Learning Dynamics with Synchronous, Asynchronous and General Semantics

Abstract : Learning from interpretation transition (LFIT) automatically constructs a model of the dynamics of a system from the observation of its state transitions. So far, the systems that LFIT handles are restricted to synchronous deterministic dynamics, i.e., all variables update their values at the same time and, for each state of the system, there is only one possible next state. However, other dynamics exist in the field of logical modeling, in particular the asynchronous semantics which is widely used to model biological systems. In this paper, we focus on a method that learns the dynamics of the system independently of its semantics. For this purpose, we propose a modeling of multi-valued systems as logic programs in which a rule represents what can occurs rather than what will occurs. This modeling allows us to represent non-determinism and to propose an extension of LFIT in the form of a semantics free algorithm to learn from discrete multi-valued transitions, regardless of their update schemes. We show through theoretical results that synchronous, asynchronous and general semantics are all captured by this method. Practical evaluation is performed on randomly generated systems and benchmarks from biological literature to study the scalabil-ity of this new algorithm regarding the three aforementioned semantics.
Type de document :
Communication dans un congrès
28th International Conference on Inductive Logic Programming, Sep 2018, Ferrara, Italy. Springer, Cham, Lecture Notes in Computer Science (LNCS, volume 11105) Lecture Notes in Artificial Intelligence (LNAI, volume 11105), LNCS, volume 11105, 2018, Inductive Logic Programming. 〈http://ilp2018.unife.it/〉. 〈10.1007/978-3-319-99960-9_8〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01826564
Contributeur : Maxime Folschette <>
Soumis le : dimanche 1 juillet 2018 - 18:24:27
Dernière modification le : mercredi 28 novembre 2018 - 01:20:10
Document(s) archivé(s) le : lundi 1 octobre 2018 - 04:18:42

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, Katsumi Inoue. Learning Dynamics with Synchronous, Asynchronous and General Semantics. 28th International Conference on Inductive Logic Programming, Sep 2018, Ferrara, Italy. Springer, Cham, Lecture Notes in Computer Science (LNCS, volume 11105) Lecture Notes in Artificial Intelligence (LNAI, volume 11105), LNCS, volume 11105, 2018, Inductive Logic Programming. 〈http://ilp2018.unife.it/〉. 〈10.1007/978-3-319-99960-9_8〉. 〈hal-01826564〉

Partager

Métriques

Consultations de la notice

294

Téléchargements de fichiers

59