Skip to Main content Skip to Navigation
Journal articles

Nutritional n-3 PUFA Deficiency Abolishes Endocannabinoid Gating of Hippocampal Long-Term Potentiation

Abstract : Maternal n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, is critical during perinatal brain development. How early postnatal n-3 PUFA deficiency impacts on hippocampal synaptic plasticity is mostly unknown. Here we compared activity-dependent plasticity at excitatory and inhibitory synapses in the CA1 region of the hippocampus in weaned pups whose mothers were fed with an n-3 PUFA-balanced or n-3 PUFA-deficient diet. Normally, endogenous cannabinoids (eCB) produced by the post-synapse dually control network activity by mediating the long-term depression of inhibitory inputs (iLTD) and positively gating NMDAR-dependent long-term potentiation (LTP) of excitatory inputs. We found that both iLTD and LTP were impaired in n-3 PUFA-deficient mice. Pharmacological dissection of the underlying mechanism revealed that impairment of NMDAR-dependent LTP was causally linked to and attributable to the ablation of eCB-mediated iLTD and associated to disinhibitory gating of excitatory synapses. The data shed new light on how n-3 PUFAs shape synaptic activity in the hippocampus and provide a new synaptic substrate to the cognitive impairments associated with perinatal n-3 deficiency.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-01826142
Contributor : Olivier Manzoni Connect in order to contact the contributor
Submitted on : Friday, June 29, 2018 - 9:30:51 AM
Last modification on : Wednesday, November 3, 2021 - 7:22:19 AM

Links full text

Identifiers

Collections

Citation

Olivier Manzoni, Aurore Thomazeau, Clémentine Bosch-Bouju, Sophie Layé. Nutritional n-3 PUFA Deficiency Abolishes Endocannabinoid Gating of Hippocampal Long-Term Potentiation. Cerebral Cortex, Oxford University Press (OUP), 2016, 27 (4), pp.2571-2579. ⟨10.1093/cercor/bhw052⟩. ⟨hal-01826142⟩

Share

Metrics

Record views

153