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ABSTRACT: Safety and risk analyses rely on models. These models have several important characteristics.
They are event-oriented. The system under study changes of state when events, such as failure, hazard, repair and
so on, occur. They are probabilistic. The exact moment of the occurrence of a failure is in essence unpredictable.
They are discrete. States are represented by means of variables that take their values into finite, usually very
small, domains. The most widely used modeling formalisms such as Fault Trees, Block Diagrams and Event
Trees rely on Boolean algebra. There are cases however where binary states are not sufficient. For instance, it
is sometimes necessary to represent the level of degradation of a component, the quality of a signal, and so on.
This kind of models can be easily represented with AltaRica 3.0 - a high level modeling language dedicated
to safety analyses. AltaRica 3.0 is at the core of the OpenAltaRica project which aim is to develop a complete
set of assessment tools for the language, including among others compilers to Fault Trees and Markov Chains,
stochastic and stepwise simulators. In this article we study how the notion of prime implicants can be extended
to finite domain calculus. We discuss the efficient implementation of finite domain calculus and show how
these results can be applied to simplify Fault Trees, automatically generated from AltaRica 3.0 models. This
simplification in its turn significantly improves the efficiency of the assessment of the automatically generated
Fault Trees.

1 INTRODUCTION

Risk analysis relies on models. These models have
several important characteristics:

• They are event-oriented. The system under study
changes of state when events, such as failure,
hazard, repair and so on, occur.

• They are probabilistic. The exact moment of
the occurrence of a failure is in essence unpre-
dictable.

• They are discrete. States are represented by
means of variables that take their values into fi-
nite, usually very small, domains.

The last characteristic is pragmatic: given the dif-
ficulty to design models and computational com-

plexity of the calculation of indicators, discrete ab-
stractions are a necessary tradeoff. Hence the role
of Boolean algebra in Reliability, Availability, Main-
tainability, Safety engineering. The most widely used
modeling formalisms such as Fault Trees, Block Dia-
grams and Event Trees rely on Boolean algebra. There
are cases however where binary states are not suffi-
cient. For instance, it is sometimes necessary to rep-
resent the level of degradation of a component, the
quality of a signal, and so on. This kind of models
can be easily represented with AltaRica 3.0 - a high
level modeling language dedicated to safety analy-
ses (Prosvirnova, Batteux, Brameret, Cherfi, Friedl-
huber, Roussel, & Rauzy 2013). AltaRica 3.0 is at
the core of the OpenAltaRica project1 which aim is
to develop a complete set of assessment tools for

1See https://www.openaltarica.fr



the language, including among others compilers to
Fault Trees (Prosvirnova & Rauzy 2015) and Markov
Chains (Brameret, Rauzy, & Roussel 2015), stochas-
tic and stepwise simulators (Aupetit, Batteux, Rauzy,
& Roussel 2015).

In this article we study how the notion of prime
implicants can be extended to finite domain calcu-
lus and how to encode it efficiently. The contribu-
tion of this article is thus multiple. First, we present
how the notion of prime implicants can be extended
to finite domain calculus. Second, we discuss the ef-
ficient implementation of finite domain calculus. Fi-
nally we show how these results can be applied to
simplify Fault Trees, automatically generated from
AltaRica 3.0 models.

The remainder of this article is organized as fol-
lows. Section 2 describes a motivating example. Sec-
tion 3 presents a theoretical work about finite domain
calculus and discusses its implementation. Section 4
shows the application of the finite domain calculus to
the simplification of Fault Trees automatically gen-
erated from AltaRica 3.0 models. Section 5 presents
some experimental results using the motivating exam-
ple. Section 6 concludes this article.

2 MOTIVATING EXAMPLE

Consider a parametric block diagram use case (see
Figure 1) with three parameters:

• s the number of blocks in series;

• p the number of parallel blocks;

• q the level of recursivity (depth).

These relatively simple but large safety models can
be easily represented in AltaRica 3.0 and handled
simply and efficiently by means of the Fault Tree
compilation tool chain.

Note that without loosing the efficiency of the as-
sessment, in AltaRica 3.0, it is possible to represent
multi-state blocks, e.g. consider the quality of data
with the values ok, lost or erroneous, or the level of
degradation with the values ok, degraded or failed.

Figure 1: Parametric block diagram use case

This use case is both representative of a class of in-
dustrial models and parametric to show the scalability
of the approach. We shall use it throughout the article
to illustrate the advances in the simplification of Fault
Trees.

3 FINITE DOMAIN CALCULUS

3.1 Definitions

Let Ξ = {X1,X2, . . . ,Xn} be a finite set of variables.
Each Xi takes its values into a finite domain (a finite
set of constants) denoted as dom(Xi). The set of well
formed formulas over Ξ is the smallest set such that:

• The two Boolean constants 0 (false) and 1 (true)
are formulas.

• If X is a variable and c is a constant then X = c
is a formula. Such a formula X = c is called a
literal and makes only sense if c ∈ dom(X).

• If f and g are formulas, then so are f + g (dis-
junction), f ∗ g (conjunction), and −f (nega-
tion).

We assume that the negation (−) has a higher pri-
ority than the conjunction (∗), which has a higher pri-
ority than the disjunction (+).

A product is a set of literals interpreted as the con-
junction of its elements. A product is said fundamen-
tal if it does not contain two literals built over the
same variable. We shall consider only fundamental
products. The empty product is denoted 1.

A minterm is a product that contains a literal for
each variable of Ξ. As we shall see, minterms play a
fundamental role in the finite domain calculus for they
are the atoms of the underlying Boolean algebra.

A sum of products is a set of products interpreted
as the disjunction of its elements. The empty sum of
products is denoted 0.

A variable assignment of Ξ is a function σ : Ξ→
dom(X1) × dom(X2) × . . . × dom(Xn), that asso-
ciates to each variable Xi its value from dom(Xi),
i = 1, ..., n.

Let f and g be formulas and σ be a variable assign-
ment over Ξ. The value of σ(f) is calculated recur-
sively as follows:

• σ(1) = 1, σ(0) = 0;

• σ(X = c) = 1 if σ(X) = c and 0 otherwise;

• σ(f + g) = max(σ(f), σ(g)), σ(f ∗ g) =
min(σ(f), σ(g)), σ(−f) = 1− σ(f).

The variable assignment σ satisfies the formula f ,
if σ(f) = 1, otherwise is falsifies it.

There is a one to one correspondence between
minterms and variable assignments: the minterm p
corresponds to the variable assignment σ if for each
variable X ∈ Ξ, X = c ∈ p if and only if σ(X) = c.



3.2 Implication, Equivalence, Properties

Let Ξ = {X1, . . . ,Xn} be a finite set of finite domain
variables. Let f and g be two formulas built over Ξ.
f implies g, which is denoted as f ⇒ g, if any vari-
able assignment that satisfies f satisfies g as well. f
is equivalent to g, which we denote as f ⇔ g, if both
f ⇒ g and g⇒ f .

The usual properties of Boolean algebras hold for
the finite domain calculus:
Neutral element: f + 0 ⇔ 0 + f ⇔ f and
f ∗ 1⇔ 1 ∗ f ⇔ f
Absorbing element: f + 1 ⇔ 1 + f ⇔ 1 and
f ∗ 0⇔ 0 ∗ f ⇔ 0
Idempotence: f + f ⇔ f and f ∗ f ⇔ f
Commutativity: f + g⇔ g + f and f ∗ g⇔ g ∗ f
Associativity: f + (g + h) ⇔ (f + g) + h and
f ∗ (g ∗ h)⇔ (f ∗ g) ∗ h
Distributivity: f + (g ∗ h) ⇔ f ∗ g + f ∗ h and
f ∗ (g + h)⇔ (f + g) ∗ (f + h)
Double negation: −− f ⇔ f
de Morgan’s law: −(f + g) ⇔ −f ∗ −g and
−(f ∗ g)⇔−f ∗ −g

3.3 Negation

The real difference between the propositional and fi-
nite domain calculi stands in the negation.

Let Ξ be a finite set of variables, let X be a variable
from Ξ, and finally let c be a constant of dom(X).
Then, −(X = c)⇔ Σd∈dom(X),d 6=c(X = d)

Theorem 1 (Elimination of negations). : For any for-
mula of the finite domain calculus, there exists an
equivalent formula involving no negation.

Note that any formula is equivalent to the sum
of minterms that satisfies it, which is a first way to
demonstrate the theorem. A more syntactic proof con-
sists in pushing negations down to literals, thanks to
de Morgan’s law, and then to transform negative liter-
als as shown above.

3.4 Subsumption, Resolution

Let p and q be two products built over Ξ. We say that
p subsumes q if q⇒ p, i.e. if and only if any literal of
p is also a literal of q.If p subsumes q, then p+ q⇔ p.

Let X be a variable of Ξ, let dom(X) =
{c1, c2, . . . , ck} and let p1, . . . , pk be k products in
which X does not show up. Let r be the product p1 ∗
p2 ∗ . . . ∗ pk. Then the following implication holds:
(X = c1) ∗ p1 + . . .+ (X = ck) ∗ pk ⇒ r

The product r is called the resolvent of the prod-
ucts (X = c1) ∗ p1, . . . , (X = ck) ∗ pk.

In the case, where there is a product pj such that
pj = r, then the following equivalent holds:
(X = c1) ∗ p1 + . . .+ (X = ck) ∗ pk
⇔ (X = c1) ∗ p1 + . . .+ (X = cj) ∗ pj

+ . . .+ (X = ck) ∗ pk + r
⇔ (X = c1) ∗ p1 + . . .+ (X = cj) ∗ pj

+ . . .+ (X = ck) ∗ pk + r

3.5 Shannon Normal Form

Let X be a variable of Ξ, let c be a constant of
dom(X) and finally let f be a formula built over Ξ.
There exist two formulas f1 and f0 in which the atom
(X = c) does not show up such that:
f ⇔ (X = c) ∗ f1 + f0

The above representation is called the pivotal de-
composition of f with the respect to X and c.

Assume we are given an (arbitrary) order < over
the variables of Ξ and over the constants of the do-
main of the variables of Ξ. The set of formulas in
Shannon Normal Form is defined inductively as fol-
lows:

• The two constants 0 and 1 are in Shannon Nor-
mal Form.

• If f and g are two formulas in Shannon Nor-
mal Form, X is a variable and c is a constant
of dom(X), the formula (X = c) ∗ f + g is in
Shannon Normal Form if

– X does not show up in f , and

– for all literal (Y = d) showing up in g, ei-
ther X < Y or X = Y and c < d.

3.6 Representation Theorem

Let Ξ be a finite set of finite domain variables. Let
X be a variable of Ξ, let c be a constant of dom(X)
and finally let f = (X = c) ∗ f1 + f0 be a formula in
Shannon Normal Form built over Ξ.

In the above representation we can assume without
a loss of generality that:

• f1 6= 0 as (X = c) ∗ 0 + f0⇔ f0

• f0 6= 1 as (X = c) ∗ f1 + 1⇔ 1

From now, we shall assume that these two simplifica-
tion rules are systematically applied.

Theorem 2 (Representation). : for any formula of the
finite domain calculus, there exists at least one equiv-
alent formula in Shannon Normal Form.

In general, this equivalent formula is not unique.
We shall see that two of the formulas that represent a
given sum of products are of special interest: the first
one can be interpreted as sum of disjoint products, the
other one as the set of prime implicants. These two
formulas are extremum in a sense we shall explain.

A formula in Shannon Normal Form can be inter-
preted as a sum of products. Namely,

• SumOfProducts[0] = 0;



• SumOfProducts[1] = 1;

• SumOfProducts[(X = c) ∗ f + g] =
{(X = c) ∗ p;p ∈ SumOfProducts[f ]}
∪ SumOfProducts[g]

Theorem 3 (Sums-of-Products). : Shannon Nor-
mal Formulas one-to-one correspond with Sums-of-
Products (for a given order of variables and con-
stants).

3.7 Factors and cofactors

The factor and cofactor of a formula f with respect
to a variable X , denoted respectively as f |X and
f ∼ X , are syntactic operations that select respec-
tively the products of f that contain X and the prod-
ucts of f that do not contain X . The factor f |X is
defined recursively as follows:

• 0|X = 0 and 1|X = 1

• [(X = c) ∗ f + g]|X = (X = c) ∗ f + [g|X]

• [(Y = c) ∗ f + g]|X = 0 if X < Y

• [(Y = c) ∗ f + g]|X = (Y = c) ∗ [f |X] + [g|X]
if X > Y

The cofactor f ∼X is defined recursively as follows:

• 0 ∼ X = 0 and 1 ∼ X = 1

• [(X = c) ∗ f + g] ∼ X = g ∼ X

• [(Y = c) ∗ f + g] ∼ X = g if X < Y

• [(Y = c) ∗ f + g] ∼ X = (Y = c) ∗ [f ∼ X] +
[g ∼ X] if X > Y

3.8 Logical operations

Let Ξ be a finite set of finite domain variables. Let
X and Y be two variables of Ξ with X < Y . Let c, d
and e be three constants such that c, d ∈ dom(X) with
c < d, and e∈ dom(Y ). Finally let f = (X = c)∗f1 +
f0, g = (X = c) ∗ g1 + g0, h = (X = d) ∗ h1 + h0 and
I = (Y = e) ∗ I1 + I0 be four formulas built over Ξ in
Shannon Normal Form. The following equivalences
hold and they are used as recursive equations to per-
form logical operations on formulae in Shannon Nor-
mal Form:

• f + g⇔ (X = c) ∗ [f1 + g1] + [f0 + g0]

• f + h⇔ (X = c) ∗ f1 + [f0 + h]

• f + I ⇔ (X = c) ∗ f1 + [f0 + I]

• f ∗ g⇔ (X = c) ∗ [f1 ∗ g1 + f1 ∗ g0 ∼X + f0 ∼
X ∗ g1] + [f0 ∗ g0]

• f ∗h⇔ (X = c) ∗ [f1 ∗h1 + f1 ∗ g0 ∼X] + [f0 ∗
g]

• f ∗ I ⇔ (X = c) ∗ f1 + [f0 ∗ I]

• −f ⇔ [Σd∈Dom(X),d6=c(X = d) ∗ −g] + [−f ∗
−g]

3.9 Subsumption

As we shall see, it is of interest to remove from a for-
mula f all the products that are subsumed by a prod-
uct of a formula g. This operation, denoted f ÷ g, can
be defined by means of the following recursive equa-
tions. Let Ξ be a finite set of finite domain variables.
Let X and Y be two variables of Ξ (X < Y ), let c,
d and e be three constants such that c, d ∈ dom(X),
c < d, and e ∈ dom(Y ). Then:

• f ÷ 0 = f , f ÷ 1 = 0, 0÷ g = 0 and 1÷ g = 1

• [(X = c) ∗ f1 + f0]÷ [(X = c) ∗ g1 + g0]
= (X = c) ∗ [(f1 ÷ g1)÷ g0] + f0 ÷ g0

• [(X = c) ∗ f1 + f0]÷ [(X = d) ∗ g1 + g0]
= (X = c)[f1 ÷ g0] + f0 ÷ g0

• [(X = c) ∗ f1 + f0]÷ [(Y = e) ∗ g1 + g0]
= (X = c)[f1 ÷ [(Y = e) ∗ g1 + g0]]

+f0 ÷ [(Y = e) ∗ g1 + g0]

• [(X = d) ∗ f1 + f0]÷ [(X = c) ∗ g1 + g0]
= (X = c)[f1 ÷ g0] + f0 ÷ g0

• [(Y = e) ∗ f1 + f0]÷ [(X = c) ∗ g1 + g0]
= [(Y = e) ∗ f1 + f0]÷ g0

3.10 Prime implicants

Let Ξ be a finite set of finite domain variables with
an order over variables and constants. Let f and p be
respectively a formula and a product built over Ξ.

• p is an implicant of f if p⇒ f .

• p is a prime implicant of f if it is an implicant of
f and no strict sub-product (subsuming product)
of p is.

The set of prime implicants of f is denoted PI[f ].

Theorem 4 (Decomposition of Prime Implicants). :
Let f be a formula in Shannon Normal Form. Then
f = (X = c1) ∗ f1 + ((X = c2) ∗ f2 + . . . + ((X =
ck) ∗ fk + f0)) . . .) for some constants c1, . . . , ck from
dom(X) and some formulas f1, . . . , fk, f0 in Shannon
Normal Form in which X does not occur.

Let h = (f1 ∗ f2 ∗ . . . ∗ fk) + f0. Then, the set of
prime implicants of f denoted by PI[f ] are calculated
as follows:
PI[f ] = {(X = c1) ∗ p;p ∈ PI[fi]÷ PI[h]}

. . .
∪{(X = ck) ∗ p;p ∈ PI[fk]÷ PI[h]}
∪{PI[h]}



The decomposition theorem gives an algorithm to
calculate for any formula f in Shannon Normal Form
an equivalent formula h such that:
g = SumOfProducts[h] = PI[f ]

Because all possible resolutions and subsumptions
have been performed, g can be considered as the most
simplified form of f .

At the opposite, we may want to transform f into an
equivalent sum of disjoint products so to be able to
calculate the exact probability of f. Disjoining prod-
ucts encoded by f is performed by the dual operation
of calculating resolvents.

Let f = (X = c1) ∗ f1 + ((X = c2) ∗ f2 + . . . +
((X = ck) ∗ fk + f0)) . . .). Assume that dom(X) =
{c1, . . . , ck} (if some constant ci of dom(X) is miss-
ing we can always add the term (X = ci) ∗ 0). Then,
f is equivalent to the following formula:
g = (X = c1)∗ [f +f0] + ((X = c2)∗ [f2 +f0] + . . .+
((X = ck) ∗ [fk + f0)] + 0) . . .).

By applying this transformation recursively, we get
a sum of disjoint products, which is also unique, for
a given order on variables and constants.

3.11 Diagrammatic Representation

The idea is to represent sums of products in Shan-
non Normal Form by means of a variant of Bryant’s
Binary Decision Diagrams (Bryant 1992). The idea
is therefore to represent formulas in Shannon Normal
Form by means of Directed Acyclic Graphs with two
types of nodes:

• Leaves, that are labeled with either 0 or 1.

• Internal nodes, that are labeled with a variable
X and a constant c of dom(X) and that have
two out-edges called the 1-outedge and the 0-
outedge. Such a node represents the formula
(X = c) ∗ f + g, where f and g are the formu-
las represented respectively by the node pointed
by the 1-outedge and the node pointed by the 0-
outedge.

The Shannon Diagram representing a formula is
always built bottom-up. Nodes are maintained into
a unique table (and accessed by means of a hash-
table). In this way, for any formula f , there is at most
one node representing f in the table. Checking the
equivalence of two formulas is thus performed in con-
stant time once their Shannon Diagrams are built.

4 APPLICATION

One of the possible applications of the finite do-
main calculus presented above is the simplification
of Fault Trees automatically generated from AltaR-
ica 3.0 models. AltaRica 3.0 is an event-based high

level modeling language dedicated to Safety Analy-
ses (Prosvirnova, Batteux, Brameret, Cherfi, Friedl-
huber, Roussel, & Rauzy 2013). Its semantics is based
on Guarded Transition Systems (Rauzy 2008).

4.1 Guarded Transition Systems

A Guarded Transition System (GTS) G is a quintuple
〈V,E,T,A, ι〉, where:

• V = S ]F is a set of variables, divided into two
disjoint sets: a set S of state variables and a set
F of flow variables.

• E is a set of events.

• T is a set of transitions. A transition is a triple
t = 〈e,G,P 〉, where e is an event from E, G is a
Boolean expression built over variables from V
and called the guard of the transition, and P is an
instruction built over V and called the action or
the post-condition of the transition.

• A is an assertion (i.e. an instruction built over V ).

• ι is the initial (or default) assignment of variables
of V .

A GTS G = 〈V,E,T,A, ι〉 is an implicit repre-
sentation of a labeled Kripke structure, i.e. a graph
Γ = (Σ,Θ), where

• the set of nodes Σ represent the variable assign-
ments (of V ), and

• Θ is the set of edges labeled by the events from
E.

Instructions of GTS are defined recursively as fol-
lows:

• “skip” is an empty instruction.

• If v is a variable and Exp an expression, then
“v := Exp” is an instruction (called “assign-
ment”).

• If C is a Boolean expression, I is an instruc-
tion, then “ if C then I” is an instruction (called
“conditional assignment”).

• If I1 and I2 are two instructions, then so is
“I1; I2” (called “parallel composition”).

We shall consider two types of instructions. The
“Actions” which are instructions in which left mem-
bers of assignments are only state variables. The “As-
sertions” which are instructions in which left mem-
bers of assignments are only flow variables.

Let denote by τ = Propagate(A, ι, σ) a variable
assignment obtained after applying the assertion A to
the variable assignment σ., i.e. the calculation of flow



Figure 2: Compilation of AltaRica 3.0 models to Fault Trees

variables value. Propagate(A, ι, σ) computes the val-
ues of flow variables using the instructions of the as-
sertion A and the values of state variables in σ. At the
end if there are flow variables without any value, they
are set to their initial values in ι and the assertion A is
applyed to check that all the assignments are satisfied.

4.2 Compilation to Fault Trees

The compilation of AltaRica 3.0 models to Fault
Trees works (Prosvirnova & Rauzy 2015) in 5 steps
(see Figure 2):

1. The AltaRica 3.0 model is flattened into a GTS.

2. The obtained GTS is partitioned into indepen-
dent GTSs plus an independent assertion.

3. Reachability graphs of each independent GTS
are calculated.

4. Each reachability graph is separately compiled
into Boolean equations.

5. The independent assertion is compiled into
Boolean equations.

The independent assertion 〈V ∗,A∗, ι∗〉 (the 5th step
of the algorithm) is transformed into a set of Boolean
formulas in the following way. For each pair (f, d),
where f ∈ V ∗ is a flow variable and d ∈ dom(f) is
its value, a formula φ(f,d) is constructed according to
the instructions in the assertion A∗ and Boolean for-
mulas {φ(u,c), u ∈ U, c ∈ dom(u)} obtained from the
compilation of the independent GTSs.

In order to compile the assertion into Boolean for-
mulas efficiently, one need to separate it into inde-
pendent parts. The dependency relation between vari-
ables in the assertion A∗ defines a dependency graph.
This graph may contain cycles. The strongly con-
nected components of this graph divide variables of
A∗ into sets and enable to decompose the assertion
A∗ into blocks of instructions Ai (i = 1, ...,m), where
m is the number of strongly connected components:
A∗ = A∗1;A

∗
2; . . . ;A

∗
m

Each block of instructions A∗i is compiled into
Boolean formulas recursively. Let denote by

• V ∗i - a set of variables labeling the vertices of the
strongly connected component number i.

• A∗i - an instruction that calculates the values of
variables from V ∗i .

• ι∗i - an initial assignment of variables from V ∗i .

• W ∗
i - a set of variables such that variables from

V ∗i depend on them in A∗i .

For all variable v in V ∗i the formula φ(v,c) (where c ∈
dom(v)) is built as follows:

• Let Σ = ×
w∈W ∗

i

dom(w) be the Cartesian product

of the domains of variables from W ∗
i .

• Let σ ∈ Σ be an assignment of variables from
W ∗
i .

• Let φσ be a product built over W ∗
i (as defined in

Section 3.1) calculated as follows:
φσ = Πw∈W ∗

i
(w = σ(w))

• Let τ be a partial variable assignment, τ : V ∗i ∪
W ∗
i → C, such that:
∀w ∈W ∗

i τ(w) = σ(w)

• The partial variable assignment τ can be com-
pleted by propagating the assertion A∗i :
τ = Propagate(A∗i , ι

∗
i , τ)

• Then for each couple (v, c), with v ∈ V ∗i , such
that τ(v) = c, the formula associated with (v, c)
is updated as follows:
φ(v,c)← φ(v,c) + φσ

At the end of the algorithm, for all variables v ∈ V ∗
and their values, we obtain a formula φ(v,c) built over
a finite set of finite domain variables W ∗, such that
v depends on them in the assertion A∗. We use the
diagrammic representation as defined in Section 3.11
to represent these formulas.

As we have seen in Section 3.10, φ(v,c)⇔ PI[φ(v,c)]
and it is the most simplified form of φ(v,c).

For each variable v ∈ V ∗ and its value c ∈ dom(v),
we compute PI[φ(v,c)] and use this form, which
greatly simplifies the generated Fault Tree.

4.3 Example

Consider the parametric block diagram use case pre-
sented in Section 2. Figure 3 illustrates how each ba-
sic block of these diagrams can be represented in Al-
taRica 3.0.

The variable State represents the internal state
of a basic block and takes its value in the domain
BLOCKSTATE = {ok, ko}. A domain is an enu-
meration having any finite number of values. The



Figure 3: AltaRica 3.0 model of a basic block

event failure represents the internal failure of a ba-
sic block. It is possible to associate different proba-
bility distributions to the events of basic blocks (e.g.
exponential, constant, Weibull). The value of the pa-
rameters can also be changed. The behavior of a ba-
sic block is represented by a state machine given Fig-
ure 3. The variable Out is a flow variable, which rep-
resents the output of a basic block. The assertion of
a basic block is an instruction, which calculates the
value of this variable Out according to the value of
the state variable State.

Figure 4: AltaRica 3.0 model of two blocks in series

Figure 4 shows how two blocks in series can be
modeled in AltaRica 3.0. The assertion of the whole
model is
B1.Out := B1.State;
B2.Out := B2.State;
Out := if (B1.Out == ok) and (B2.Out == ok)

then ok else ko;
The compilation into Fault Trees is performed as fol-
lows.
First, local reachability graphs are compiled:
φ(B1.State,ok) = true
φ(B2.State,ok) = true
φ(B1.State,ko) = B1.failure
φ(B1.State,ko) = B2.failure
Second, local assertions are compiled:
φ(B1.Out,ok) = (B1.State = ok)
φ(B2.Out,ok) = (B2.State = ok)
φ(B1.Out,ko) = (B1.State = ko)
φ(B2.Out,ko) = (B2.State = ko)
Third, the global assertion is compiled:
φ(Out,ok) = (B1.Out = ok) ∗ (B2.Out = ok)
φ(Out,ko) = ((B1.Out = ok) ∗ (B2.Out = ko)

+(B1.Out = ko) ∗ (B2.Out = ok)
+(B1.Out = ko) ∗ (B2.Out = ko))

Figure 5 represents the last formula by means of a
variant of Binary Decision Diagram (as presented in
Section 3.11). It can be simpified using the algorithm
presented in Section 3.10 as follows:
dom(B1.Out) = dom(B2.Out) = {ko, ok}
f = (B1.Out = ko)

Figure 5: Diagrammatic representation of ((B1.Out = ok) ∗
(B2.Out = ko) + (B1.Out = ko) ∗ (B2.Out = ok) +
(B1.Out = ko) ∗ (B2.Out = ko))

∗[(B2.Out = ko) ∗ 1 + [(B2.Out = ok) ∗ 1 + 0]]
+[(B1.Out= ok) ∗ [(B2.Out= ko) ∗ 1 + 0] + 0]

f1 = (B2.Out = ko) ∗ 1 + [(B2.Out = ok) ∗ 1 + 0]
f2 = (B2.Out = ko) ∗ 1 + 0
f0 = 0
h = f1 ∗ f2 + f0 = (B2.Out = ko) ∗ 1 + 0
PI[h] = (B2.Out = ko) ∗ 1 + 0
PI[f1] = 1
PI[f2] = (B2.Out = ko) ∗ 1 + 0
PI[f1]÷ PI[h] = 1
PI[f2]÷ PI[h] = 0
PI[f ] = (B1.Out = ko) ∗ 1

+[(B2.Out = ko) ∗ 1 + 0]
which reads as (B1.Out = ko) + (B2.Out = ko). It
is the most simplified form of φ(Out,ko).

5 EXPERIMENTS

The Fault Tree compiler of the the OpenAltaRica plat-
form produces Fault Trees from AltaRica 3.0 models.
More precisely, according to one or several Boolean
observers, representing safety cases of the modeled
system, the Fault Tree compiler generates Fault Trees
in Open-PSA model exchange format (Hibti, Friedl-
huber, & Rauzy 2012) with these Boolean observers
as top events. The produced Fault Trees can be then
assessed by XFTA (Rauzy 2012) to compute Minimal
Cut Sets, probabilities of the top events, and so on.

We have implemented the algorithm presented in
Section 4 and integrated it in the original version of
the Fault Tree compiler. This algorithm greatly sim-
plifies the generated Fault Trees, compared to those
generated by the original version.

We have performed experiments with different val-
ues for the three parameters s, p and q of the motivat-
ing example pictured Figure 1.

In Table 1 we present the results obtained with the
original version of the Fault Tree compiler and with
the new one.



Table 1: Parametric block diagram use case - fault tree compilation.
Case n1 n2 n3 n4 n5 Number of blocks Number of gates (new) Number of gates (original)
1st 3 3 3 0 0 27 243 525
2nd 3 3 3 3 0 81 720 1158
3rd 4 4 4 0 0 64 537 1276
4th 4 4 4 4 0 256 2133 5114
5th 0 2 4 4 4 128 1135 3236
6th 0 3 3 3 2 54 558 1264
7th 0 3 3 3 0 27 243 596
8th 0 3 3 3 3 81 768 1914
9th 0 4 4 4 0 64 549 1562

The first column is the number of the considered
cases. The five next columns, from the second col-
umn to the sixth column, present the number of com-
ponents contained in each sub-parts. We start with n1

parallel blocks, in each block there are n2 sub-blocks
in series, into each sub-block there are n3 parallel sub-
blocks, and so on. For example, the first case means
3 parallel blocks, with 3 sub-blocks in series, each
one containing 3 parallel sub-blocks; whereas the fifth
case means 2 blocks in series, with 4 parallel sub-
blocks, each block containing 4 sub-blocks in series,
with 4 parallel sub-blocks into each one. The seventh
column represents the total number of basic blocks in
the AltaRica 3.0 model. Finally, the eighth and ninth
columns represent the number of intermediate events
in the Fault Trees generated by the original version of
the Fault Tree compiler (ninth column) and the new
one (eighth column).

The main observation is about the benefit of the
number of generated gates with the new version of
the Fault Tree compiler in comparison to the origi-
nal one. In average, this benefit is of 56.9%. It means
that in average with the new algorithm, the number
of generated gates is less than 56.9% compared to the
number of generated gates with the original one. The
minimal value is 37.8% in the second case; and the
maximum value is 64.9% in the fifth case.

The benefit obtained with the new version of the
algorithm implemented in the Fault Tree compiler is
important.

6 CONCLUSION

Boolean models are widely used for probabilistic
safety analysis. There are cases however where bi-
nary states are not sufficient. For instance, it is some-
times of interest to represent the level of degradation
of a component, the quality of signal, and so on. This
kind of models can be easily represented with AltaR-
ica 3.0, a high level modeling language dedicated to
safety analyses. AltaRica 3.0 comes with several ef-
ficient assessment tools, amongst them a Fault Tree
compiler.

In this article we presented how the notion of prime
implicants can be extended to finite domain calculus.
We discussed how the finite domain calculus can be
efficiently encoded using a variant of Binary Deci-

sion Diagrams. We shown, using a parametric block
diagram use case, how these results can be applied
to simplify Fault Trees automatically generated from
AltaRica 3.0 models. The number of generated inter-
mediate events is on average divided by two, which
greatly improves Fault Trees readability and the effi-
ciency of their assessment.
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