetry. A second mechanism comes from turbulence ballooning, which induces
in turn a ballooning of the Reynolds stress. This mechanism prevails at very low frequency, and produces
in-out asymmetrical convective cells. Poloidal convective cells are Landau damped, a property shared with
GAMs, but not with zonal flows. The consequence is an amplitude that is lower than zonal flows. The
typical ratio of poloidal convective cells to zonal flow amplitude is of order K, p;. Therefore it is expected
that these cells will play an important role in region where zonal flows are intense, for instance staircases [6].
Both analytical and numerical solutions of the coupled Vlasov-Poisson problem substantiate this analysis.
It is stressed however that the results found in the very low frequency regime are questionable as trapped
ions are not included in this analysis - the complexity of such a calculation is beyond the scope of this paper.
Also, non linear self-interaction terms are discarded. These terms do not exist for zonal flows, but are finite
for convective cells, and may play a role in their non linear dynamics.
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A Flux of vorticity

drive of poloidal convective cells J [Vg - V], is computed. This source term can be recast as

B,

T (V79 < V9

MQ

IVe-Vilya=J
The gradient of any field can be written as V¢ = 89 Ayl + Vw + 8¢Voz Let us note that

IWI << IWJI IV |

in the frame of the ballooning representation, i.e. the gradient of fluctuations along the field lines is much
smaller than the transverse gradients. This also implies that transverse gradients of fluctuations are larger
than gradients of metric elements or of any equilibrium quantity. Another consequence is that the gyroav-
erage operator J commutes with quantities that depend on € only. This implies that V (J¢) x Vg

9(J9) 05 9(T9) 05
V(J¢>)><V§=< %‘sz)mi gf)ai) B.,

It appears that the gyroaverage operator J commutes with derivatives with respect to ¥ (J0yf = 0pJ f)
and a (J0aof = 0aJ f) . Then is is possible to show that J Vg - Vg0 = %FTF

_ dg —iMH-i—iQt/da & -
FH_/Qﬂe 727Tj(€ag)
a(]¢>)

where &, = 5o+ We note that g can be replaced safely by f since the adiabatic response does not
contribute to the flux as [ § dO‘E (J¢)=0.

B Treatment of the resonant functions L; (2) and numerical
solution

functions are expanded at lowest order in K?2. It then appears that the matrix £ and the source {S} can be
expressed as

Ea=(1+7) (1), + Lo— Lo

& =K?+ 2L,y
E.=14
Eq=—Lo (16)
and
—iQ2 {S}M:—l = (—iLl + Lo — 2L2) S(Q)Sfl
—iQ) {S}M:O = (—1 + 2L2) S(Q)SO
—iQ{S}y 1 = (iL1 + Lo — 2L2) S(Q)s1 (17)
where

02-J Qj
LiQ)=( ——L2
J <Q+Q_ + 202, >
and the prefactor JC\F]:;? has been removed in all kinetic integrals. The potential {h} is given by the relation

(h} = £ {S}.

The dimensionless functions L; (2) can be expressed in normalized form as

L (Q) - (2)2_j /;Oo due [ jg QSZJ (18)
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where u = f—, (= 12 :}1 e q%CQ + 2@% — (é) and Qp = & (u + 2(2) These are resonant integrals,
which must be continued analytically to ensure a proper inverse Laplace transport (Landau prescription).

This is most easily done by introducing an elliptical change of variables

¢(p.0) = HKpsing
u(p,0) = V2pcos — K2¢?p?sin® 6

The quantities of interest (magnetic drift frequency, resonance, and energy) have still simple expressions in
this set of variables oy
R(p,0) = K*p* — (%)
Qp(p,0) = %pcos&
E(p,0) =u+ (%= +2pcost — lK'Qqu sin? @

The Jacobian of the change of this variables is J = ¢Kp. The resonant integrals Eq.(18) can then be recast
in the following convenient form

K . ptoo 9 6o(p) .
Lj(w) = 92 2= dpp/o dfe P,

VT 0 p? —w?
where the angle 6y(p) is such that cosp = —a + V1 +a?, a = m, D= %pcos 0, and w = qf}(. The

cut-off @ < 6 ensures that the perpendicular energy u is always positive. For positive and real values of K,
the Laplace contour prescription in 2 translates to the same one on the normalised variable wo. Hence the
integrals to be calculated are of the form

where the functions

are smooth in p. This formulation allows an easy implementation of the Landau prescription by using the
identity

2 1 1
P -

2:p—w p+w

p?—w

Restricting the analysis to (£2) > 0, one find the rule

w2 f0+°°d QpngJ;pg) S(w) >0
Lij(w)=4 w*7P.P. f0+°° sz ( )+ irw?iG, (@) (w) =0
w2J f0+oo dprpQCi;pz) + 227Tw2 JG]-( w) $(w) <0

The principal part that appears in the function Ly exhibits a logarithmic singularity near w = 0 that is
regularized by the w? prefactor . The functions Li and Lo are regular near = 0. The functions L; can be

computed in the domain R(Q) < 0 by using the properrties L;(—) = [Lj (Q)} " for positive K. All these

integrals are calculated numerically by using a collocation integration method [3, 7]. The asymptotic forms
Eq.(10) are recovered when € > 1 with an excellent accuracy.
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