R. Vaughan and J. B. Andersen, Channels, propagation and antennas for mobile communications. Institution of Electrical Engineers, 2003.

T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-palma, A survey of various propagation models for mobile communication, IEEE, vol.45, issue.3, pp.51-82, 2003.

G. Steinböck, M. Gan, P. Meissner, E. Leitinger, K. Witrisal et al., Hybrid model for reverberant indoor radio channels using rays and graphs, IEEE Trans. Antennas Propag, vol.64, issue.9, pp.4036-4048, 2016.

A. A. Saleh and R. Valenzuela, A statistical model for indoor multipath propagation, IEEE Journal on Selected Areas in Communications, vol.5, issue.2, pp.128-137, 1987.

D. Cassioli, M. Z. Win, and A. F. Molisch, The ultra-wide bandwidth indoor channel: from statistical model to simulations, IEEE Journal on Selected Areas in Communications, vol.20, issue.6, pp.1247-1257, 2002.

K. Yu, M. Bengtsson, B. Ottersten, D. Mcnamara, P. Karlsson et al., Modeling of wide-band MIMO radio channels based on NLoS indoor measurements, IEEE Transactions on Vehicular Technology, vol.53, issue.3, pp.655-665, 2004.

V. Erceg, D. G. Michelson, S. S. Ghassemzadeh, L. J. Greenstein, A. J. Rustako et al., A model for the multipath delay profile of fixed wireless channels, IEEE Journal on Selected Areas in Communications, vol.17, issue.3, pp.399-410, 1999.

P. Yegani and C. D. Mcgillem, A statistical model for the factory radio channel, IEEE Transactions on Communications, vol.39, issue.10, pp.1445-1454, 1991.

C. L. Holloway, M. G. Cotton, and P. Mckenna, A model for predicting the power delay profile characteristics inside a room, IEEE Trans. Veh. Technol, vol.48, issue.4, pp.1110-1120, 1999.

G. Steinböck, T. Pedersen, B. H. Fleury, W. Wang, and R. Raulefs, Experimental validation of the reverberation effect in room electromagnetics, IEEE Trans. Antennas Propag, vol.63, issue.5, pp.2041-2053, 2015.

K. Witrisal and M. Pausini, Statistical analysis of UWB channel correlation functions, IEEE Transactions on Vehicular Technology, vol.57, issue.3, pp.1359-1373, 2008.

S. Chiu, J. Chuang, and D. G. Michelson, Characterization of UWB channel impulse responses within the passenger cabin of a boeing 737200 aircraft, IEEE Trans. Antennas Propag, vol.58, issue.3, pp.935-945, 2010.

J. B. Andersen, K. L. Chee, M. Jacob, G. F. Pedersen, and T. Kürner, Reverberation and absorption in an aircraft cabin with the impact of passengers, IEEE Transactions on Antennas and Propagation, vol.60, issue.5, pp.2472-2480, 2012.

O. Delangre, S. V. Roy, P. D. Doncker, M. Lienard, and P. Degauque, Modeling in-vehicle wideband wireless channels using reverberation chamber theory, 2007 IEEE 66th Vehicular Technology Conference, pp.2149-2153, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00284440

S. Herbert, T. H. Loh, and I. Wassell, An impulse response model and Q factor estimation for vehicle cavities, IEEE Transactions on Vehicular Technology, vol.62, issue.9, pp.4240-4250, 2013.

E. Genender, C. Holloway, K. Remley, J. Ladbury, G. Koepke et al., Simulating the multipath channel with a reverberation chamber: Application to bit error rate measurements, IEEE Transactions on, vol.52, issue.4, pp.766-777, 2010.

C. Holloway, D. Hill, J. Ladbury, P. Wilson, G. Koepke et al., On the use of reverberation chambers to simulate a rician radio environment for the testing of wireless devices, IEEE Transactions on, vol.54, issue.11, pp.3167-3177, 2006.

S. Herbert, T. Loh, I. Wassell, and J. Rigelsford, On the analogy between vehicle and vehicle-like cavities with reverberation chambers, IEEE Transactions on Antennas and Propagation, vol.62, issue.12, pp.6236-6245, 2014.

J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A. Molisch, Statistical analysis of the UWB channel in an industrial environment, Vehicular Technology Conference, vol.1, pp.81-85, 2004.

P. V. Nikitin, D. D. Stancil, O. K. Tonguz, A. E. Xhafa, A. G. Cepni et al., Impulse response of the HVAC duct as a communication channel, IEEE Transactions on Communications, vol.51, issue.10, pp.1736-1742, 2003.

G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine, and D. Lavry, A statistical model of urban multipath propagation, IEEE Trans. Veh. Technol, vol.21, issue.1, pp.1-9, 1972.

J. A. Dabin, A. M. Haimovich, and H. Grebel, A statistical ultrawideband indoor channel model and the effects of antenna directivity on path loss and multipath propagation, IEEE Journal on Selected Areas in Communications, vol.24, issue.4, pp.752-758, 2006.

A. F. Molisch, K. Balakrishnan, C. Chong, S. Emami, A. Fort et al., IEEE 802.15. 4a channel model-final report, IEEE P802, vol.15, issue.04, p.662, 2004.

Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel, IEEE Journal on Selected Areas in Communications, vol.18, issue.3, pp.347-360, 2000.

S. Y. Tan and H. S. Tan, Modelling and measurements of channel impulse response for an indoor wireless communication system, IEE Proceedings-Microwaves, Antennas and Propagation, vol.142, p.405, 1995.

H. Kuttruff, Room acoustics, 2000.

H. Stöckmann, Quantum chaos: an introduction. Cambridge university press, 2006.

B. Liu, D. Chang, and M. Ma, Eigenmodes and the Composite Quality Factor of a Reverberation Chamber, National Bureau of Standards, 1983.

A. Cozza, The role of losses in the definition of the overmoded condition for reverberation chambers and their statistics, IEEE Trans. Electromagn. Compat, vol.53, issue.2, pp.296-307, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00530840

F. Monsef and A. Cozza, Average number of significant modes excited in a mode-stirred reverberation chamber, IEEE Trans. Electromagn. Compat, vol.56, issue.2, pp.259-265, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00933765

P. Morse and H. Feshbach, Methods of Theoretical Physics, 1981.

J. Van-bladel, Electromagnetic fields, 2007.

A. Cozza, Source correlation in randomly excited complex media, IEEE, vol.11, pp.105-108, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00656316

T. Lehman, A statistical theory of electromagnetic fields in complex cavities, Interaction Notes, vol.494, 1993.

D. Hill, Electromagnetic Theory of Reverberation Chambers, 1998.

L. R. Arnaut and G. Gradoni, Probability distribution of the quality factor of a mode-stirred reverberation chamber, IEEE Trans. Electromagn. Compat, vol.55, issue.1, pp.35-44, 2013.

L. Arnaut, P. Besnier, J. Sol, and M. Andries, On the uncertainty quantification of the quality factor of reverberation chambers, IEEE Trans. Electromagn. Compat, vol.99, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01909391

H. Nikookar and H. Hashemi, Phase modeling of indoor radio propagation channels, IEEE Transactions on Vehicular Technology, vol.49, issue.2, pp.594-606, 2000.

J. Chakarothai, J. Wang, O. Fujiwara, K. Wake, and S. Watanabe, Dosimetry of a reverberation chamber for whole-body exposure of small animals, IEEE Transactions on Microwave Theory and Techniques, vol.61, issue.9, pp.3435-3445, 2013.

L. De-haan and A. Ferreira, Extreme value theory: an introduction, 2007.

P. Kildal and K. Rosengren, Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: simulations and measurements in a reverberation chamber, IEEE Communications Magazine, vol.42, issue.12, pp.104-112, 2004.

A. Cozza, F. Masciovecchio, C. Dorgan, M. Serhir, F. Monsef et al., A dielectric low-perturbation field scanner for multipath environments, IEEE Transactions on Antennas and Propagation, vol.65, issue.4, pp.1978-1987, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01445476

D. Hill and J. Ladbury, Spatial-correlation functions of fields and energy density in a reverberation chamber, IEEE Trans. Electromagn. Compat, vol.44, issue.1, pp.95-101, 2002.

R. G. Lyons, Understanding digital signal processing, 2011.