Local solution clustering for a triangular system of polynomials

Abstract : This report is about finding clusters of complex solutions of triangular systems of polynomial equations. We introduce the local solution clustering problem for a system of polynomial equations, that is grouping all its complex solutions lying in an initial complex domain in clusters smaller than a given real number $\epsilon>0$, and counting the sum of multiplicities of the solutions in each clusters. For triangular systems, we propose a criterion based on the Pellet theorem to count the sum of the multiplicities of the solutions in a cluster. We also propose an algorithm for solving the local solution clustering problem for triangular systems, based on a recent near-optimal algorithm for clustering the complex roots of univariate polynomials. Our algorithm is numeric and certified. We implemented it and compared it with two homotopy solvers for randomly generated triangular systems. Our solver always give correct answers, is often faster than the homotopy solver that gives often correct answers, and sometimes faster than the one that gives sometimes correct results.
Type de document :
Pré-publication, Document de travail
Research report. 2018
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01825708
Contributeur : Rémi Imbach <>
Soumis le : jeudi 28 juin 2018 - 15:24:52
Dernière modification le : mercredi 11 juillet 2018 - 14:07:03
Document(s) archivé(s) le : jeudi 27 septembre 2018 - 09:05:24

Fichier

triangularSystems.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01825708, version 1
  • ARXIV : 1806.10164

Citation

Rémi Imbach. Local solution clustering for a triangular system of polynomials. Research report. 2018. 〈hal-01825708〉

Partager

Métriques

Consultations de la notice

21

Téléchargements de fichiers

19