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Abstract—In many real-world applications, ranging from pre-
dictive maintenance to personalized medicine, early classification
of time series data is of paramount importance for supporting
decision makers. In this article, we address this challenging task
with a novel approach based on reinforcement learning. We
introduce an early classifier agent, an end-to-end reinforcement
learning agent (deep Q-network, DQN) [1] able to perform
early classification in an efficient way. We formulate the early
classification problem in a reinforcement learning framework: we
introduce a suitable set of states and actions but we also define
a specific reward function which aims at finding a compromise
between earliness and classification accuracy. While most of the
existing solutions do not explicitly take time into account in the
final decision, this solution allows the user to set this trade-off
in a more flexible way. In particular, we show experimentally on
datasets from the UCR time series archive [2] that this agent is
able to continually adapt its behavior without human intervention
and progressively learn to compromise between accurate and fast
predictions.

Index Terms—time series, early classification, reinforcement
learning, Deep Q-Network, time sensitive applications

I. INTRODUCTION

Surrounded by information in our environment, we often
collect data over time and make decisions based on these
sequences of information. A physician will, for example,
prescribe a new treatment to his patient as a response to the
underlying identification of particular patterns in his medical
exam history. A production chain manager will anticipate
a breakdown after having identified atypical behaviours in
the machines’ signals. In time sensitive applications such as
medical diagnosis, disaster prediction, intrusion detection and
process control, particular situations should be recognized
as soon as possible and decisions taken quickly in order to
take the best possible actions. In this paper, we present a
solution capable of analyzing time series, and more generally,
streaming data, and predicting their class label early in time,
using as little data as possible. Such a solution is referred to as
an "early classifier" in the scientific literature. Just like humans
do while making strategic decisions, these early classifiers
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should balance the two contradictory costs of classification
accuracy and earliness. An early classifier should find an
optimal critical point between acquiring more information to
gather enough evidence and providing early results.

A. Related work

The topic of early prediction first appears in [3] with a
method capable of making predictions on prefixes of time
series by combining simple literals through an adaptation of
boosting algorithm. However, this method does not seek to
optimize earliness. Later, several authors propose dictionary
based methods and identify discriminant sequence patterns
for classification [4] [5]. The trade-off between earliness and
accuracy of classification is first mentioned in [4]. They
identify patterns in symbolic sequences that are frequent,
early and distinctive and classify a sequence as soon as it
matches with a set of learned patterns. In [5], the authors
seeks for local shapelets, sub-sequences in numerical time
series relevant for classification but also early. A distance
based approach is proposed in [6] which aims at adapting the
highly competitive nearest neighbours approach on sequence
classification to the early prediction problem. In [7], the
authors address the early classification task as a problem of
classification with confidence from incomplete information.
Their solution is based on probability forecasting and on
linear and quadratic discriminant functions as classifiers. In
[8], the authors combine a set of probabilistic classifiers and
an optimized stopping rule. The authors in [9] propose a “non
myopic” framework which forecasts the future earliest time
from which classification should be made through clustering
and a set of classifiers.

B. Our contributions

In this article, we address the problem of early classifica-
tion of time series as a decision making process. The main
contribution holds in developing a novel approach based on
reinforcement learning which is traditionally used in robotics
and games environment [1] and has recently exhibited state-
of-the-art results in these challenging tasks. Here we introduce
an early classifier agent, an end-to-end reinforcement learning
agent able to perform early classification in an efficient way.
We formulate the early classification problem in a reinforce-
ment learning framework: we introduce a suitable set of states



and actions but we also define a specific reward function
which aims at finding a compromise between earliness and
classification accuracy. The early classifier agent is trained
with the popular Deep Q-Network (DQN) algorithm from [1].
In experiments, we particularly show on UCR time series
benchmark [2] that this agent is able to continually adapt
its behavior without human intervention. This makes this ap-
proach of particular interest compared to standard approaches
which are generally based on a set of decision rules (such as
if-then rules).

The advantages of the proposed solution are the following:
• We introduce a reward function balancing the competing

costs of accuracy and earliness with a trade-off parameter.
As a consequence, the user can directly affect the degree
of importance of time in the final prediction.

• During its training, the early classifier agent continually
learns to compromise between accurate and fast predic-
tions. The user can then choose the agent’s behaviour that
performed best according to his trade-off criteria.

• It can be plugged with a large number of reward functions
and, for example, deal with multi-criteria evaluation and
imbalanced misclassification costs.

• It benefits from an end-to-end learning with no use of
human intervention in the design of the decision rules
and in the features extraction on the time series. It
autonomously and simultaneously learns optimal patterns
of interest in the time series for classification and optimal
strategic decisions for time of predictions.

• It is suitable for diverse types of temporal sequences, such
as univariate and multivariate time series and symbolic
sequences.

In section II, we introduce notations and define the problem
of early classification. In section III, we solve the problem with
the definition of an early classifier agent in a reinforcement
learning context. In section IV, we evaluate our method on
datasets from the UCR time series archive.

II. PROBLEM DESCRIPTION

A. Notation
Let S ∈ Rp∗T be a time series (eq. 1) with length T ∈ N+

and dimension p ∈ N+. Our work both applies to univariate
time series (p = 1) and multivariate time series (p > 1).
For the sake of simplicity, we suppose that each dimension
has equal length but the proposed solution can be applied to
time series with variable length and with unequal dimension’s
length. Let S:t be the prefix of the time series S acquired until
time t (eq. 2). Given our notations, we have S = S:T .

S =

s
1
1 · · · sp1
...

. . .
...

s1T · · · spT


(1)

S:t =

s
1
1 · · · sp1
...

. . .
...

s1t · · · spt


t≤T

(2)
Let S be the set of complete time series S, such that S =

{S}. S:t refers to the set of truncated time series, such that
S:t = {S:t}. Each time series in S is associated to a class
label l ∈ L, with L the set of labels.

B. Time series classification

Given a learning dataset D composed of time series associ-
ated to their class label (eq. 3), a classification model C is a
mathematical function modelling the relationship between data
evolution over time and associated label. It maps between a
time series Si ∈ S and a label li ∈ L, such that C : S → L.

D = {(Si, li)i=1..n | Si ∈ S, li ∈ L} (3)

with n being the number of examples in the dataset D. To
evaluate the performance of a classification model C on a test
dataset D′, we measure the classifier accuracy: the ratio of
correctly labelled examples among all predictions (eq. 4).

Accuracy(C) =
#{l̂i = li | l̂i = C(Si), (Si, li) ∈ D′}

#D′
(4)

with #D′ being the number of elements in the test dataset and
l̂i the prediction of the classifier.

C. Early classification of time series

We define an early classifier as a mathematical model
capable of analyzing time series and identifying their class
label early in time. It should compromise between accuracy
and earliness of classification under some criteria accepted by
the user’s application. An early classifier C has to meet two
requirements:
• Analyze prefixes of temporal sequences and be ready to

classify this partial information at any time (eq. 5).

∀S ∈ S,∀t ∈ [1, T ], C : S:t → L (5)

• Make a decision about when (at which time step tpred ∈
[1, T ]) to classify.

∀(Si, li) ∈ D, an early classifier C outputs a time of prediction
and a classification result: (C(S:tpred), tpred).

III. EARLY CLASSIFICATION IN A REINFORCEMENT
LEARNING FRAMEWORK

In this article, we propose an original use of reinforcement
learning to train an end-to-end agent able to perform early
classification in an efficient way. The contribution holds in
the definition of an early classifier agent. It is based on
the introduction of a suitable set of states and actions for
reinforcement learning and on the definition of a specific
reward function which aims at finding a compromise between
earliness and accuracy. We propose to train the early classifier
agent with the standard Deep-Q-Network algorithm from [1]
which aims at approximating the agent’s behaviour function
with a deep neural network combined with Q-learning [10].

A. Background

1) Reinforcement learning: Reinforcement learning is an
active field of research for sequential decision making. It is
used to train agents interacting with an environment such as
artificial intelligence playing video games. Agents are trained
while playing what’s called "episodes". At the beginning of an
episode, the agent receives an observation of its initial state



O1. At each time step t, after it receives an observation Ot, the
agent picks an action at. In response, the environment gives
the agent a feedback: a reward rt and a new observation Ot+1.
These interactions go on until the agent reaches a terminal
state, leading to the end of the current episode and the start of a
new one. The agent is characterized by his policy π modelling
how it picks its actions. The policy π is a behaviour function
(eq. 6) which returns the probability of picking an action a
given a particular state O.

π(a|O) = P[at = a|Ot = O] (6)

The agent’s goal is to receive the maximum total discounted
reward gt which represents the immediate reward plus the
future discounted rewards (eq. 7).

gt =

∞∑
k=0

γkrt+k with γ ∈ [0, 1] the discount factor (7)

In reinforcement learning, the agent has to learn an optimal
behaviour π∗ from its interactions < Ot, at, rt,Ot+1 > with
the environment during episodes of training. It must find
the best possible action to take in every circumstance. This
type of learning is close to human behaviour where one
takes some decisions, observes results and consequences, and
progressively learns from his errors.

Depending on its policy π, the agent can evaluate the
expected return gt it can get by starting the game from state
O, picking a particular action a and then following its policy
π. This is the action value function, also called the Q-function
(eq. 8).

Qπ(O, a) = Eπ[gt|Ot = O, at = a] (8)
Qπ(O, a) = Eπ[rt + γQπ(Ot+1, at+1)|Ot = O, at = a]

(9)

with at+1 ∼ π(.|Ot+1). The Q-function indicates, for a given
policy π, if selecting an action a in a particular state O is
likely to have good repercussions in the following steps by
getting large rewards or not. For two actions a1 and a2, the
Q-function indicates which action is the optimal choice to
make. If Qπ(O, a1) > Qπ(O, a2), then action a1 is a better
choice to make when the agent is in state O than action a2.

The goal in reinforcement learning problems is to find the
optimal policy π∗ the agent should follow in order to get the
maximum rewards gt. One way to achieve an optimal policy
π∗ is to find the optimal Q-function Q∗. If the optimal Q-
function is known then the optimal policy can naturally be
inferred from it by acting greedily, that is to say by picking
the action maximizing Q∗ (eq. 10).

π∗(a|O) =

{
1 if a = argmaxaQ

∗(O, a)
0 else (10)

2) Deep Q-Network algorithm: The DQN algorithm from
[1] aims at approximating the optimal Q-function Q∗ from
interactions < Ot, at, rt,Ot+1 > between an agent and its
environment. It approximates the optimal Q-function Q∗ by
a deep neural network Q(O, a,Θ) with parameters Θ, also

called the Deep-Q-Network. Parameters update is detailed in
[1]. In the following, we briefly give an overview of the DQN
algorithm.

During episodes of training, starting with random parame-
ters Θ1, the agent modifies the parameters Θ of its function
approximator Q(O, a,Θ) in order to get to an accurate ap-
proximation of the true Q-function. Consequently, it modifies
its policy πΘ by acting greedily over its approximated Q-
function (eq. 10). After each interaction < Ot, at, rt,Ot+1 >,
the following scheme is repeated. The agent stores its inter-
action in its replay memory D, allowing to reuse this expe-
rience later. It randomly samples a mini-batch of transitions
< O, a, r,O’ > from D and performs a gradient descent step
on the Deep-Q-Network with respect to the loss function (eq.
11).

Lt(Θt) = (r + γmax
a′

Q(O′, a′,Θ−t )−Q(O, a,Θt))
2 (11)

with Θ−t an old fixed version of the Deep-Q-Network. By
doing so, the agent progressively estimates the relationships
between being in a state Ot, choosing an action at and getting
future rewards gt.

B. Early classification as a decision making process
We consider an early classifier as an algorithm allowed to

make decisions. While receiving streaming data, the algorithm
analyzes the sequence and can make an action. It can predict
a class label based on the assumption that it collected enough
information to identify discriminant patterns of interest. Or
it can wait for future additional information. We propose to
train an early classifier as an agent evolving in a reinforcement
learning framework where:
• The observations Ot given to the agent at time t are

partial time series acquired until time t.

Ot = S:t (12)

• The actions at the agent can take are either to wait for
additional observations or to predict a class label in L.

at ∈ A, with A = {wait,
⋃
k∈L

predict label k} (13)

• The agent picks an action at based on its policy πΘ with
parameters Θ, such that at = πΘ(Ot).

πΘ : {S:t,∀t ∈ [1, T ]} → A (14)

If at = wait, the episode goes on and the next ob-
servation is the partial time series with an additional
point: Ot+1 = S:t+1. If at ∈ {

⋃
k∈L

predict label k}, the

episode terminates.
• An episode ends when the partial sequence is fully

completed, Ot = S, or when the agent predicts a class
label, at ∈ {

⋃
k∈L

predict label k}.

• Rewards rt are a major component of an agent’s training.
They encode the agent’s task and will highly affect its
behaviour. Rewards should reflect an early classifier goal:
to give fast predictions while maintaining an acceptable
accuracy.



C. Reward function for early classification

When deep reinforcement learning interacts with video
games, the reward traditionally relates to the score of the game.
Here, we propose a solution for the attribution of rewards to
an early classifier agent in a reinforcement learning context.
The reward attribution will be drawn from a reward function
R : A,D → R that will analyze the relevance of an action at
given a particular observation Ot = S:t, corresponding to the
underlying time series S with true label l, (S, l) ∈ D.

rt = R(at,S:t, l) (15)

We propose a reward function balancing the two competing
costs of a prediction accuracy and earliness (eq. 16).

R(at,S:t, l) =


1 if at = predict label l
−1 if at ∈

⋃
k∈L\l

predict label k

−λtp if at = wait
(16)

with p ≥ 0. λ ∈ R+ is the trade-off parameter between
earliness and accuracy. Under the proposed formulation of
rewards (eq. 16), the agent gets positive reward when it
correctly classifies the time series. An incorrect prediction
leads to a penalty of one "point". Delaying the prediction costs
the agent a variable amount of "points". With parameter p set
to 0, the agent will receive the same penalties for delaying the
prediction independently of time. With p > 0, the penalty
becomes time-dependant. At the beginning of the episode,
when the partial time series has limited information, the agent
is less penalized for delaying the prediction than later in the
episode when it received more inputs from the sequence.

The trade-off parameter λ allows the user to control the
compromise he is willing to make between speed and accuracy.
The larger λ, the faster the agent will be encouraged to make
its predictions.

D. Deep Q-Network algorithm for early classification

The proposed definition of states, actions and rewards allow
us to train an early classifier agent with reinforcement learning.
To find the optimal policy π∗ (eq. 10) that will lead to
maximum rewards gt, we adapt the DQN algorithm [1] and
look for the optimal Q-function parametrized using a deep
neural network with parameters Θ.

At training time, the agent will train and modify its be-
haviour by playing successive episodes. In each episode, the
agent will train on a time series from the learning dataset:
(S, l) ∈ D. At time step t of the episode, the agent receives
the partial time series S:t and has to decide between gath-
ering more information (at = wait) or making a prediction
(at ∈

⋃
k∈L

predict label k). As a feedback, the agent receives

a reward R(at,S:t, l). Depending on its choice of action,
the episode either terminates or the agent receives a new
observation S:t+1 . Q is then re-evaluated and Θ udpated.

At test time, the policy πΘ∗ with best parameters Θ∗ will
be used to early classify new time series.

The use of a deep neural network as a function approximator
of the Q-function leads to a end-to-end learning of both
features of interest in the time series and of decision rules
about when and which class label should be predicted.

IV. EXPERIMENTAL RESULTS

We run experimental tests on the UCR archive [2] which is
widely used as benchmark for classification and clustering of
time series. We evaluate the proposed solution on Gun-Point,
Wafer and ECG datasets. These datasets have various amount
of training data and allow to evaluate the suitability of the
solution when few training samples are available.

A. Agent training

Each dataset is originally split into a training and a testing
set in the UCR archive. We use time series from the training
set as episodes of training for the agent. We run the DQN
algorithm for 100,000 iterations (updates of the deep neural
network’s parameters Θ (eq 11)). Samples from the training
set can be re-used several times over training. The neural
networks used to approximate the Q-function are composed of
convolution filters to learn time dependencies in the sequences
and dropout to prevent over-fitting. The amount of layers,
filters and dropout vary from a dataset to another depending on
its complexity and amount of training data. Architectures of
neural networks were tuned through the different experiences.

Figure 1 shows the evolution of the agent behaviour over
training when rewarded with parameters p = 1/3 and λ =
0.001. It shows that the agent is able to continually adapt its
behaviour without human intervention. At the beginning of its
training (blue dots), the agent gave its classification results at
t < 10 in average leading to a poor accuracy (eq. 4) of 70%.
After 100,000 training iterations (yellow dots), it learned to
slow its prediction down to t = 35 and reached an accuracy
superior to 95% on the training set.

During experiments, we noticed that the choice of hyper-
parameters λ and p for the reward function can cause the
agent to learn a sub-optimal policy. Too small values of λ
encouraged the agent to wait until the end of a sequence before
predicting a class label while large values of λ encouraged
it to give immediate predictions at the expense of accuracy.
To tune these hyper-parameters, we conducted a grid search
and selected those with best performance on the training set.
Optimal parameters λ and p vary from a dataset to another
depending on the maximal length of the sequences and on
their complexity.

One advantage of the proposed solution is that it gives the
user the freedom to evaluate the agent performance regularly
over training and then pick the agent’s policy that performed
best according to his criteria and will to compromise.

B. Testing

From the experiment illustrated in figure 1, we chose to
keep as the output of the learning process the agent’s policy
that performed best during training: among the most accurate
policies, we selected the fastest one (policy surrounded by a



Fig. 1. Evolution of the early classifier agent behaviour on Gun-Point dataset.
The scatter plot shows the relationship between accuracy (in percentage) and
average time of prediction of the agent over training. We evaluate the agent
on the whole training set every 5,000 iterations. Each evaluation corresponds
to one dot. Dot points are coloured according to iterations of training: blue
dots correspond to early training while yellow dots correspond to the agent’s
performance after 100,000 iterations of training. We evaluate the agent’s policy
surrounded by the red star on the testing set and we report its performance
in table I. In this experiment, the agent learned to slow its predictions down
and improved its accuracy over training.

TABLE I
RESULTS ON THREE DATASETS FROM UCR TIME SERIES ARCHIVE

Dataset Early
classifier
agent

ECTS EDSC 1NN
Full

Gun-Point:
2 classes, T = 150
50 train. samples
150 test. samples

Accuracy 96% 86.67% 94.67% 91.33%
Ave. Len. 32.47 70.39 69.3 150
Coverage 100% 100% 100% 100%

Wafer:
2 classes, T = 152
1000 train. samples
6174 test. samples

Accuracy 99.32% 99.08% 98.87% 99.55%
Ave. Len. 5.73 67.39 38.97 152
Coverage 100% 100% 100% 100%

ECG:
2 classes, T = 96
100 train. samples
100 test. samples

Accuracy 89% 89% 88% 88%
Ave. Len. 16.09 57.71 30.93 96
Coverage 100% 100% 100% 100%

Accuracy is defined in eq. 4. T is the maximal length of the time series.
Ave Len is the average length of time series used before classification, i.e.

the average time of prediction. Coverage is the percentage of classified time
series in the dataset.

red star in figure 1). In table I, we report the performance
of this policy on Gun-Point testing set. We also trained early
classifier agents on Wafer and ECG training sets. We selected
policies that performed best during training and reported their
performance on Wafer and ECG testing sets in table I.

As a comparison, we indicate the performance of Early
Classification on Time Series (ECTS) [6] and Early Distinctive
Shapelet Classification (EDSC) [5] methods. We did not repro-
duce their experiments but simply reported results mentioned
in the original papers. We also indicate the performance of a
1 Nearest Neighbor (1NN) classifier on full time series with
results provided in the UCR archive.

On Gun-Point dataset, the agent predicted once it received
22% of the full sequence in average and reached an accuracy
superior to that of full length 1NN method.

On Wafer dataset, our solution has an accuracy slightly
inferior to that obtained by the full length 1NN method and
an average time of prediction of 4% of the full length. This
speed in prediction is due to the identification of a very early
pattern in time series from class 2.

On ECG dataset, the agent gave fast predictions (17% of full
length) with an accuracy comparable to that of other methods.
With all three datasets, we experienced over-fitting when the
neural network architecture was not appropriately sized.

From these experiments, we showed that the proposed
solution can achieve early classification and can retain an
accuracy comparable to that of the full length 1NN classifier.

V. CONCLUSION

To tackle the problem of early classification, we propose an
original use of reinforcement learning in order to train an end-
to-end early classifier agent with a simultaneous learning of
both features in the time series and decision rules. Our exper-
imental results show that the early classifier agent can achieve
effective early classification with fast and accurate predictions.
In this work we suggest a static setting of the reward function
but more efforts could be put onto the identification of optimal
parameters. As future work, we plan to improve the proposed
approach with a dynamic adjustment of the reward function
parameters over training based on the user trade-off criteria.
We will also propose a new management of the agent’s replay
memory which could be more suitable for the problem of early
classification.
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