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Abstract. In this paper, we study the ruin problem with invest-
ment in a general framework where the business part X is a Lévy
process and the return on investment R is a semimartingale. Un-
der some conditions, we obtain upper and lower bounds on the
finite and infinite time ruin probabilities as well as the logarithmic
asymptotic for them. When R is a Lévy process, we retrieve some
well-known results. Finally, we obtain conditions on the exponen-
tial functionals of R for ruin with probability one, and we express
these conditions using the semimartingale characteristics of R in
the case of Lévy processs.

MSC 2010 subject classifications: 91B30 (primary), 60G99

1. Introduction and Main Results

The estimation of the probability of ruin of insurance companies is a
fundamental problem for market actors. Classically, a Poisson process
with drift was used to model the value of an insurance company and in
that case, under some assumptions on the parameters of the process,
the probability of ruin decreases at least as an exponential function
of the initial capital, see e.g. [1]. Over time, the compound Poisson
process has been replaced by more complex models. In a first generali-
sation, the value of the company is modeled by a Lévy process and then
the ruin probability behaves essentially like the tail of the Lévy measure
and, in the light-tailed case, this means that this probability decreases
at least as an exponential function (see [1], [18], [20], and [36]). To
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2 ON THE RUIN PROBLEM

generalise even further, it can be assumed that insurance companies
invest their capital in a financial market. The main question is then:
how does the probability of ruin changes with this additional source of
risk?

In this general setting, the value of an insurance company with initial
capital y > 0, denoted by Y = (Yt)t≥0, is given as the solution of the
following linear stochastic differential equation

(1) Yt = y +Xt +

∫ t

0

Ys−dRs, for all t ≥ 0,

where X = (Xt)t≥0 and R = (Rt)t≥0 are two independent one dimen-
sional stochastic processes defined on some probability space (Ω,F ,P)
and chosen so that (1) makes sense. In risk theory, the process X rep-
resents the profit and loss of the business activity and R represents the
return of the investment. The main problem then concerns the study
of the stopping time defined by

τ(y) = inf{t ≥ 0|Yt < 0}
with inf{∅} = +∞ and the evaluation of the ruin probability before
time T > 0, namely P(τ(y) ≤ T ), and the ultimate ruin probability
P(τ(y) < +∞). The ruin problem in this general setting was first
studied in [26].

Before describing our set-up and our results, we give a brief review of
the relevant litterature. The special case when Rt = rt, with r > 0,
for all t ≥ 0 (non-risky investment) is well-studied and we refer to [30]
and references therein for the main results. In brief, in that case and
under some additional conditions, the ruin probability decreases even
faster than an exponential since the capital of the insurance company
is constantly increasing.

The case of risky investment is also well-studied. In that case, it is
assumed in general that X and R are independent Lévy processes.
The first results in this setting appear in [17] (and later in [38]) where
it was shown that under some conditions there exists C > 0 and y0 ≥ 0
such that for all y ≥ y0 and for some b > 0

P(τ(y) < +∞) ≥ Cy−b.

Qualitatively, this means that the ruin probability cannot decrease
faster as a power function, i.e. the degrowth is much slower than in the
no-investment case. Later, under some conditions on the Lévy triplets
of X and R, it was shown in [29] that for some β > 0 and ǫ > 0, there
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exists C > 0 such that, as y → ∞,

yβ P(τ(y) < +∞) = C + o(y−ǫ).

Recently, in [15], it is proven, under different assumptions on the Lévy
triplets and when X has no negative jumps, that there exists C > 0
such that for the above β > 0

lim
y→∞

yβ P(τ(y) < +∞) = C.

Results concerning bounds on P(τ(y) < +∞) are given in [17] where
it is shown that, for all ǫ > 0, there exists C > 0 such that for all y ≥ 0
and the same β > 0

P(τ(y) < +∞) ≤ Cy−β+ǫ.

In less general settings similar results are available. The case when X
is a compound Poisson process with drift and exponential jumps and R
is a Brownian motion with drift is studied in [12] (negative jumps only)
and in [16] (positive jumps only). In [31] the model with negative jumps
is generalized to the case where the drift of X is a bounded stochastic
process.

Finally, some exact results for the ultimate ruin probability are avail-
able in specific models (see e.g. [30], [38]) and conditions for ruin with
probability one are given, for different levels of generality, in [12], [15],
[16], [17], [28] and [31].

From a practical point of view, insurance companies are interested
in the estimation of the ruin probability P(τ(y) ≤ T ) before time
T more than in the ultimate ruin probability P(τ(y) < +∞) or its
asymptotic when y → +∞. For this reason, the goal of this paper is
to obtain the inequalities for P(τ(y) ≤ T ). Moreover, in contrast to
the insurance business activity, the return on the investment can not
be modelled, in general, by a homogeneous process like a Lévy process.
Indeed, the market conditions can change over time or switch between
different states. This explains why we assume, in this paper, that R is
a semimartingale.

Thus, in the following we suppose that the processes X = (Xt)t≥0 and
R = (Rt)t≥0 are independent one-dimensional processes both starting
from zero, and such thatX is a Lévy process and R is a semimartingale.
We suppose additionally that the jumps of R denoted ∆Rt = Rt−Rt−
are strictly bigger than −1, for all t > 0.



4 ON THE RUIN PROBLEM

We denote the generating triplet of the Lévy process X by (aX , σ
2
X , νX)

where aX ∈ R, σX ≥ 0 and νX is a Lévy measure. We recall that
the generating triplet characterizes the law of X via the characteristic
function φX of Xt (see e.g. p.37 in [35]):

φX(λ) = exp

(

t

(

iλaX − σ2
Xλ

2

2
+

∫

R

(eiλx − 1− iλx1{|x|≤1}) νX(dx)

))

where the Lévy measure νX satisfies
∫

R

min(x2, 1) νX(dx) <∞.

As well-known, the process X can then be written in the form:

Xt = aXt+ σXWt +

∫ t

0

∫

|x|≤1

x(µX(ds, dx)− νX(dx)ds)

+

∫ t

0

∫

|x|>1

xµX(ds, dx),

(2)

where µX is the measure of jumps of X and W is standard Brownian
Motion.

We recall that a semimartingale R = (Rt)t≥0 can be also defined by its
semimartingale decomposition, namely

Rt = Bt +Rc
t +

∫ t

0

∫

|x|≤1

x(µR(ds, dx)− νR(ds, dx))

+

∫ t

0

∫

|x|>1

xµR(ds, dx),

(3)

where B = (Bt)t≥0 is a drift part, Rc = (Rc
t)t≥0 is the continuous

martingale part of R, µR is the measure of jumps of R and νR is its
compensator (see e.g. Chapter 2 of [14] for more information about
these notions).

It is possible to check that in this case [X,R]t = 0, for all t ≥ 0, and
that the equation (1) has a unique strong solution (see e.g. Theorem
11.3 in [27]): for t > 0

(4) Yt = E(R)t
(

y +

∫ t

0

dXs

E(R)s−

)

where E(R) is Doléans-Dade’s exponential,

E(R)t = exp

(

Rt −
1

2
〈Rc〉t

)

∏

0<s≤t

(1 + ∆Rs)e
−∆Rs
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(for more details about Doléans-Dade’s exponential see e.g. Ch.1, §4f,
p. 58 in [14]). Then the time of ruin is simply

(5) τ(y) = inf

{

t ≥ 0

∣

∣

∣

∣

∫ t

0

dXs

E(R)s−
< −y

}

because E(R)t > 0, for all t ≥ 0, and this last fact follows from the
assumption that ∆Rt > −1, for all t ≥ 0.

In this paper, we show that the behaviour of τ(y) for finite horizon
T > 0 depends strongly on the behaviour of the exponential functionals
at T , i.e. on the behaviour of

IT =

∫ T

0

e−R̂sds and JT (α) =

∫ T

0

e−αR̂sds

where α > 0 and R̂t = ln E(R)t, for all t ≥ 0, and for infinite horizon
on the behaviour of

I∞ =

∫ ∞

0

e−R̂sds and J∞(α) =

∫ ∞

0

e−αR̂sds.

For convenience we denote JT = JT (2) and J∞ = J∞(2). More pre-
cisely, defining

βT = sup
{

β ≥ 0 : E(J
β/2
T ) <∞,E(JT (β)) <∞

}

,

we prove the following theorem.

Theorem 1. Let T > 0. Assume that βT > 0 and that, for some
0 < α < βT , we have

(6)

∫

|x|>1

|x|ανX(dx) <∞.

Then, for all y > 0,

(7) P(τ(y) ≤ T ) ≤ C1E(I
α
T ) + C2E(J

α/2
T ) + C3E(JT (α))

yα
,

where the expectations on the right hand side are finite and C1 ≥ 0,
C2 ≥ 0, and C3 ≥ 0 are constants that depend only on α in an explicit
way. Moreover, if (6) holds for all 0 < α < βT , then

(8) lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
≤ −βT .

Remark 1. Theorem 1 is, up to our knowledge, the first result on
the upper bound, when R is not deterministic, for the ruin probability
before a finite time even in the case when R is a Lévy process. This
theorem links the ruin probability with the tails of the Lévy measure



6 ON THE RUIN PROBLEM

of X and the exponential functionals of the process R which are well-
studied objects (see Proposition 2 and the examples there for the values
of βT ). When βT = +∞, Theorem 1 shows that under the mentioned
conditions the ruin probability decreases faster than any power function
when y → +∞. When βT < +∞ , Theorem 1 implies that the ruin
probability decreases at least as a power function as y → +∞.

In Theorem 2, under some simple conditions on the Lévy triplet of X,
we give a lower bound for the ruin probability.

Theorem 2. Let T > 0. Assume that for γT ≥ 1 we have E(IγTT ) = +∞.
Additionally, assume that

(9)

∫

|x|>1

|x|νX(dx) < +∞

and that

(10) aX +

∫

|x|>1

xνX(dx) < 0 or σX > 0.

Then, for all δ > 0, there exists a positive numerical sequence (yn)n∈N
increasing to +∞ such that, for all C > 0, there exists n0 ∈ N such
that for all n ≥ n0,

P(τ(yn) ≤ T ) ≥ C

yγTn ln(yn)1+δ
.

Moreover,

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
≥ −γT .

We remark that under the conditions of Theorems 1 and 2 with γT ≥ βT
we obtain immediately, under rather general conditions, the logarithmic
asymptotic for the ruin probability:

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
= −βT .

From Theorems 1 and 2, we can also obtain similar results for the
ultimate ruin probability. Define

β∞ = sup
{

β ≥ 0 : E(Iβ∞) <∞,E(Jβ/2
∞ ) <∞,E(J∞(β)) <∞

}

.

Then, since (It)t≥0, (Jt)t≥0 and (Jt(α))t≥0 are increasing, we obtain,
letting T → ∞ and using the monotone convergence theorem with the
upper bound of Theorem 1, the following corollary.
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Corollary 1. Assume that β∞ > 0 and that the condition (6) holds
for some 0 < α < β∞, then

P(τ(y) <∞) ≤ C1E(I
α
∞) + C2E(J

α/2
∞ ) + C3E(J∞(α))

yα
,

where C1 ≥ 0, C2 ≥ 0, and C3 ≥ 0 are constants that depend only on
α in an explicit way. Moreover, if (6) holds for all 0 < α < β∞, then

lim sup
y→∞

ln (P(τ(y) <∞))

ln(y)
≤ −β∞.

Remark 2. In the case when R̂ is Lévy process and its Laplace trans-
form has a strictly positive root β0 (cf. Proposition 2 and the examples
there), β∞ = β0. In particular, when

R̂t = aR̂t+ σR̂Wt

with σ̂R > 0, we get that β∞ = β0 = 2aR/σ
2
R − 1 and the results of

Corollary 1 coincide with the conclusions of [12] and [15].

Concerning the lower bound, we get the following.

Corollary 2. Assume that E(I∞) < +∞ and E(J∞) < +∞ and that

there exists γ∞ > 1 such that E(Iγ∞∞ ) = +∞ and E(J
γ∞/2
∞ ) = +∞.

Assume that X verifies (9) and (10).Then,

lim sup
y→∞

ln (P(τ(y) <∞))

ln(y)
≥ −γ∞.

Again, under the assumptions of the Corollaries 1 and 2 with γ∞ ≥
β∞ we can obtain the logarithmic asymptotic for the ultimate ruin
probability.

To complete our study of the ruin problem in this setting, we give
sufficient conditions for ruin with probability one when X has positive
jumps bounded by a > 0 and verifies one of the following conditions:

(11) aX < 0 or σX > 0 or νX([−a, a]) > 0.

Theorem 3. Assume that X verifies the conditions above. In addition
assume that (P − a.s.), I∞ = +∞, J∞ = +∞ and that there exists a
limit

lim
t→∞

It√
Jt

= L

with 0 < L <∞. Then, for all y > 0,

P(τ(y) <∞) = 1.
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In the case of Lévy processes we express the conditions on the expo-
nential functionals in terms of their characteristics to get the following
result which is similar to the known results in e.g. [16] and [28].

Corollary 3. Assume that X verifies the conditions of Theorem 3.
Suppose that R is a Lévy process with characteristic triplet (aR, σ

2
R, νR)

satisfying

(12)

∫ ∞

−1

| ln(1 + x)|1{| ln(1+x)|>1}νR(dx) <∞

and

aR − σ2
R

2
+

∫ ∞

−1

(ln(1 + x)− x1{| ln(1+x)|≤1})νR(dx) < 0.

Then, for all y > 0,
P(τ(y) <∞) = 1.

The rest of the paper is structured as follows. In Section 2, we point to
the known results about exponential functionals of semimartingales, we
give a simple way to obtain βT and β∞ in the case when R is a Lévy
process (see Propositions 1 and 2) and apply it to some examples.
In Section 3, we derive in Proposition 3 some identities en law, then
we recall in Proposition 4 the Novikov-Bichteler-Jacod inequalities for
discontinuous martingales, and finally we prove Theorem 1. In Section
4, we establish some lemmas and then we prove Theorem 2. In Section
5 we prove Theorem 3 and Corollary 3.

2. Exponential functionals of semimartingales

Exponential functionals of semimartingales (especially of Lévy pro-
cesses) are very well-studied. The question of the existence of the
moments of I∞ and the formula in the case when R is a subordina-
tor were considered in [6], [9] and [33]. In the case when R is a Lévy
process, the question of the existence of the density of the law of I∞,
PDE equations for the density and the asymptotics for the law were
investigated in [2], [3], [5], [10], [11], [13], [19], [24], [25] and [32]. In
the more general case of processes with independent increments, condi-
tions for the existence of the moments and reccurent equations for the
moments were studied in [33] and [34]. The existence of the density of
such functionals and the corresponding PDE equations were considered
in [37]. Here, we give two simple results concerning the finiteness of βT
and β∞ when R is a Lévy process and apply them to the computation
of βT and β∞ in some examples.
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First of all, we give some basic facts about the exponential transform
R̂ = (R̂t)t≥0 of R, i.e. the process defined by

E(R)t = exp(R̂t).

Since

E(R̂t) = exp

(

Rt −
1

2
〈Rc〉t +

∑

0<s≤t

(ln(1 + ∆Rs)−∆Rs)

)

we get that

R̂t = Rt −
1

2
〈Rc〉t +

∑

0<s≤t

(ln(1 + ∆Rs)−∆Rs).

When R is a semimartingale, the process R̂ is also a semimartingale
and the jumps of R̂ are given by

∆R̂t = ln(1 + ∆Rt), for all t ≥ 0.

Similarly, when R is a Lévy process, the process R̂ is also a Lévy
process.

Proposition 1. Suppose that R is a Lévy process. For α > 0 and
T > 0 the following conditions are equivalent:

(i) E(JT (α)) <∞,

(ii)
∫

|x|>1
e−αxνR̂(dx) <∞,

(iii)
∫∞
−1

1{| ln(1+x)|>1}(1 + x)−ανR(dx) <∞.

Proof. By Fubini’s theorem, we obtain

E(JT (α)) = E

(
∫ T

0

e−αR̂tdt

)

=

∫ T

0

E(e−αR̂t)dt.

So, E(JT (α)) <∞ is equivalent to E(e−αR̂t) <∞, for all t ≥ 0, which,
by Theorem 25.3, p.159 in [35], is equivalent to

∫

|x|>1

e−αxνR̂(dx) <∞.
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Then, note that
∫

|x|>1

e−αxνR̂(dx) =

∫ 1

0

∫

|x|>1

e−αxνR̂(dx)ds

= E

(

∑

0<s≤1

e−α∆R̂s1{|∆R̂s|>1}

)

= E

(

∑

0<s≤1

(1 + ∆Rs)
−α1{| ln(1+∆Rs)|>1}

)

=

∫ ∞

−1

1{| ln(1+x)|>1}(1 + x)−ανR(dx).

�

Proposition 1 allows us to compute βT in some standard models of
mathematical finance.

Example 1. Suppose that R̂ is given by R̂t = aR̂t+ σR̂Wt +
∑Nt

n=0 Yn,
where aR̂ ∈ R, σR̂ ≥ 0, W = (Wt)t≥0 is a standard Brownian motion
and N = (Nt)t≥0 is a Poisson process with rate γ > 0, and (Yn)n∈N
is a sequence of iid random variables. Suppose, in addition, that all
processes involved are independent. If for (Yn)n∈N we take any sequence
of iid random variables with E(e−αY1) < ∞, for all α > 0, then βT =
+∞. If for (Yn)n∈N we take a sequence of iid random variables with
E(e−αY1) < ∞, when α < α0, for some α0 > 0, and E(e−α0Y1) = +∞,
then βT = α0.

Example 2. Suppose that R̂ is a Lévy process with triplet (aR̂, σ
2
R̂
, νR̂),

where aR̂ ∈ R, σR̂ ≥ 0 and νR̂ is the measure on R given by

νR̂(dx) =
(

C1|x|−(1+α1)e−λ1|x|1{x<0} + C2x
−(1+α2)e−λ2x1{x>0}

)

dx,

where C1, C2 > 0, λ1, λ2 > 0 and 0 < α1, α2 < 2. This specification
includes as special cases the Kou, CGMY and variance-gamma models
(see e.g. Section 4.5 p.119 in [8]). We will show that βT = λ1. Note
that, using Proposition 1 and the change of variables y = −x, we see
that E(JT (α)) <∞, for α > 0, is equivalent to

C1

∫ ∞

1

y−(1+α1)e−(λ1−α)ydy + C2

∫ ∞

1

x−(1+α2)e−(α+λ2)xdx <∞.

But, the first integral converges if α ≤ λ1 and diverges if α > λ1 and
second integral always converges. Now, if α ≥ 2, it is easy to show that

E(JT (α)) < ∞ implies E(J
α/2
T ) < ∞ (see Lemma 1 below). Thus, if

λ1 ≥ 2, we have βT = λ1.
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Proposition 2. Suppose that the Lévy process R̂ admits a Laplace
transform, for all t ≥ 0, i.e. for α > 0

E(exp(−αR̂t)) = exp(tψR̂(α))

and that its Laplace exponent ψR̂ has a strictly positive root β0. Then
the following conditions are equivalent:

(i) E(Iα∞) <∞,

(ii) E(J
α/2
∞ ) <∞,

(iii) E(J∞(α)) <∞,

(iv) α < β0.

Therefore, β∞ = β0.

Proof. Note that, for any α > 0 and k > 0,

exp(tψR̂(α)) = E(exp(−αR̂t)) = E
(

exp
(

−α
k
kR̂t

))

= exp
(

tψkR̂

(α

k

))

.

Therefore, ψR̂(α) = ψkR̂

(

α
k

)

, for all α > 0 and k > 0. Then, Lemma 3
in [32] yields the desired result. �

Remark 3. Note that the root of the Laplace exponent was already
identified as the relevant quantity for the tails of P(τ(y) <∞) in [29].

Using Proposition 2 we can compute β∞ in two important examples.

Example 3. Suppose that Rt = aRt + σRWt, for all t ≥ 0, where
aR ∈ R, σR > 0 and W = (Wt)t≥0 is a standard Brownian motion,

then R̂t =
(

aR − σ2
R

2

)

t+σRWt, for all t ≥ 0. Thus, we obtain ψR̂(α) =

−
(

aR − 1
2
σ2
R

)

α +
σ2
R

2
α2 and, by Proposition 2, β∞ = 2aR

σ2
R

− 1. We

remark that this coincides with the results in e.g. [12] and [16].

Example 4. Suppose that R̂t = aR̂t + σR̂Wt +
∑Nt

n=0 Yn, where aR̂ ∈
R, σR̂ ≥ 0 and W = (Wt)t≥0 is a standard Brownian motion and
N = (Nt)t≥0 is a Poisson process with rate γ > 0, and (Yn)n∈N is a
sequence of iid random variables with E(e−αY1) < ∞, for all α > 0.
Suppose, in addition, that all processes involved are independent. It is
easy to see that, for all α > 0,

ψR̂(α) = −aR̂α +
σ2
R̂

2
α2 + γ

(

E(e−αY1)− 1
)

.
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Now, it is possible to show (see e.g. [36]) that the equation ψR̂(α) = 0

has an unique non-zero solution if, and only if, R̂ is not a subordinator
and ψ′(0+) < 0 which, under some additional conditions to invert the
differentiation and expectation operators, is equivalent to aR̂ > γE(Y1).
In that case, β∞ is the unique non-zero real solution of this equation.

3. Upper bound for the ruin probability

In this section, we prove Theorem 1. We start with some preliminary
results: Lemma 1 and Propositions 3 and 4.

Lemma 1. For all T > 0, we have the following.

(a) If 0 < α < 2, then E(J
α/2
T ) < ∞ implies E(IαT ) < ∞ and

E(JT (α)) <∞.

(b) If α ≥ 2, E(JT (α)) <∞ implies E(IαT ) <∞ and E(J
α/2
T ) <∞.

Proof. First note that by the Cauchy-Schwarz inequality we obtain, for
all T > 0,

IT =

∫ T

0

E(R)−1
s ds ≤

√
T

(
∫ T

0

E(R)−2
s ds

)1/2

=
√
T
√

JT .

So, E(IαT ) ≤ T α/2E(J
α/2
T ), for all α > 0.

Now, if 0 < α < 2, we have 2
α
> 1 and by Hölder’s inequality

JT (α) =

∫ T

0

E(R)−α
s ds ≤ T (2−α)/2

(
∫ T

0

E(R)−2
s ds

)α/2

= T (2−α)/2J
α/2
T .

These inequalities yield (a).

Now, if α ≥ 2, we have either α = 2 which yields the desired result or
α > 2. In that case, we have α

2
> 1 and, by Hölder’s inequality, we

obtain

JT =

∫ T

0

E(R)−2
s ds ≤ T (α−2)/α

(
∫ T

0

E(R)−α
s ds

)2/α

= T (α−2)/αJT (α)
2/α.

So, E(J
α/2
T ) ≤ T (α−2)/2E(JT (α)), which yields (b). �
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Denote by Md = (Md
t )t≥0 the local martingale defined as:

Md
t =

∫ t

0

∫

|x|≤1

x

E(R)s−
(µX(ds, dx)− νX(dx)ds)

and by U = (Ut)t≥0 the process given by

Ut =

∫ t

0

∫

|x|>1

x

E(R)s−
µX(ds, dx).

If
∫

|x|>1
|x|νX(dx) < +∞, we can also define the local martingale Nd =

(Nd
t )t≥0 as

Nd
t =

∫ t

0

∫

R

x

E(R)s−
(µX(ds, dx)− νX(dx)ds).

Proposition 3. We have the following identity in law:
(
∫ t

0

dXs

E(R)s−

)

t≥0

L
=
(

aXIt + σXWJt +Md
t + Ut

)

t≥0
.

Moreover, if
∫

|x|>1
|x|νX(dx) < +∞, then,

(
∫ t

0

dXs

E(R)s−

)

t≥0

L
=
(

δXIt + σXWJt +Nd
t

)

t≥0
,

where δX = aX +
∫

|x|>1
xνX(dx).

Proof. We show first that

L
(

(
∫ t

0

dXs

E(R)s−

)

t≥0

| E(R)s = qs, s ≥ 0

)

= L
(

(
∫ t

0

dXs

qs−

)

t≥0

)

To prove this equality in law we consider the representation of the
stochastic integrals by Riemann sums (see [14], Proposition I.4.44, p.
51). We recall that for any increasing sequence of stopping times τ =
(Tn)n∈N with T0 = 0 such that supn Tn = ∞ and Tn < Tn+1 on the
set {Tn < ∞}, the Riemann approximation of the stochastic integral
∫ t

0
dXs

E(R)s−
will be

τ

(
∫ t

0

dXs

E(R)s−

)

=
∞
∑

n=0

1

E(R)Tn−

(

XTn+1∧t −XTn∧t
)

The sequence τn = (T (n,m))m∈N of adapted subdivisions is called Rie-
mann sequence if supm∈N(T (n,m+1)∧ t−T (n,m)∧ t) → 0 as n→ ∞
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for all t > 0. For our purposes we will take a deterministic Riemann
sequence. Then, Proposition I.4.44, p.51 of [14] says that for all t > 0

(13) τn

(
∫ t

0

dXs

E(R)s−

)

P−→
∫ t

0

dXs

E(R)s−
and

(14) τn

(
∫ t

0

dXs

qs−

)

P−→
∫ t

0

dXs

qs−

where
P−→ denotes the convergence in probability. According to the

Kolmogorov theorem, the law of the process is entirely defined by
its finite-dimensional distributions. Let us take for k ≥ 0 a subdi-
vision t0 = 0 < t1 < t2 · · · < tk and a continuous bounded function
F : R

k → R, to prove by standard arguments that

E

[

F

(

τn

(
∫ t1

0

dXs

E(R)s−

)

, · · · τn
(
∫ tk

0

dXs

E(R)s−

))

| E(R)s = qs, s ≥ 0

]

= E

[

F

(

τn

(
∫ t1

0

dXs

qs−

)

, · · · τn
(
∫ tk

0

dXs

qs−

))]

Taking into account (13) and (14), we pass to the limit as n→ ∞ and
we obtain

E

[

F

(
∫ t1

0

dXs

E(R)s−
, · · ·

∫ tk

0

dXs

E(R)s−

)

| E(R)s = qs, s ≥ 0

]

= E

[

F

(
∫ t1

0

dXs

qs−
, · · ·

∫ tk

0

dXs

qs−

)]

and this proves the claim.

Using the decomposition (2) we get that
∫ t

0

dXs

qs−
= aX

∫ t

0

ds

qs
+ σX

∫ t

0

dWs

qs−

+

∫ t

0

∫

|x|≤1

x

qs−
(µX(ds, dx)− νX(ds, dx))

+

∫ t

0

∫

|x|>1

x

qs−
µX(ds, dx).

We denote the last two terms in the r.h.s. of the equality above by
Md

t (q) and Ut(q) respectively. Recall that since X is Lévy process the
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four processes appearing in the right-hand side of the above equality
are independent. We use the well-known identity in law

(
∫ t

0

dWs

qs−

)

t≥0

L
=

(

W∫ t
0

ds

q2s

)

t≥0

to write
(

aX

∫ t

0

ds

qs
, σX

∫ t

0

dWs

qs−
,Md

t (q), Ut(q)

)

t≥0

L
=

(

aX

∫ t

0

ds

qs
, σXW∫ t

0

ds

q2s

,Md
t (q), Ut(q)

)

t≥0

.

Then, we take the sum of these processes and we integrate w.r.t. the
law of E(R). This yields the first result.

The proof of the second part is the same except we take the following
decomposition of X :

Xt = δXt+ σXWt +

∫ t

0

∫

R

x(µX(ds, dx)− νX(dx)ds).

�

The last ingredient in the proof of Theorem 1 are the Novikov-Bichteler-
Jacod maximal inequalities for compensated integrals with respect to
random measures (see [4], [23] and also [22]) which we will state below
after introducing some notations. Let f : (ω, t, x) 7→ f(ω, t, x) be
a left-continuous and measurable random function on Ω × R+ × R.
Specializing the notations of [23] to our case, we say that f ∈ F2 if, for
almost all ω ∈ Ω,

∫ t

0

∫

R

f 2(ω, s, x)νX(dx)ds <∞.

If f ∈ F2, we can define the compensated integral by

Cf(t) =

∫ t

0

∫

R

f(ω, s, x) (µX(ds, dx)− νX(dx)ds)

for all t ≥ 0. For these compensated integrals, we then have the fol-
lowing inequalities.

Proposition 4 (c.f. Theorem 1 in [23]). Let f be a left-continuous
measurable random function with f ∈ F2. Let Cf = (Cf (t))t≥0 be the
compensated integral of f as defined above.
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(a) For all 0 ≤ α ≤ 2,

E

(

sup
0≤t≤T

|Cf(t)|α
)

≤ K1E

[

(
∫ T

0

∫

R

f 2νX(dx)ds

)α/2
]

.

(b) For all α ≥ 2,

E

(

sup
0≤t≤T

|Cf(t)|α
)

≤ K2E

[

(
∫ T

0

∫

R

|f |2νX(dx)ds
)α/2

]

+K3E

(
∫ T

0

∫

R

|f |ανX(dx)ds
)

where K1 ≥ 0, K2 ≥ 0, and K3 ≥ 0 are constants depending only on α
in an explicit way.

Proof of Theorem 1. Note that

sup
0≤t≤T

−(aXIt + σXWJt +Md
t + Ut)

≤ |aX |IT + sup
0≤t≤T

σX |WJt |+ sup
0≤t≤T

|Md
t |+ sup

0≤t≤T
|Ut|,

and that for positive random variable Z1, Z2, Z3, Z4 we have

{Z1 + Z2 + Z3 + Z4 > y}

⊆
{

Z1 >
y

4

}

∪
{

Z2 >
y

4

}

∪
{

Z3 >
y

4

}

∪
{

Z4 >
y

4

}

.

Therefore, using Proposition 3, we obtain

P(τ(y) ≤ T ) =P

(

sup
0≤t≤T

−(aXIt + σXWJt +Md
t + Ut) > y

)

≤P
(

|aX |IT >
y

4

)

+P

(

sup
0≤t≤T

σX |WJt| >
y

4

)

+P

(

sup
0≤t≤T

|Md
t | >

y

4

)

+P

(

sup
0≤t≤T

|Ut| >
y

4

)

.

For the first term, using Markov’s inequality, we obtain

P
(

|aX |IT >
y

4

)

≤ 4α|aX |α
yα

E(IαT ).
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For the second term, since (Jt)0≤t≤T is increasing we can change the
time in the supremum and condition on (E(R)t)0≤t≤T to obtain

P

(

sup
0≤t≤T

σX |WJt| >
y

4

)

= P

(

sup
0≤t≤JT

σX |Wt| >
y

4

)

= E

[

P

(

sup
0≤t≤JT

σX |Wt| >
y

4

∣

∣

∣

∣

(E(R)t)0≤t≤T

)]

Since W and R are independent, we obtain, using the reflection princi-

ple, the fact that W∫ T
0

q−2
t dt

L
=
(

∫ T

0
q−2
t dt

)1/2

W1 and Markov’s inequal-

ity, that

P

(

sup
0≤t≤JT

σX |Wt| >
y

4

∣

∣

∣

∣

E(R)t = qt, 0 ≤ t ≤ T

)

= 2P

(

(
∫ T

0

q−2
t dt

)1/2

σX |W1| >
y

4

)

≤ 2
4ασα

X

yα

(
∫ T

0

q−2
t dt

)α/2

E(|W1|α).

Then, since E(|W1|α) = 2α/2
√
π
Γ
(

α+1
2

)

, we obtain

P

(

sup
0≤t≤T

σX |WJt | >
y

4

)

≤ 2(5α+2)/2Γ
(

α+1
2

)

σα
X√

πyα
E(J

α/2
T ).

Note that the inequalities for the first two terms work for all α > 0.

Suppose now that 0 < α ≤ 1. We see that E(R)−1
t− (ω)x1{|x|≤1} ∈ F2.

Therefore, using Markov’s inequality and part (a) of Proposition 4, we
obtain

P

(

sup
0≤t≤T

|Md
t | >

y

4

)

≤ 4α

yα
E

(

sup
0≤t≤T

|Md
t |α
)

≤ K1
4α

yα
E

[

(
∫ T

0

∫

R

x2

E(R)2s−
1{|x|≤1}νX(dx)ds

)α/2
]

= K1
4α

yα

(
∫

R

x21{|x|≤1}νX(dx)

)α/2

E(J
α/2
T ).
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For the last term, note that since 0 < α ≤ 1, we have
(

∑N
i=1 xi

)α

≤
∑N

i=1 x
α
i , for xi ≥ 0 and N ∈ N

∗ and, for each t ≥ 0,

|Ut|α ≤
(

∑

0<s≤t

E(R)−1
s−|∆Xs|1{|∆Xs|>1}

)α

≤
∑

0<s≤t

E(R)−α
s− |∆Xs|α1{|∆Xs|>1}

=

∫ t

0

∫

R

E(R)−α
s− |x|α1{|x|>1}µX(ds, dx).

Therefore, using Markov’s inequality and the compensation formula
(see e.g. Theorem II.1.8 p.66-67 in [14]), we obtain

P

(

sup
0≤t≤T

|Ut| >
y

4

)

≤ 4α

yα
E

(

sup
0≤t≤T

|Ut|α
)

≤ 4α

yα
E

(

sup
0≤t≤T

∫ t

0

∫

R

E(R)−α
s− |x|α1{|x|>1}µX(ds, dx)

)

=
4α

yα
E

(
∫ T

0

∫

R

E(R)−α
s− |x|α1{|x|>1}νX(dx)ds

)

=
4α

yα

(
∫

R

|x|α1{|x|>1}νX(dx)

)

E(JT (α)).

This finishes the proof when 0 < α ≤ 1.

Suppose now that 1 < α ≤ 2. The bound for P
(

sup0≤t≤T |Md
t | > y

4

)

can be obtained in the same way as in the previous case. Applying
Hölder’s inequality we obtain

|Ut|α ≤
(
∫ t

0

∫

R

E(R)−1/α
s− E(R)1/α−1

s− |x|1{|x|>1}µX(ds, dx)

)α

≤
(
∫ t

0

∫

R

E(R)−1
s−|x|α1{|x|>1}µX(ds, dx)

)

×
(
∫ t

0

∫

R

E(R)−1
s−1{|x|>1}µX(ds, dx)

)α−1

≤
(
∫ t

0

∫

R

E(R)−1
s−|x|α1{|x|>1}µX(ds, dx)

)α

.
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Then, using Markov’s inequality and the compensation formula, we
obtain

P

(

sup
0≤t≤T

|Ut| >
y

4

)

≤ 4α

yα
E

(

sup
0≤t≤T

|Ut|α
)

=

(
∫

R

|x|α1{|x|>1}νX(dx)

)α

E(IαT ).

This finishes the proof in the case 1 < α ≤ 2.

Finally, suppose that α ≥ 2. The estimation for P
(

sup0≤t≤T |Ut| > y
4

)

still works in this case. Moreover, since E(R)−1
t− (ω)x1{|x|≤1} ∈ F2, we

obtain, applying part (b) of Proposition 4 that

P

(

sup
0≤t≤T

|Md
t | >

y

4

)

≤K2E

[

(
∫ T

0

∫

R

E(R)−2
s−x

21{|x|≤1}νX(dx)ds

)α/2
]

+K3E

(
∫ T

0

∫

R

E(R)−α
s− |x|α1{|x|≤1}νX(dx)ds

)

=K2

(
∫

R

x21{|x|≤1}νX(dx)

)α/2

E(J
α/2
T )

+K3

(
∫

R

|x|α1{|x|≤1}νX(dx)

)

E(JT (α)).

Note that the right-hand side is finite since |x|α1{|x|≤1} ≤ |x|21{|x|≤1}
when α ≥ 2. This finishes the proof of (7). Then we take ln from both
sides of (7), we divide the inequality by ln(y) and we take limy→+∞,
and, then limα→βT

to get (8). �

4. Lower bound for the ruin probability

In this section, we prove Theorem 2 and, therefore, show that the upper
bound obtained in Theorem 1 is asymptotically optimal for a large class
of Lévy processes X . We start with some preliminary results. Denote
x+,p = (max(x, 0))p, for all x ∈ R and p > 0.

Lemma 2. Suppose that a random variable Z ≥ 0 (P− a.s.) satisfies
E(Zp) = +∞, for some p > 0. Then, for all δ > 0, there exists a
positive numerical sequence (yn)n∈N increasing to +∞ such that, for
all C > 0, there exists n0 ∈ N such that for all n ≥ n0,

P(Z ≥ yn) ≥
C

ypn ln(yn)1+δ
.
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Proof. If Z ≥ 0 (P − a.s.) is a random variable and g : R+ → R+

is a function of class C1 with positive derivative, then, using Fubini’s
theorem, we obtain

g(0) +

∫ ∞

0

g′(u)P(Z ≥ u)du = g(0) + E

(
∫ Z

0

g′(u)du

)

= E(g(Z)).

Applying this to the function g(z) = zp with p > 0 we obtain, for all
y > 1,

∫ ∞

y

up−1P(Z ≥ u)du = ∞.

Moreover, for all δ > 0,

sup
u≥y

[up ln(u)1+δP(Z ≥ u)]

∫ ∞

y

du

u ln(u)1+δ
≥
∫ ∞

y

up−1P(Z ≥ u)du.

So, since
∫∞
y

du
u ln(u)1+δ <∞, we obtain, for all y > 1,

sup
u≥y

[up ln(u)1+δP(Z ≥ u)] = ∞.

Therefore, there exists a numerical sequence (yn)n∈N increasing to +∞
such that,

lim
n→∞

ypn ln(yn)
1+δP(Z ≥ yn) = +∞.

�

Lemma 3. Assume that X and Y are independent random variables
with E(Y ) = 0. Assume that p ≥ 1. Then, E[X+,p] ≤ E[(X + Y )+,p].

Proof. For each x ∈ R, we define the function hx : y 7→ (x + y)+,p on
R. Since p ≥ 1, hx is a convex function and we obtain, using Jensen’s
inequality, that for each x ∈ R,

E[(x+ Y )+,p] = E[hx(Y )] ≥ hx(E(Y )) = hx(0) = x+,p.

We obtain the desired result by integrating w.r.t. the law of X . �

Lemma 4. Let T > 0. Assume that a < 0 or σ > 0 and that there
exists γ > 0 such that E(IγT ) = ∞. Then, E[(−aIT − σWJT )

+,γ] = ∞.

Proof. Suppose first that a < 0 and σ = 0. Then,

E[(−aIT − σWJT )
+,γ] = |a|γE(IγT ) = ∞.

Next, suppose that a ≤ 0 and σ > 0. In that case, using the identities

in law W
L
= −W and WJT

L
=

√
JTW1, the Cauchy-Schwarz inequality



ON THE RUIN PROBLEM 21

and the independence between W1 and JT , we obtain

E[(−aIT − σWJT )
+,γ] ≥ E[(σ

√

JTW1)
+,γ] = σγE(W+,γ

1 )E(J
γ/2
T )

≥ σγE(W+,γ
1 )T−γ/2E(IγT ) = ∞.

Finally, if a > 0 and σ > 0, using the fact that W
L
= −W , that

WJT
L
=

√
JTW1 and choosing C > 1, we obtain that

E[(−aIT − σWJT )
+,γ] = E[(−|a|IT + σ

√

JTW1)
+,γ]

≥ E[(−|a|IT + σ
√

JTW1)
+,γ1{σ

√
JTW1≥C|a|IT }]

≥ E[((C − 1)|a|IT )γ1{σ
√
JTW1≥C|a|IT }].

Since IT√
JT

≤
√
T , by Cauchy-Schwarz’s inequality, we obtain using the

independence between W1 and IT

E[(−aIT − σWJT )
+,γ] ≥ E

[

((C − 1)|a|IT )γ1{

W1≥C|a|
√
T

σ

}

]

= P

(

W1 ≥
C|a|

√
T

σ

)

(C − 1)γ |a|γE(IγT ) = ∞.

�

Proof of Theorem 2. The assumptions imply
∫

|x|>1
|x|νX(dx) < +∞

and so, by Proposition 3, we obtain

P

(

sup
0≤t≤T

(

−
∫ t

0

dXs

E(R)s−

)

≥ y

)

≥ P((−δXIT − σXWJT −Nd
T )

+ ≥ y),

where δX and Nd = (Nd
t )t∈[0,T ] are defined as in Proposition 3.

Then, by independence, we get

E[(− δXIT − σXWJT −Nd
T )

+,γT ]

=

∫

D

E[(−δXIT (q)− σXWJT (q) −Nd
T (q))

+,γT ]PE(R)(dq),

where D is the Skorokhod space of càdlàg functions on [0, T ], the mea-

sure PE(R) is the law of (E(R)t)t∈[0,T ], IT (q) =
∫ T

0
ds
qs
, JT (q) =

∫ T

0
ds
q2s

and

Nd
T (q) =

∫ T

0

∫

|x|≤1

x

qs−
(µX(ds, dx)− νX(dx)ds)

+

∫ T

0

∫

|x|>1

x

qs−
(µX(ds, dx)− νX(dx)ds).
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Denote by N ′
T (q) and N

′′
T (q) the two terms on the r.h.s. of the equation

above. Fixing q ∈ D, we now prove that E(N ′
T (q)) = 0 and E(N ′′

T (q)) =
0. First, note that by Theorem 1 p.176 in [21] and Theorem II.1.8 p.66-
67 in [14], we find that

E([N ′
. (q), N

′
. (q)]T ) = E

(
∫ T

0

∫

|x|≤1

x2

q2s−
µX(ds, dx)

)

= E

(
∫ T

0

∫

|x|≤1

x2

q2s
νX(dx)ds

)

=

(
∫ T

0

ds

q2s

)(
∫

|x|≤1

x2νX(dx)

)

.

Then, since q a strictly positive càdlàg function on a compact interval,

the integral
∫ T

0
ds
q2s
< +∞ and since

∫

|x|≤1
x2νX(dx) < +∞ by definition

of the Lévy measure, we have E([N ′
. (q), N

′
. (q)]T ) < +∞. This shows

that N ′(q) is a (square integrable) martingale and so E(N ′
T (q)) = 0.

For the second term, similarly we have
∫ T

0

∫

|x|>1

|x|
qs
νX(dx)ds =

(
∫ T

0

ds

qs

)(
∫

|x|>1

|x|νX(dx)
)

< +∞.

Therefore, by Proposition II.1.28 p.72 in [14] and Theorem II.1.8 p.66-
67 in [14], we have

E(N ′′
T (q)) = E

(
∫ T

0

∫

|x|>1

x

qs−
µX(ds, dx)

)

−E

(
∫ T

0

∫

|x|>1

x

qs−
νX(dx)ds

)

= 0.

Now, since the random variables −δXIT (q)−σXWJT (q) and −Nd
T (q) are

independent and E(Nd
T (q)) = 0, for all q ∈ D, we can apply Lemma 3

to obtain

E[(−δXIT − σXWJT −Nd
T )

+,γT ] ≥ E[(−δXIT − σXWJT )
+,γT ].

Then, using Lemma 2 and Lemma 4 with a = δX , σ = σX , the variable
Z = (−δXIT−σXWJT )

+ and p = γT , we can conclude that for all δ > 0,
there exists a strictly positive sequence (yn)n∈N increasing to +∞ such
that, for all C > 0, there exists n0 ∈ N such that, for all n ≥ n0,

P(τ(yn) ≤ T ) ≥ C

yγTn ln(yn)1+δ
.
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The above implies that

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
≥ −γT + lim

n→∞

ln(C)− ln(ln(yn)
1+δ)

ln(yn)
= −γT

and it finishes the proof. �

Proof of Corollary 2. First of all we show that the process Nd appear-
ing in the proof of Theorem 2 is uniformly integrable. We take first

N ′
t =

∫ t

0

∫

|x|<1

x

E(R)s−
(µX(ds, dx)− νX(ds, dx))

Since

sup
t≥0

E[(N ′
t)

2] = E

(
∫ t

0

∫

|x|<1

x2

E2(R)s−
νX(ds, dx)

)

= E(J∞)

∫

R

x21{|x|<1}νX(dx) < +∞,

the process N ′ is uniformly integrable. Now, let

N ′′
t =

∫ t

0

∫

|x|>1

x

E(R)s−
µX(ds, dx)−

∫ t

0

∫

|x|>1

x

E(R)s−
νX(ds, dx)

By compensating theorem

E

(
∫ +∞

0

∫

|x|>1

|x|
E(R)s−

µX(ds, dx)

)

= E

(
∫ +∞

0

∫

|x|>1

|x|
E(R)s−

νX(ds, dx)

)

= E(I∞)

∫

|x|>1

|x| νX(dx) < +∞

and this shows that N ′′ has a finite (P-a.s.) limit as t→ +∞. Hence,
Nd is uniformly integrable and E(Nd

∞) = 0. From Proposition 3 we get
that

∫ +∞

0

dXs

E(R)s−
L
= δXI∞ + σXWJ∞ +Nd

∞

Imitating the proof of Lemma 4 we conclude that

E[(−δXI∞ − σXWJ∞)+,γ∞ ] = +∞.

Finally, from Lemma 2 with Z = (−δXI∞ − σXWJ∞)+ and p = γ∞ we
obtain the claimed result. �
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5. Conditions for Ruin with Probability 1

In this section we prove Theorem 3 and Corollary 3.

Proof of Theorem 3. We have, for all y > 0,

P(τ(y) <∞) = P

(

sup
t≥0

(

−
∫ t

0

dXs

E(R)s−

)

≥ y

)

≥ P

(

lim sup
t→∞

(

−
∫ t

0

dXs

E(R)s−

)

≥ y

)

≥ P

(

lim sup
t→∞

(

−
∫ t

0

dXs

E(R)s−

)

= +∞
)

.

But, the independence of X and R implies

P

(

lim sup
t→∞

(

−
∫ t

0

dXs

E(R)s−

)

= +∞
)

=

∫

D

P

(

lim sup
t→∞

(

−
∫ t

0

dXs

qs−

)

= +∞
)

PE(R)(dq)

where D is Skorokhod space of continuous from the right functions with
left-hand limit on R+. We remark that the event

{

lim sup
t→∞

(

−
∫ t

0

dXs

qs−

)

= +∞
}

is a tail event for an additive process

(

−
∫ t

0

dXs

qs−

)

t≥0

and this event

has either probability 0 or 1. We will now show that

P

(

lim sup
t→∞

(

−
∫ t

0

dXs

qs−

)

= +∞
)

= 1

on the set

Q =

{

q ∈ D : I∞(q) = +∞, J∞(q) = +∞, lim
t→∞

It(q)
√

Jt(q)
= L(q), 0 < L(q) <∞

}

,

of probability 1. Here we denote as previously It(q) =
∫ t

0
q−1
s ds and

Jt(q) =
∫ t

0
q−2
s ds.
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Imitating the proof of Proposition 4 for the truncation function 1{|x|≤a},
we have

P

(

lim sup
t→∞

(

−
∫ t

0

dXs

qs−

)

= +∞
)

= P

(

lim sup
t→∞

(

−aXIt(q)− σXWJt(q) −Ma,d
t (q)− Ua

t (q)
)

= +∞
)

≥ P

(

lim sup
t→∞

(

−aXIt(q)− σXWJt(q) −Ma,d
t (q)

)

= +∞
)

,

where

Ma,d
t (q) =

∫ t

0

∫

R

x1{|x|≤a}(µX(ds, dx)− νX(dx)ds)

and

Ua
t (q) =

∫ t

0

∫

R

x1{|x|>a}µX(ds, dx).

The last inequality follows from the assumption νX(]a,+∞[) = 0 which
implies that Ua

t ≤ 0 for all t ≥ 0.

Next, Ht(q) = −σXWJt(q) −Ma,d
t (q) is a locally square-integrable mar-

tingale and using the independence of the terms in the Lévy-Itô de-
composition of X , we can obtain its variance :

E(Ht(q)
2) =

(

σ2
X +

∫

R

x21{|x|≤a}νX(dx)

)

Jt(q) = σ2
ξJt(q)

with σ2
ξ = σ2

X +
∫

R
x21{|x|≤a}νX(dx).

Now if σξ = 0, then by assumption we would have aX < 0 andMa,d
t = 0,

for all t ≥ 0, and thus

P

(

lim sup
t→∞

(

−
∫ t

0

dXs

qs−

)

= +∞
)

≥ P

(

lim sup
t→∞

(−aXIt(q)) = +∞
)

= 1

since I∞(q) = +∞ on the set Q.

If σξ > 0, we take an increasing sequence (tn)n∈N starting from zero
and tending to +∞ and, then, for all n ∈ N

∗ and 0 ≤ k ≤ n we set

H̃n,k =
Htk(q)−Htk−1

(q)

σξ
√

Jtn(q)
.

Then, we see that (H̃n,k)n,k∈N∗ is a martingale difference sequence (for
the obvious filtration) which satisfies the conditions of the central limit
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theorem for such sequences (see e.g. Theorem 8 p.442 in [21]). Thus,

Htn(q)

σξ
√

Jtn(q)
=

n
∑

k=1

H̃n,k
d→ ξ

as n→ ∞, where ξ ∼ N (0, 1). Thus,

− 1
√

Jtn(q)

∫ tn

0

dXs

qs−

d→ −aXL(q) + σξξ

as n → ∞. Then, by the Skorokhod representation theorem, we can
find a probability space (Ω̃, F̃ , P̃), a random variable ξ̃ and a process
X̃ which are equal in law to the random variable ξ and the process X
respectively such that

lim
n→∞

− 1
√

Jtn(q)

∫ tn

0

dX̃s

qs−
= −aXL(q) + σξ ξ̃ (P̃− a.s.).

Thus, on the set {−aXL(q) + σξ ξ̃ > 0} of positive probability, we have

lim sup
t→∞

(

−
∫ t

0

dX̃s

qs−

)

≥ lim
n→∞

(

−
∫ tn

0

dX̃s

qs−

)

= +∞,

and so also

P

(

lim sup
t→∞

(

−
∫ t

0

dXs

qs−

)

= +∞
)

> 0.

So, this last probability is equal to one for all q ∈ Q. But, since Q is
itself an event of probability 1, we finally obtain

P

(

lim sup
t→∞

(

−
∫ t

0

dXs

E(R)s−

)

= +∞
)

= 1.

�

Finally, we prove the result on the ruin with probability one for the
case of Lévy processes.

Proof of Corollary 3. Note that the assumption (12) implies that the

expectation E(|R̂1|) < ∞ and, by the law of large numbers for Lévy
processes, we get that

lim
t→∞

R̂t

t
= E(R̂1) = aR − σ2

R

2
+

∫ ∞

−1

(ln(1 + x)− x1{| ln(1+x)|≤1})νR(dx).



ON THE RUIN PROBLEM 27

But, the fact that limt→∞
R̂t

t
< 0 is equivalent to I∞ = J∞ = +∞

(P-a.s.) by Theorem 1 in [6]. So it is enough to check that the limit

lim
t→∞

It√
Jt

= L

exists with 0 < L <∞ (P-a.s.).

We obtain, using de l’Hospital’s rule and the time-reversion property
of R̂ that

lim
t→∞

It√
Jt

= lim
t→∞

2eR̂t
√

Jt
L
= 2

(
∫ ∞

0

e2R̂sds

)1/2

The last integral is finite (P-a.s.) again by Theorem 1 in [6]. �
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bilités XLVI, Lect. Notes Math., Springer, Berlin.

[23] A.A. Novikov (1975)On discontinuous martingales, Theory Probab. Appl.,
20(1), 11-26.

[24] J. C. Pardo, V. Rivero, K. Van Schaik (2013)On the density of exponential
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