ON THE RUIN PROBLEM WITH INVESTMENT WHEN THE RISKY ASSET IS A SEMIMARTINGALE

Abstract : In this paper, we study the ruin problem with investment in a general framework where the business part X is a Lévy process and the return on investment R is a semimartingale. We obtain upper bounds on the finite and infinite time ruin probabilities that decrease as a power function when the initial capital increases. When R is a Lévy process, we retrieve the well-known results. Then, we show that these bounds are asymptotically optimal in the finite time case, under some simple conditions on the characteristics of X. Finally, we obtain a condition for ruin with probability one when X is a Brownian motion with negative drift and express it explicitly using the characteristics of R.
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01825317
Contributeur : Lioudmila Vostrikova <>
Soumis le : jeudi 28 juin 2018 - 11:46:54
Dernière modification le : mardi 3 juillet 2018 - 12:16:53
Document(s) archivé(s) le : jeudi 27 septembre 2018 - 08:03:02

Fichiers

Ruin_probability_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01825317, version 1
  • ARXIV : 1806.11290

Collections

Citation

Lioudmila Vostrikova, Jérôme Spielmann. ON THE RUIN PROBLEM WITH INVESTMENT WHEN THE RISKY ASSET IS A SEMIMARTINGALE. 2018. 〈hal-01825317〉

Partager

Métriques

Consultations de la notice

62

Téléchargements de fichiers

25