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Abstract

We present a new approach to model coastal waves in the shoaling and surf zones. The
model can be described as a depth-averaged large-eddy simulation model with a cutoff in the
inertial subrange. The large-scale turbulence is explicitly resolved through an extra variable
called enstrophy while the small-scale turbulence is modelled with a turbulent viscosity
hypothesis. The equations are derived by averaging the mass, momentum and kinetic energy
equations assuming a shallow water flow. The model is fully nonlinear and has the same
dispersive properties as the Green-Naghdi equations. It is validated by numerical tests
and by comparison with experimental results of the literature on the propagation of a one-
dimensional solitary wave over a mild sloping beach. The wave breaking is characterized by a
sudden increase of the enstrophy which allows us to propose a breaking criterion based on the
new concept of virtual enstrophy. The model features three empirical parameters. The first
one governs the turbulent dissipation and was found to be a constant. The eddy viscosity is
determined by a turbulent Reynolds number depending only on the bottom slope. The third
parameter defines the breaking criterion and depends only on the wave initial nonlinearity.
These dependences give a predictive character to the model which is suitable for further
developments.

1 Introduction

Mathematical modelling of coastal wave propagation is a quite challenging issue since it is
difficult to describe in the same model the dispersive effects in the shoaling zone and the energy
dissipation of breakers in the surf zone. As it is impractical to solve the full Navier-Stokes system
over any significant domain, approximate models must be used. Many asymptotic models were
proposed in the last decades for the coastal wave propagation.

The first attempt to describe a surf zone wave propagation was made in the context of the
nonlinear shallow-water equations, also called the Saint-Venant equations (Barré de Saint-Venant
1871). Meyter & Taylor (1972) reviewed analytic solutions of the shallow-water equations over
a beach. Stocker (1957) presented perhaps the first numerical solution of the shallow-water
equations for a sloping beach using the method of characteristics. His method produces quite
accurate results for the simple cases. Freeman & Le Méhauté (1964) and later Iwasaki & Togashi
(1970) improved this method. However when the characteristic lines cross at the breaking point
the wave evolution has to be treated in a different manner. Further for non-uniformly sloping
beaches, this method is cumbersome.

In order to be able to calculate the wave breaking, Hibbert & Peregrine (1979) proposed a
groundbreaking method based on the numerical solution of the nonlinear shallow-water equations
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in their conservative form. This method gives physically realistic results. However it is not very
robust in the run-up phase (Synolakis 1989). Furthermore, it is important to take into account
a large energy dissipation following the wave breaking. Consequently subsequent version of this
algorithm (Packwood & Peregrine 1981, Kobayashi et al. 1987) added artificial dissipative terms
such as viscosity and friction for an accurate wave amplitude description.

Indeed the non-linear shallow-water equations give a rather good description of breaking
waves representing them as shocks, and the run-up simulations generally give accurate results.
However due to the absence of dispersive effects the wave profile is not described precisely
particularly in the shoaling zone. Moreover this model predicts that all waves break which is
obviously incorrect. Thereby, a more relevant modelling of wave shoaling before breaking is
based on various Boussinesq-type models (Brocchini & Dodd 2008). Non-breaking numerical
solutions for the Boussinesq equations are reviewed by Liu et al. (1991). Since the 1990’s
considerable efforts were made to improve the dispersive properties of the Boussinesq model
(Madsen & Sørensen 1992, Nwogu 1993, Wei et al. 1995).

Most of Boussinesq models are derived in the assumption of a weak nonlinearity (the wave
amplitude is much smaller than the characteristic water depth). The natural idea is to use a
fully nonlinear model, as the one derived by Serre (1953) and Su & Gardner (1969) in the one-
dimensional (1D) case, or the two-dimensional (2D) fully nonlinear model presented in Green &
Naghdi (1976). This model can be derived from the Euler equations as an asymptotic model in
the shallow water regime without any hypothesis on the wave amplitude (see e.g. Lannes 2013).
This fully-nonlinear model has better dispersive properties than the Boussinesq equations, and
the water wave profile is better described. Except for being formulated in terms of the velocity
vector at an arbitrary level, the equations of Wei et al. (1995) mentioned above are basically
equivalent to the 2D Green-Naghdi equations. In fact the Green-Naghdi equations are often
known in the literature as the fully-nonlinear Boussinesq-type model. The dispersive properties
of the Green-Naghdi equations were further improved by Bonneton et al. (2011) and Chazel et
al. (2011).

However the weakly nonlinear or fully nonlinear Boussinesq type equations do not include
dissipation due to wave breaking, and thus become invalid in the surf zone. To extend the
validity of those equations, Heitner & Housner (1970) introduced an artificial viscosity term
into the momentum balance equation. This approach was followed by many researchers. Zelt
(1991) used an eddy viscosity formulation together with a Lagrangian Boussinesq model. The
inclusion of this term in the momentum equation helps to control the energy dissipation, and
it must be calibrated with experiments. Similar techniques were used in Madsen et al. (1997),
Wei et al (1999) and Kennedy et al. (2000). Another idea is to use the so-called roller models
which include dissipation through an extra convective term in the momentum equation (see for
example Schäffer et al. 1993, Svendsen et al. 1996, Karambas & Tozer 2003, Briganti et al.
2004, Musumeci et al. 2005, Dimas & Dimakopoulos 2009, Cienfuegos et al. 2010, Viviano et
al. 2015). The basis of these models is the concept of surface roller due to Svendsen (1984). In
this approach additional terms are included not only in the momentum equation, but also in
the mass balance equation and the thickness of the roller region has to be estimated.

In the so-called switching or hybrid approach the dispersive terms are suppressed in the
breaking regions. Contrary to the nonlinear shallow-water system, the Boussinesq equations
do not admit discontinuities because they are dispersive. The removal of the dispersive terms
reduces the system to the nonlinear shallow water equations. This relatively simple idea was
developed in many studies (for example Tonelli & Petti 2011, Shi et al. 2012, Bonneton et al.
2011, Tissier et al. 2012, Duran & Marche 2015, 2017, Kazolea et al. 2014, Filippini et al. 2016).

Generally speaking, two large groups of methods can be distinguished. The first one includes
additional terms such as viscous terms and the second one uses hybrid methods. In both
approaches some parameters need to be calibrated. Moreover some criteria must be defined
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to initiate or terminate the breaking process. Generally those criteria are based on different
empirical relations. For example the breaking process is activated if the wave local energy
dissipation forms a peak, or if the wave slope reaches a critical value.

Detailed analysis of the different approaches cited above and an estimation of the influence
of the numerical dissipation can be found in Kazolea & Ricchiuto (2018). The authors highlight
that despite the absence of an explanation for the physical meaning of the coefficients in the
eddy viscous terms, this approach shows little sensitivity to the grid, while hybrid methods are
not very robust and lead to numerical instabilities that depend on the mesh size.

The aim of the present study is to derive a dispersive model for breaking wave propagation
which resolves the large-scale turbulence. In most models the turbulence is not resolved but
modelled with a turbulent viscosity hypothesis. In some models, this turbulent viscosity is
calculated with a turbulent kinetic energy for which a transport equation with source terms
is solved (Nwogu 1996, Karambas & Tozer 2003, Zhang et al. 2014). However the validity of
a turbulent viscosity hypothesis is questionable (see the discussion in Pope 2000). It is often
assumed a local balance between production and dissipation, especially in the case of a mixing-
length approach (Nwogu 1996), which is not assured in a breaking wave. Further the anisotropic
character of shallow-water turbulence cannot be well described by such an approach (Nadaoka
& Yagi 1998).

Kim et al. (2009) distinguished between a vertical and a horizontal eddy viscosity, the latter
being estimated with the Smagorinsky model (Smagorinsky 1963) involving the horizontal grid
size. Nadaoka & Yagi (1998) and Hinterberger et al. (2007) used a filtering approach but
resolved only the two-dimensional eddies with a length scale larger than the fluid depth while
the subdepth scales were not resolved and were modelled with a turbulent viscosity hypothesis.
Note that these models were not especially designed for coastal waves but for other shallow-water
flows. Madsen et al. (1988) used a filtering approach with a grid size comparable to the water
depth and also an eddy viscosity hypothesis calculated with the Smagorinsky model. This model
was applied to nearshore tidal currents. As pointed out by Nadaoka & Yagi (1998), whereas
the subgrid turbulence in the original approach of Smagorinsky (1963) is reasonably isotropic
and locally in equilibrium since the cutoff frequency is in the inertial subrange, it is not the
case for the subdepth turbulence. It follows that the validity of a turbulent viscosity hypothesis
and of the Smagorinsky model is again questionable for a cutoff at or near the water depth
length scale. Further an eddy viscosity approach implies that the energy can be transferred only
from the large scales toward the small scales i.e. there is no backscatter. However an energy
transfer from the subdepth turbulence toward the two-dimensional eddies of larger lengthscale is
possible (Nadaoka & Yagi 1998, Hinterberger et al. 2007). To take such a transfer into account,
Hinterberger et al. (2007) introduced a stochastic force in their model.

In this work we use a filtering method with a cutoff frequency in the inertial subrange as in the
classical large-eddy simulation (LES) approach, before averaging the resulting filtered equations
over the depth. It is thus much safer to assume that the residual (or subgrid) turbulence is
isotropic and locally in equilibrium. This method resolves the large-scale subdepth turbulence
and has the advantage to capture the anisotropic character of this turbulence, as well as the
possible energy transfer towards the larger scales. Of course, these effects will appear in the
two-dimensional (2D) model for three-dimensional flows which will be the subject of a work to
come. However the other advantage of this method is that it can be assumed that the energy
transfer rate from the filtered scales towards the residual scales is almost equal to the dissipation
i.e. that there is a close balance between the production of the residual kinetic energy and the
dissipation (Lilly 1967). This result is important for the derivation of the 1D model.

In the derivation of Boussinesq-type models or of the Green-Naghdi model, there is an
assumption on the velocity profile. In many cases it is assumed either that the horizontal
velocity component is uniform or almost uniform over the whole water depth or that the flow
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is irrotational, which leads to a parabolic velocity profile. Other assumptions were formulated.
For example, the roller model of Schäffer et al (1993) supposes that the velocity profile is flat
below the roller region and that the velocity in the roller region is also constant and equal to
the wave celerity which has thus to be estimated. More complex velocity profiles including
rotational effects were also proposed in the literature. Zhang et al. (2014) used an asymptotic
method with a polynomial expansion of the horizontal velocity to include the rotational effects.
In some models, the vorticity equation in the fluid depth was also explicitly included to calculate
the rotational effects on the velocity profile. The variation of the vorticity with the depth was
calculated analytically (Veeramony & Svendsen 2000, Musumeci et al. 2005) or numerically
(Briganti et al. 2004). Most often these velocity profiles are either incorrect for breaking waves
(notably the flat profile or the hypothesis of an irrotational flow) or complex and leading to
rather complicated models. Further a velocity profile implies that the turbulence is not resolved
and included only with a turbulent viscosity hypothesis. If the large-scale turbulence is resolved,
a velocity profile is not practicable.

An alternative approach is to get rid entirely of any velocity profile by adding a new variable
to the equations. The addition of an extra variable implies to add also an equation to the model.
For a 1D model, this new equation is given by the averaged kinetic energy equation. Svendsen
& Madsen (1984) use the energy as the extra variable and solved the energy equation. However
because they divided vertically the flow into a turbulent region and a non-turbulent region both
having a variable thickness, a velocity profile had to be assumed. In this case, this profile was
a third-order polynomial. Moreover the pressure was taken hydrostatic which means that there
was no dispersive effect and that the model was restricted to turbulent bores. A 2D hyperbolic
model of shear flows without any velocity profile assumption was derived in Teshukov (2007)
from the Euler equations also with the assumption of a hydrostatic pressure. When augmented
with dissipation (Richard & Gavrilyuk 2012, 2013) it gives an excellent description of roll waves
and classical hydraulic jumps. The closure of the model was obtained with the hypothesis of
weakly-sheared flows which is not very restrictive in practice since highly turbulent hydraulic
jumps can be correctly described. The addition of a non-hydrostatic correction to the pressure
and thus of dispersive effects was proposed in the conservative case in Castro & Lannes (2014)
and Richard & Gavrilyuk (2015). Gavrilyuk et al. (2016) first included both dissipative and
dispersive effects in the framework of this approach with a two-layer model, the upper turbulent
layer including shearing effects and the irrotational lower layer being described by the Green-
Naghdi model. In the present work this method is extended to include dissipation and dispersion
in a one-layer model.

The paper is organised as follows, in §2 the filtered equations are presented. Then the depth-
average model is derived in §3 and the empirical laws for the eddy viscosity and the turbulent
dissipation are discussed in §4. The last two sections deal with numerical tests. The numerical
implementation is presented §5. In §6 the model is validated by comparison with experimental
results.

2 Filtered conservation equations

We study the propagation of coastal waves from the shoaling zone to the shoreline. The flow can
be highly turbulent, especially in the breaking zone and thereafter in the surf zone. A suitable
model of turbulence is thus needed to capture important physical features of the breaking waves.

The classical approach to turbulence is based on the Reynolds decomposition. The velocity
field is written as the sum of the mean velocity and of the turbulent fluctuation. The mean
kinetic energy of the flow can be decomposed into the kinetic energy of the mean flow and the
turbulent kinetic energy. Turbulent processes usually remove energy from the mean flow and
transfer it to the fluctuating velocity field. This transfer is called production since most of the
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time it refers to a loss of the mean kinetic energy and a production of turbulent kinetic energy.
The turbulent motions range in size from large scales, which are of the order of the char-

acteristic lengthscales of the flow, to small scales. According to the energy cascade hypothesis
(Richardson 1922) and to the Kolmogorov hypothesis (Kolmogorov 1941), the production trans-
fers energy first to the large-scale motions. This energy is then transferred to smaller and smaller
scales until the Kolmogorov scales where the energy is dissipated by viscous processes. The large
scales contain most of the energy and are therefore called the energy-containing range. The dis-
sipating small scales are called the dissipation range. Between these two ranges, at sufficiently
high Reynolds numbers lies the inertial subrange where the lengthscales are high enough so
that the viscous effects are negligible but small enough compared to the lengthscales of the flow
such that there is almost no production. In the inertial subrange, the energy is transferred by
inviscid processes toward the smaller scales. Another feature of turbulent motions according
to Kolmogorov hypothesis is that the large eddies are anisotropic whereas the small eddies are
isotropic.

We use an approach similar to the large-eddy simulation (LES) method. The velocity field
v is filtered to decompose the velocity into a filtered velocity field v and a residual velocity field
vr

v = v + vr. (1)

The difference between the Reynolds decomposition and this filtering operation is that the former
decomposes the velocity field into a non-turbulent (mean) field and a turbulent field whereas in
the latter the filtered velocity field includes the large-scale turbulence and the residual velocity
field includes the small-scale turbulence. Ideally, the filtering operation is a low-pass filter that
allows to resolve turbulent motions of a scale greater than some specified length chosen in the
inertial subrange. It follows that the anisotropic energy-containing range is in the filtered field
and that the isotropic dissipation range is in the residual field. Another difference with the
Reynolds decomposition is that, in general, the filtered residual velocity is not equal to zero i.e.
vr 6= 0, although if the filter is a projector such as the sharp spectral filter, v = v and vr = 0
(for more details on all this approach, see Pope 2000).

The filtering operation is applied to the Navier-Stokes equations of an incompressible fluid
of density ρ and kinematic viscosity ν. The filter is supposed to be homogeneous. The filtered
continuity equation becomes simply

div v = 0. (2)

The filtered momentum equation is

∂v

∂t
+ div (v ⊗ v) = g − 1

ρ
grad p+ ν∆v (3)

where p is the filtered pressure and ⊗ the tensorial product. The residual stress tensor is defined
by

σr = −ρ (v ⊗ v − v ⊗ v) . (4)

The residual kinetic energy is defined from the trace of this tensor as

kr = −tr σr

2ρ
. (5)

The residual stress tensor can be decomposed into an isotropic part and a deviatoric anisotropic
part Ar as

σr = −2

3
ρkrI + Ar. (6)

The tensor I is the identity tensor. The residual stress tensor is then modelled by a turbulent-
viscosity hypothesis. This usual hypothesis implies that there is no backscatter in the model i.e.
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the energy is transferred only from the large scales toward the small scales. Denoting by D the
filtered strain rate tensor defined by

D =
1

2

[
grad v + (grad v)T

]
, (7)

the anisotropic residual stress tensor is written

Ar = 2ρνTD (8)

where νT is a turbulent viscosity. The isotropic part of the residual stress tensor is then absorbed
into a modified pressure which is denoted simply by p to lighten the notations and which is

p = p+
2

3
ρkr. (9)

The filtered momentum equation is finally written

∂v

∂t
+ div (v ⊗ v) = g − 1

ρ
grad p+ div

(
2 νTD

)
+ ν∆v. (10)

The filtered specific kinetic energy is

ek =
1

2
v · v. (11)

It follows from the definition (5) that

ek = ef + kr (12)

where ef is the kinetic energy of the filtered velocity field

ef =
1

2
v · v. (13)

Writing g = −grad ep, the latter satisfies the equation

∂ef
∂t

+ div

(
efv +

pv

ρ
− v ·Ar

ρ
− 2νv ·D + epv

)
= −εf − P r (14)

where
εf = 2νD : D (15)

and
P r = 2νTD : D. (16)

The dot and the colon mean the dot product and the double dot product respectively. For a
very high Reynolds number, the terms involving the molecular viscosity can be neglected. This
is the case of the term εf which represents the viscous dissipation from the filtered velocity field.
Most of the viscous dissipation processes take place in the dissipation range. The dominant
dissipative term in the equation of ef is Pr which represents an energy transfer from the filtered
motions towards the residual motions i.e. from the large scales towards the small scales. Since
most of the energy is contained in the energy-containing range, the mean kinetic energy 〈e〉 is
almost equal to the mean kinetic energy of the filtered velocity field 〈ef 〉 (the brackets denote
the Reynolds averaging). The dissipation due to the mean flow being negligible at high Reynolds
numbers, the dissipation of the mean kinetic energy is almost entirely due to the dissipation of
the turbulent kinetic energy, usually denoted by ε and called simply dissipation. Consequently,
the mean dissipation of 〈ef 〉, denoted by 〈Pr〉 is nearly equal to the dissipation. This also implies
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Figure 1: Notations used in the text.

the equality of the dissipation of the mean residual kinetic energy and its rate of production
(Lilly 1967, see also Pope 2000, Higgins et al. 2004)

〈P r〉 ' ε. (17)

The classical closure of this approach is due to Smagorinsky (1963) who modelled the eddy
viscosity by analogy with the mixing-length hypothesis. We do not follow this path because the
filtered equations will be averaged over the fluid depth. We will use instead a simpler closure
by assuming that the turbulent viscosity is uniform over the water depth but otherwise variable
in space and time. The empirical law chosen for this eddy viscosity is discussed in §4.

3 Averaged conservation equations

3.1 Governing equations

We study the particular case of a two-dimensional flow over a variable bottom. The notations
are presented in Figure 1. The components of the velocity field are u in the horizontal direction
Ox and w in the vertical direction Oz. The bottom topography is measured by its elevation b(x)
over a horizontal datum. The elevation of the free surface over this horizontal datum is Z(x, t)
while the water depth is h(x, t) = Z(x, t)− b(x). The still water depth is denoted by h0(x) and
the water elevation over this level is η(x, t). In the case of a solitary wave, the amplitude a of
the wave is defined as the maximum value of the elevation i.e. a = ηmax.

The filtered mass conservation equation is

∂u

∂x
+
∂w

∂z
= 0. (18)

The filtered momentum balance equation writes in the Ox direction

∂u

∂t
+
∂u2

∂x
+
∂uw

∂z
= −1

ρ

∂p

∂x
+

1

ρ

(
∂Arxx
∂x

+
∂Arxz
∂z

)
+ ν

(
∂2u

∂x2
+
∂2u

∂z2

)
(19)

and in the Oz direction

∂w

∂t
+
∂uw

∂x
+
∂w2

∂z
= −g − 1

ρ

∂p

∂z
+

1

ρ

(
∂Arxz
∂x

+
∂Arzz
∂z

)
+ ν

(
∂2w

∂x2
+
∂2w

∂z2

)
. (20)
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The balance equation for the kinetic energy of the filtered motions can be written

∂

∂t

(
u2

2
+
w2

2

)
+

∂

∂x

[
u

(
u2

2
+
w2

2
+ gz

)
+
pu

ρ
− Arxxu

ρ
− Arxzw

ρ
− τxxu

ρ
− τxzw

ρ

]
+

∂

∂z

[
w

(
u2

2
+
w2

2
+ gz

)
+
pw

ρ
− Arxzu

ρ
− Arzzw

ρ
− τxzu

ρ
− τzzw

ρ

]
= −εf − P r. (21)

In this equation, the filtered viscous stress tensor is τ = 2ρνD. The components of the involved
symetrical tensors are defined as Ar = Arxxex⊗ex +Arxzex⊗ez +Arxzez⊗ex +Arzzez⊗ez and
τ = τxxex ⊗ ex + τxzex ⊗ ez + τxzez ⊗ ex + τzzez ⊗ ez, where ex and ez are the unit vectors
in the Ox and Oz directions.

The boundary conditions are the no-penetration condition at the bottom

w(b) = u(b)b′, (22)

where b′ = db/dx, the kinematic boundary condition at the free surface

w(Z) =
∂h

∂t
+ u (Z)

∂Z

∂x
(23)

and the dynamic boundary condition at the free surface

(σ · n) (Z) = 0 (24)

where σ = −pI + Ar + τ is the Cauchy stress tensor and where n is the unit normal vector at
the free surface.

3.2 Scaling

The model is derived within the scope of the shallow-water approximation. If h∗0 is a reference
value of the still-water depth and if L is a characteristic length of variation of the flow parameters
in the horizontal direction, then there is a small parameter

µ =
h∗0
L
� 1. (25)

The equations are then written in dimensionless form. The dimensionless quantities are denoted
by a tilde symbol. The following scaling is classical for this situation (Antuono & Brocchini
2013):

x̃ =
x

L
; z̃ =

z

h∗0
; ũ =

u√
gh∗0

; w̃ =
w

µ
√
gh∗0

; t̃ = µt

√
g

h∗0
; h̃ =

h

h∗0
; p̃ =

p

ρgh∗0
. (26)

For the viscous stress tensor, the scaling is

τ̃xx =
Lτxx

ρν
√
gh∗0

; τ̃zz =
Lτzz

ρν
√
gh∗0

; τ̃xz =
τxz
ρν

√
h∗0
g
. (27)

The Reynolds number is defined by Re = h∗0
√
gh∗0/ν. The turbulent viscosity is supposed to be

of O(µ) and it is written in dimensionless form as in Antuono & Brocchini (2013):

ν̃T =
νT

µh∗0
√
gh∗0

. (28)
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Consequently the components of the deviatoric part of the residual stress tensor are scaled as

Ãrxx =
Arxx

µ2ρgh∗0
; Ãrzz =

Arzz
µ2ρgh∗0

; Ãrxz =
Arxz
µρgh∗0

; (29)

We can write

Ãrxx = 2ν̃T
∂ũ

∂x̃
; Ãrzz = −Ãrxx ; Ãrxz = ν̃T

(
∂ũ

∂z̃
+ µ2

∂w̃

∂x̃

)
; (30)

The dimensionless mass conservation equation is simply

∂ũ

∂x̃
+
∂w̃

∂z̃
= 0. (31)

The momentum equation in the Ox direction becomes in dimensionless form

∂ũ

∂t̃
+
∂ũ2

∂x̃
+
∂ũw̃

∂z̃
= −∂p̃

∂x̃
+ µ2

∂Ãrxx
∂x̃

+
∂Ãrxz
∂z̃

+
µ

Re

∂τ̃xx
∂x̃

+
1

µRe

∂τ̃xz
∂z̃

. (32)

In the Oz direction, the momentum equation can be written

µ2
(
∂w̃

∂t̃
+
∂ũw̃

∂x̃
+
∂w̃2

∂z̃

)
= −1− ∂p̃

∂z̃
+ µ2

∂Ãrxz
∂x̃

+ µ2
∂Ãrzz
∂z̃

+
µ

Re

∂τ̃xz
∂x̃

+
µ

Re

∂τ̃zz
∂z̃

. (33)

It follows from the chosen scaling that the dimensionless viscous dissipation in the filtered
velocity field can be defined as ε̃f = h∗0εf/(gν) and that the dimensionless energy transfer
toward the residual motion is P̃ r = P r/(µg

√
gh∗0). The dimensionless energy equation can then

be written

∂

∂t̃

(
ũ2

2
+ µ2

w̃2

2

)
+

∂

∂x̃

[
ũ

(
ũ2

2
+ µ2

w̃2

2
+ z̃

)
+ p̃ũ− µ2

(
Ãrxxũ+ Ãrxzw̃

)
− µ

Re
(τ̃xxũ+ τ̃xzw̃)

]
+

∂

∂z̃

[
w̃

(
ũ2

2
+ µ2

w̃2

2
+ z̃

)
+ p̃w̃ − Ãrxzũ− µ2Ãrzzw̃ −

1

µRe
τ̃xzũ−

µ

Re
τ̃zzw̃

]
= − 1

µRe
ε̃f − P̃ r. (34)

The boundary conditions are also written in dimensionless form with b̃ = b/h∗0 and Z̃ = Z/h∗0.
If we assume that b varies horizontally on a characteristic length of O(L), then b̃′ = b′/µ. The
no-penetration condition on the bottom and the kinematic condition at the free surface write
simply

w̃(b) = ũ(b)b̃′ ; w̃(Z) =
∂h̃

∂t̃
+ ũ(Z)

∂Z̃

∂x̃
, (35)

whereas the dynamic boundary condition at the free surface (24) gives two scalar equations

Ãrxz(Z) +
[
p̃(Z)− µ2Ãrxx(Z)

] ∂Z̃
∂x̃

= 0 (36)

p̃(Z)− µ2Ãrzz(Z) + µ2Ãrxz(Z)
∂Z̃

∂x̃
= 0. (37)

There is no surface tension and no shear stress condition imposed at the free surface.
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The filtered equations are averaged over the depth. For any quantity A, its average value
over the depth is denoted by 〈〈A〉〉 and defined as

〈〈A〉〉 =
1

h

∫ Z(x,t)

b(x)
A dz. (38)

The averaged horizontal velocity is denoted by U = 〈〈u〉〉 and in dimensionless form Ũ = 〈〈ũ〉〉.
The filtered horizontal velocity is decomposed as

u(x, z, t) = U(x, t) + u′(x, z, t). (39)

Equivalently, u = U + u′ + ur. The term u′ represents the deviation of the filtered horizontal
velocity from its averaged value. It includes the anisotropic large-scale turbulence which contains
most of the turbulent energy and the depth variations of the Reynolds-averaged velocity field
(shearing effects). On the other hand, the residual velocity field ur includes the isotropic small-
scale turbulence where most of the dissipation takes place. The model is derived in the hypothesis
of a weakly turbulent (and weakly sheared) flow which means that u′ is of O(µ). This hypothesis
is very similar in effect as the hypothesis of a weakly-sheared flow (Teshukov 2007) with a value
of Teshukov’s exponent β equal to 1. Therefore we write

ũ(x, z, t) = Ũ(x, t) + µũ′(x, z, t). (40)

In the following derivation of the model, all terms of an order up to O(µ2) will be kept and
the terms of O(µ3) will be neglected.

The Reynolds number is supposed to be high enough so that all viscous terms can be ne-
glected. This hypothesis is usual for this kind of problems (see for example Antuono & Brocchini
2013). It can be written Re = O(µ−3). The terms of O(µ/Re) are then of O(µ4). The terms of
O(1/(µRe)) involve τ̃xz whose dominant term is ∂ũ/∂z̃. Since ∂Ũ/∂z̃ = 0, τ̃xz is in fact of O(µ)
and the terms of O(1/(µRe)) are of O(µ3) and therefore negligible. The term ε̃f is negligible
for the same reason.

The effect of the hypothesis of a weakly turbulent flow can also be applied to the scaling of
D and P r. In D the dominant component is normally, in dimensionless form

D̃xz =
1

2

(
∂ũ

∂z̃
+ µ2

∂w̃

∂x̃

)
. (41)

However, ∂ũ/∂z̃ = µ∂ũ′/∂z̃. This implies that

P̃ r =
P r

µ3g
√
gh∗0

. (42)

Consequently, the last term in (34) writes in fact −µ2P̃ r. It is thus of O(µ2) and must be kept.
As in Veeramony & Svendsen (2000), the shear stress on the bottom is neglected and this

implies a free-slip condition at the sea bed. The whole deviatoric residual stress tensor is
neglected on the bottom i.e. Ar(b) ' 0.

3.3 Averaging procedure

To lighten the notations, the tilde are dropped in this section dealing entirely with dimensionless
quantities. Averaging the mass conservation equation (31) over the depth, taking into account
the boundary conditions, gives

∂h

∂t
+
∂hU

∂x
= 0. (43)
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The continuity equation (31) allows us to find an expression for the vertical filtered velocity

w = (z − b) ḣ
h

+ Ub′ +O (µ) (44)

where the dot symbol denotes the material derivative along the average flow

ḣ =
∂h

∂t
+ U

∂h

∂x
. (45)

The momentum equation in the Oz direction (33) gives first

∂p

∂z
= −1− µ2 (z − b) ḧ

h
− µ2Db′U

Dt
+ µ2

∂Arxz
∂x

+ µ2
∂Arzz
∂z

. (46)

and then, with the dynamic boundary condition (37), an expression of the pressure

p = Z − z − µ2 ḧ
h

[
z2 − Z2

2
− b (z − Z)

]
− µ2Db′U

Dt
(z − Z)

+ µ2
∂

∂x

∫ z

Z
Arxz dz + µ2Arzz. (47)

In these expressions, both the notations Da/Dt and ȧ denote the material derivative of a quantity
a along the average flow (see (45)). With the dynamic boundary condition (36) and since we
took Ar(b) ' 0, the integration of the pressure terms and of the residual stress terms gives

−
∫ Z

b

∂p

∂x
dz +

∫ Z

b
µ2
∂Arxx
∂x

dz +

∫ Z

b

∂Arxz
∂z

dz

= − ∂

∂x

∫ Z

b
p dz − p(b)b′ + µ2

∂

∂x

∫ Z

b
Arxx dz. (48)

The integration of the pressure leads to∫ Z

b
p dz =

h2

2
+ µ2

h2ḧ

3
+ µ2

h2

2

Db′U

Dt
+ µ2

∫ Z

b
dz

∂

∂x

∫ z

Z
Arxz dz + µ2

∫ Z

b
Arzz dz. (49)

We can write ∫ z

Z
Arxz dz =

∫ z

Z
νT
∂u

∂z
dz +O(µ2). (50)

Since the turbulent viscosity is uniform over the fluid depth,∫ z

Z
νT
∂u

∂z
dz = νT (u− u(Z)) . (51)

The hypothesis of a weakly turbulent flow implies that u − u(Z) = O(µ). The corresponding
term in (49) is thus of O(µ3) and negligible. Then∫ Z

b
Arxx dz = −

∫ Z

b
Arzz dz. (52)

With the expression of Arxx, we get∫ Z

b
Arxx dz = 2νT

∫ Z

b

∂u

∂x
dz. (53)
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The hypothesis of a weakly turbulent flow allows us to write u(Z) = U + O(µ) and u(b) =
U +O(µ). This leads to ∫ Z

b
Arxx dz = 2νTh

∂U

∂x
. (54)

The calculation of the pressure at the sea bed gives

p(b)b′ = hb′ + µ2hb′

(
ḧ

2
+

Db′U

Dt

)
. (55)

Finally the integration of the right-hand side of equation (32) gives

−
∫ Z

b

∂p

∂x
dz +

∫ Z

b
µ2
∂Arxx
∂x

dz +

∫ Z

b

∂Arxz
∂z

dz

= − ∂

∂x

(
h2

2
+ µ2

h2ḧ

3
+ µ2

h2

2

Db′U

Dt
− 4νTh

∂U

∂x

)
− hb′ − µ2hb′

(
ḧ

2
+

Db′U

Dt

)
. (56)

Taking into account the boundary conditions, the integration of the left-hand side of equation
(32) leads to ∫ Z

b

(
∂u

∂t
+
∂u2

∂x
+
∂uw

∂z

)
dz =

∂hU

∂t
+

∂

∂x

(
h
〈〈
u2
〉〉)

. (57)

The treatment of
〈〈
u2
〉〉

is the same as in Richard & Gavrilyuk (2012). First,
〈〈
u2
〉〉

is written
U2+µ2

〈〈
u′2
〉〉

since, by definition, 〈〈u′〉〉 = 0. Second, a new variable, called enstrophy, is defined
as

ϕ =

〈〈
u′2
〉〉

h2
. (58)

The averaged momentum equation can finally be written

∂hU

∂t
+

∂

∂x

(
hU2 + µ2h3ϕ+

h2

2
+ µ2Π + µ2Π′

)
= −hb′ − µ2f ′ +O(µ3) (59)

where

Π =
h2ḧ

3
− 4νTh

∂U

∂x
, (60)

Π′ =
h2

2

Db′U

Dt
(61)

and

f ′ = hb′

(
ḧ

2
+

Db′U

Dt

)
. (62)

We will say that the sea bed has a mild slope if b varies horizontally on a characteristic length
of O(µL). In this case, the terms in µ2Π′ and −µ2f ′ become of O(µ3) and are negligible. The
averaged momentum equation reduces to

∂hU

∂t
+

∂

∂x

(
hU2 + µ2h3ϕ+

h2

2
+ µ2

h2ḧ

3
− 4νTh

∂U

∂x

)
= −hb′ +O(µ3). (63)

Since the model features three variables h, U and ϕ, three equations are needed. Two equations
are provided by the averaged mass conservation equation and by the averaged momentum equa-
tion and the third equation is the averaged energy equation. With the boundary conditions, we
can integrate∫ Z

b

[
∂

∂t

u2

2
+

∂

∂x

u3

2
+

∂

∂z

wu2

2

]
dz =

∂

∂t

(
h

2

〈〈
u2
〉〉)

+
∂

∂x

(
h

2

〈〈
u3
〉〉)

. (64)
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We can expand as above
〈〈
u2
〉〉

= U2+µ2h2ϕ. The same method yields
〈〈
u3
〉〉

= U3+3µ2h2Uϕ+
O(µ3). As in Teshukov (2007), the hypothesis of weakly turbulent flows allows us to neglect〈〈
u′3
〉〉

and thus to close the problem. Another integration combined with the boundary condi-
tions and with the expression (44) of the vertical velocity leads to

µ2
∫ Z

b

[
∂

∂t

w2

2
+

∂

∂x

uw2

2
+

∂

∂z

w3

2

]
dz

= µ2
∂

∂t

(
hḣ2

6
+
hU2b′2

2
+
hb′Uḣ

2

)
+ µ2

∂

∂x

[
U

(
hḣ2

6
+
hU2b′2

2
+
hb′Uḣ

2

)]
. (65)

With the expression (47) of the pressure and with the boundary conditions, we get∫ Z

b

[
∂

∂x

(
uz + pu− µ2Arxxu− µ2Arxzw

)
+

∂

∂z

(
wz + pw −Arxzu− µ2Arzzw

)]
dz

=
∂

∂x

[
U

(
h2

2
+ µ2

h2ḧ

3
+ µ2

h2

2

Db′U

Dt
− µ24νTh

∂U

∂x

)]
+ hb′U. (66)

The averaged value of P r over the depth is estimated by the averaged value over the depth of
its mean value (in the Reynolds sense) 〈P r〉. Then the approximation (17) gives

〈〈P r〉〉 ' 〈〈ε〉〉 . (67)

Physically, this means that the energy dissipation of the model is mostly due to the dissipation
of the turbulent kinetic energy in the dissipation range i.e. in the small scales. The expression
of 〈〈ε〉〉 is discussed in §4. The averaged energy equation can finally be written

∂

∂t

[
h
(
e+ µ2e′

)]
+

∂

∂x

[
hU
(
e+ µ2e′

)
+ U

(
µ2h3ϕ+

h2

2
+ µ2Π + µ2Π′

)]
= −hb′U − µ2h 〈〈ε〉〉+O(µ3) (68)

where Π and Π′ are given by (60) and (61) respectively and where

e =
U2

2
+ µ2

h2ϕ

2
+ µ2

ḣ2

6
+
h

2
; e′ =

b′2U2

2
+
ḣ

2
b′U. (69)

The factor µ2 in front of h 〈〈ε〉〉 comes from the hypothesis of a weakly turbulent flow as explained
at the end of §3.2 (see relation (42)). In the case of a mild slope, e′ and Π′ become negligible
and the energy equation reduces to

∂he

∂t
+

∂

∂x

[
hUe+ U

(
µ2h3ϕ+

h2

2
+ µ2Π

)]
= −hb′U − µ2h 〈〈ε〉〉+O(µ3). (70)

3.4 Enstrophy equation

The model is composed of the mass equation (43), the momentum equation (59 or 63 for a mild
slope) and the energy equation (68 or 70 for a mild slope). From these three equations, an
evolution equation for the enstrophy can be derived. From equation (59), we first obtain the
equation

∂

∂t

hU2

2
+

∂

∂x

hU3

2
+ U

∂

∂x

(
µ2h3ϕ+

h2

2
+ µ2Π + µ2Π′

)
= −hb′U − µ2Uf ′. (71)

13



Subtracting this equation from equation (68) leads to

∂

∂t

(
µ2
h3ϕ

2
+ µ2

hḣ2

6
+
h2

2
+ µ2he′

)

+
∂

∂x

[
µ2
h3Uϕ

2
+
h2U

2
+ µ2

hUḣ2

6
+ µ2hUe′ + U

(
µ2h3ϕ+

h2

2
+ µ2Π + µ2Π′

)]

− U ∂

∂x

(
µ2h3ϕ+

h2

2
+ µ2Π + µ2Π′

)
= −µ2h 〈〈ε〉〉+ µ2Uf ′. (72)

The mass equation implies that

ḣ = −h∂U
∂x

. (73)

The following equalities are satisfied

∂he′

∂t
+

∂

∂x

(
hUe′ + UΠ′

)
= U

∂Π′

∂x
+ Uf ′, (74)

∂

∂t

hḣ2

6
+

∂

∂x

(
hUḣ2

6
+ U

h2ḧ

3

)
= U

∂

∂x

h2ḧ

3
, (75)

∂

∂t

h2

2
+
∂h2U

∂x
= U

∂

∂x

h2

2
(76)

and
∂

∂t

h3ϕ

2
+

∂

∂x

3h3Uϕ

2
− U ∂

∂x

(
h3ϕ

)
=
h3

2

Dϕ

Dt
. (77)

The evolution equation of the enstrophy can finally be written

∂hϕ

∂t
+
∂hUϕ

∂x
=

8νT
h

(
∂U

∂x

)2

− 2

h
〈〈ε〉〉 . (78)

The enstrophy is related to the averaged large-scale turbulent kinetic energy and to the shearing
effects of the Reynolds-averaged flow. The above equation shows that it is created by the effect
of the turbulent viscosity and dissipated by the dissipation of the turbulent kinetic energy. The
latter takes place in the small scales after the energy had been transferred from the large scales.

The underlying conservative hyperbolic system has the mathematical structure of the Euler
equations of compressible fluids. For this system, the enstrophy is analogous to the entropy. If
this hyperbolic system had to be resolved, the appearance of discontinuities would impose to
solve the mass, momentum and energy equations since these discontinuities would conserve the
energy and would create enstrophy. Because of the diffusive and dispersive terms of our model, no
discontinuity can arise. It is thus equivalent in theory to solve the mass, momentum and energy
equations or to solve the mass, momentum and enstrophy equation. However, in practice, the
enstrophy equation (78) is much simpler than the energy equation (68). The enstrophy equation
has no dispersive term and no term depending on the topography. Numerically, this equation
is much easier to handle than the energy equation. The substitution of the enstrophy equation
for the energy equation in order to solve numerically the equations was already made by Lannes
& Marche (2016) in their dispersive model including terms up to O(µ3) but no dissipation nor
viscosity. Take care of the notation differences since their µ is for us µ2 and the quantity they
denote by Ẽ is hϕ.
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4 Dissipation and eddy viscosity

The closure of the model composed of equations (43), (59) (or (63)) and (78) requires to know
the dissipation 〈〈ε〉〉 and the eddy viscosity νT . We can assume that these quantities can depend
on h and on the enstrophy ϕ but not on the average velocity U in order to satisfy easily the
principle of Galilean invariance (ϕ is a Galilean invariant quantity). Including a dependence
on U would in fact requires a dependence on a velocity difference U − v∗ where v∗ would be a
suitable velocity. The only obvious choice for v∗ would be the bottom velocity but it is difficult
to explain a dependence on the bottom velocity while the turbulent and viscous processes close
to the bottom are completely neglected in this model. Another choice for the turbulent viscosity
would be a dependence on h and g writing νT = Cνh

√
gh as in Musumeci et al. (2005), where

Cν is a dimensionless constant. However such an expression would imply that the turbulent
viscosity is greater where the depth is greater, thus in the shoaling zone, and smaller where the
wave breaks and in the surf zone whereas the opposite variation would be expected. This would
make the model highly dependent on the breaking criterion. It seems much more preferable to
be inspired by the models using a dependence of the viscosity with the turbulent kinetic energy.

With a dependence on h and ϕ only, a dimensional analysis shows that

νT = Cph
2√ϕ, (79)

where Cp is a dimensionless quantity, and that

〈〈ε〉〉 =
Cr
2
h2ϕ3/2 (80)

where Cr is another dimensionless quantity. Note that Cp can be interpreted as the inverse of a
Reynolds number R such that

νT =
h2
√
ϕ

R
. (81)

With these choices, the model has the mathematical structure of the turbulent-kinetic-energy
model (TKE or k−`m) proposed by Kolmogorov (1942) and Prandtl (1945) who suggested to
base the turbulent viscosity and the dissipation on the turbulent kinetic energy and the mixing
length. In our model, the enstrophy and the water depth replace the turbulent kinetic energy
and the mixing length respectively (the turbulent kinetic energy is in fact homogeneous to h2ϕ)
with the difference that the problem of completeness of the TKE model does not apply to this
model since h is variable of the model and does not need to be specified.

Another difference is that, although the equation of the enstrophy is analogous to the equa-
tion of the turbulent kinetic energy of the TKE model, the mass equation (43) shows that
our model is analogous to the equations of a compressible fluid (the water depth h being the
analogous of the density).

The relation (80) implies that the dimensionless form of 〈〈ε〉〉 is

〈〈ε̃〉〉 =
〈〈ε〉〉

µ3g
√
gh∗0

. (82)

This is in accordance with (42). The relation (81) is also in agreement with the scaling (28) of
the eddy viscosity. It follows that the quantities Cp, R and Cr are all of O(1). In this approach
the scaling and the dependence of the turbulent viscosity have a clear physical meaning and
interpretation. There is no need to impose a variation of the turbulent viscosity with the depth
which would greatly complicate the model for a doubtful benefit. The viscous terms are needed
for their diffusive role and to create enstrophy. The only important thing is to be able to predict
the value of the eddy viscosity in all cases and the hypothesis of a viscosity which is constant
over the depth is sufficient for this purpose as it is shown in the following sections.
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5 Numerical resolution

The resulting system for a mild slope topography can be written in dimensional form

∂h

∂t
+
∂hU

∂x
= 0,

∂hU

∂t
+

∂

∂x

(
hU2 +

gh2

2
+ h3ϕ+

h2ḧ

3

)
=

∂

∂x

(
4

R
h3
√
ϕ
∂U

∂x

)
− ghb′,

∂hϕ

∂t
+
∂hUϕ

∂x
=

8h
√
ϕ

R

(
∂U

∂x

)2

− Crhϕ3/2

(83)

This system is dispersive, and the discretization of the high-order derivatives requires a special
approach. It should be mentioned that, from the point of view of the dispersive terms, the
proposed system (83) can be treated in the same manner as the well-known Green-Naghdi
system. The same techniques for the numerical resolution of the Green-Naghdi equations can be
used for the evaluation of the high-order derivatives or for the preservation of the steady states.

In the last two decades the Green-Naghdi system received a lot of attention due to its
improved dispersive properties and the following list of works is not intended to be exhaustive.
Different approaches were applied for the one-dimensional system. A finite-difference method is
proposed in Antunes Do Carmo et al. (1993) and in Antunes Do Carmo (2013). A finite-volume
method is developed in Cienfuegos et al. (2006, 2007), Le Métayer et al. (2010) and Favrie &
Gavrilyuk (2017). Dutykh et al. (2013) used a pseudo-spectral approach. Hybrid methods are
implemented in Chazel et al. (2011), Bonneton et al. (2011) and Tissier et al. (2012). For
the continuous finite element method and for the discontinuous Galerkin method we refer to
Mitsotakis et al. (2014, 2016) for the former and to Panda et al. (2014), Dong & Li (2016)
and Duran & Marche (2015) for the latter. Two-dimensional numerical studies including finite-
difference, finite-volume and finite-element methods, as well as hybrid methods can be found
in Le Métayer et al. (2010), Shi et al. (2012), Antunes Do Carmo (2013), Lannes & Marche
(2015), Popinet (2015) and Duran & Marche (2017). In this study we concentrate only on the
one-dimensional equations to validate the proposed model. Moreover in the following numerical
tests, a slowly-varying topography was assumed.

The numerical integration of the Green-Naghdi equations generally includes an elliptic oper-
ator inversion. The change of variables proposed in Le Métayer et al. (2010) allows to split the
numerical resolution into two steps. Firstly, the system is rewritten as a hyperbolic system of
equations and treated with a Godunov’s type method. Then an elliptic equation for the velocity
is solved. We adopted this strategy for the model (83) due to its straightforward realization.

5.1 Numerical scheme

The characteristics of the hyperbolic part of this system are

λ1 = U, λ2,3 = U ±
√
gh+ 3h2ϕ. (84)

Following Le Métayer et al. (2010) we introduce the new variables

K = U +
1

3h

∂(h2ḣ)

∂x
, (85)

α = −2

3
h3
∂(hU)

∂x
. (86)
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Under this change of variables the system (83) can be rewritten

∂h

∂t
+
∂hU

∂x
= 0

∂hK

∂t
+

∂

∂x

(
hUK +

gh2

2
+ h3ϕ+ α

)
=

∂

∂x

(
4

R
h3
√
ϕ
∂U

∂x

)
− ghb′

∂hϕ

∂t
+
∂hUϕ

∂x
=

8h
√
ϕ

R

(
∂U

∂x

)2

− Crhϕ3/2

(87)

This system is solved for the conservative variables h, hK, hϕ by a finite-volume scheme (Godunov-
type) with the HLL approximate Riemann solver for the hyperbolic part of the equations and by
a finite-difference method for the source terms. The viscous and topography source terms being
not stiff an explicit scheme was used. The stability of this scheme in the presence of viscosity is
ensured by a Courant-Friedrichs-Levy (CFL) condition.

The topography source term in the momentum equation should be discretized in a special
manner to preserve the steady state h+ b = const, U = K = 0 and ϕ = 0. To do so, we followed
the method of Audusse et al. (2004) to obtain a well-balanced reconstruction.

The second step of the method of Le Métayer et al. (2010) is the resolution of the elliptic
equation (85) to calculate U from the values of h and K given by the first step. We rewrite this
equation in terms of hU and hK

hK = hU − 1

3

∂

∂x

(
h2
∂(hU)

∂x

)
+

1

6

∂

∂x

(
hU

∂h2

∂x

)
.

This equation is solved numerically at each time step by using a simple second-order finite-
difference method. The inversion of a tridiagonal matrix is needed, which is done with the
Thomas algorithm. This step is the most time-consuming of all the numerical procedure.

A scheme of the second order in space and time was obtained with the Monotone Upstream-
Centred Scheme for Conservation Laws (MUSCL) method coupled with the Heun method.

5.2 Convergence of the numerical scheme

The numerical scheme is validated in the case of the classical soliton solution. The Green-Naghdi
system admits an exact solution which corresponds to a wave propagating without deformation.
This solution was found by Su & Gardner (1969) and coincide with the expression derived by
Rayleigh (1876). This particular kind of solitary wave was first observed by Russell (1844).
The model (83) admits also such a type of solution on a flat horizontal bottom in the absence
of dissipation. The exact expressions for the water depth hex, the fluid velocity U ex and the
enstrophy ϕex were derived in a more general case by Richard & Gavrilyuk (2015). In this
particular case, these expressions reduce to ϕex = ϕ0 = constant,

hex

h∗0
= 1 +

2ã
(
Fr2 − 1− 3ϕ̃

)
Fr2 − 1− (3 + ã2)ϕ̃+ [Fr2 − 1− (3− ã2) ϕ̃] cosh [κ (x− c0t− x0) /h∗0]

(88)

and

U ex = c0

(
1− h∗0

hex

)
, (89)

where x0 is the initial abscissa of the wave maximum depth position, h∗0 is the still water depth at
an infinite distance from the wave, c0 is the celerity of the soliton, ã = δ = a/h∗0 its dimensionless
amplitude (and the nonlinearity parameter), Fr = |c0|/

√
gh∗0 a Froude number representing the

dimensionless wave celerity, ϕ̃ = ϕh∗0/g the dimensionless enstrophy and where

κ =

√
3

Fr2
(Fr2 − 1− 3ϕ̃). (90)
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Figure 2: Depth profile of a soliton for Fr = 1.095 and h0 = 1 m if ϕ0 = 0.05 s−2 (solid line)
and if ϕ = 0 (dashed line).

Figure 3: Numerical solution of a soliton calculated for Fr = 1.095, h0 = 1 m and ϕ0 = 0.05 s−2

(solid line) and comparison to the exact solution (crosses) at different times: t = 0 s, t = 10 s,
t = 20 s, t = 30 s and t = 40 s.

The celerity of the soliton can be written

c0 =
√

(h∗0 + a) [g + ϕ (3h∗0 + a)]. (91)

The dimensionless amplitude of the wave ã is

ã =
1

2ϕ̃

[
− (1 + 4ϕ̃) +

√
(1 + 4ϕ̃)2 + 4ϕ̃ (Fr2 − 1− 3ϕ̃)

]
. (92)

This soliton solution reduces to the expression of Rayleigh (1876) and Su & Gardner (1969),
corresponding to the 1D Green-Naghdi equations, if ϕ0 = 0. If ϕ0 6= 0, this solution describes a
wave with a smaller amplitude for the same Froude number compared to the Rayleigh solution
(see Richard & Gavrilyuk 2015). The depth profile of a soliton calculated for Fr = 1.095,
h∗0 = 1 m and ϕ0 = 0.05 s−2 is presented in Figure 2 where it is compared to the depth profile
of the Rayleigh soliton (ϕ0 = 0) for the same reference water depth and Froude number. The
main effect of the enstrophy is to decrease the soliton amplitude.

The numerical scheme is used to calculate the propagation of a soliton over a flat horizontal
bottom with Fr = 1.095, h∗0 = 1 m and ϕ0 = 0.05 s−2. The depth profiles are presented in
Figure 3 at different times and compared to the exact solution. No deviation can be observed
from the theoretical profile. It is thus numerically established that the proposed numerical
scheme preserves the dynamics of the solitons.

This case is used to study the convergence of the algorithm. The deviation of the calculated
solution h(t, x) from the exact soliton solution hex(t, x) is estimated for an increasing level of
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Figure 4: Convergence of the numerical scheme used for the calculation of a soliton for Fr =
1.095, h0 = 1 m and ϕ0 = 0.05 s−2.

space refinement. The discrete analogue of the norm L∞ in time and L2 in space of the relative
error is plotted in Figure 4. This proves numerically that the scheme is of the second order.

5.3 Breaking criterion

5.3.1 Turbulence generation

The phenomenon of wave breaking is characterized by a rapid increase of turbulence and vortic-
ity and by a change of the shape of the wave profile which becomes more asymetrical. During
the breaking process the kinetic energy of the mean flow is first converted into turbulent kinetic
energy of organized vortices before being dissipated into small-scale turbulence (see for example
Lubin et al. 2006). In the framework of our model this means that the breaking process corre-
sponds to a rapid increase of the enstrophy which represents the turbulence of large scale. The
spectral analyses resulting from the experimental measures of Hattori & Aono (1985) confirm
the energy cascade picture in the case of breaking waves and also the formation of vortices.

Before the beginning of the breaking process the flow can be considered to be irrotational
except close to the bottom and close to the free surface. In the case of breaking waves the
main source of turbulence is the injection of turbulence at the free surface (Hattori & Aono
1985). The existence of a small vorticity near the free surface is due to the surface curvature
(Longuet-Higgins 1992) and it is thus mainly localized at the wave crest. However Lin & Liu
(1998) showed that, compared to the vorticity generated by the breaking wave, this small crest
vorticity is not only much smaller but also it has the opposite sign. This implies that the
characteristic vorticity and vortices of breaking waves are generated during the breaking of the
wave. In the shoaling zone, the interior of the flow is irrotational and in this case the Corrsin-
Kistler equation (Corrsin & Kistler 1955) shows that the Reynolds stresses have no effect on
the mean velocity field. The vorticity is created on the free surface during the wave breaking
and is transported into the interior region of the wave (Lin & Liu 1998). The surface-generated
turbulence penetrates downward too during breaking and can reach the bottom wall (Hattori &
Aono 1985). That the origin of vorticity and turbulence generation is located at or near the free
surface during breaking is further confirmed by the major role of air entrainment in turbulence
generation (Lubin et al. 2006).

The precise location of vorticity and turbulence generation was determined by several ex-
perimental and numerical works. In the case of a plunging breaker Kimmoun & Branger (2007)
identified the generation of a first vortex at the beginning of the plunging phase when the free
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Figure 5: Location of turbulence generation and of vorticity generation for a plunging breaker (in
grey). The direction of propagation is from left to right. (a) steepening phase at the beginning
of the plunging process. (b) breaking wave after the second splash-up event (from experimental
results of Kimmoun & Branger 2007).

surface steepens strongly. They observed that this vortex is not located at the top of the crest
but rather at the toe of the front of the wave. Other vortices are generated in the front part
of the wave during a series of splash-up events (Lubin et al. 2006, Kimmoun & Branger 2007).
The production of turbulent kinetic energy is also located at the front face of the crest and it
remains attached there during the whole wave propagation from the breaking point to the swash
zone (Kimmoun & Branger 2007). In a spilling breaker the major source of turbulence is at the
foot of the breaker when the water falling, tumbling, or sliding, down the front meets the undis-
turbed water (Brocchini & Peregrine 2001). The experiments and the numerical simulations
show that the vorticity generation and the turbulence generation take place during breaking in
approximately the same front region of the wave extending from the foot of the breaker to the
front side of the breaking crest. This region is depicted in grey in Figure 5 in the case of a
plunging breaker (inspired by the results of Lin & Liu 1998 and of Kimmoun & Branger 2007).
Figure 5(a) shows the steepening phase at the beginning of the plunging process and Figure 5(b)
shows the wave after the second splash-up event. Vorticity and turbulent kinetic energy are also
measured behind this region because both quantities are transported after they are created.

A depth-averaged model cannot describe all the details of the breaking process and especially
not the splash-up sequences. The vorticity and turbulence generation during the steepening of
the free surface is taken into account by an enstrophy creation caused by the production term
in the enstrophy equation (78). When the free surface steepens, (∂U/∂x)2 and consequently the
production term increase and enstrophy is created. However the particular generation mecha-
nism that takes place at the front side of the crest and at the toe of the front cannot be captured
by a depth-averaged model. The information on the sign of ∂U/∂x is lost in the production
term. Consequently enstrophy can be produced not only at the front side of the wave but also
at the rear side, particularly if the wave profile is weakly asymetrical. In the case of a soliton
the wave profile is completely symetrical. In the absence of a description of the generation of
vorticity and turbulence on the front surface of the wave, there is a production on both sides of
the crest. A sloping bottom creates some asymmetry in the wave but this does not always pre-
vent an enstrophy production in the rear of the wave. After breaking, thanks to the dissipation,
the wave becomes asymetrical enough to remove the problem but a criterion must be added to
prevent a non-physical behaviour in the breaking zone.

Since the turbulent fluctuations have no effect on the mean velocity field if the flow is
irrotational (Corrsin & Kistler 1955), there should be no enstrophy and no eddy viscosity in the
shoaling zone before the beginning of the surface generation of vorticity at the wave front. This
gives the grounds for the introduction of a breaking criterion. The first element of a breaking
criterion is to impose that the enstrophy production can happen only at the front side of a wave.
This is obtained simply by taking νT = 0 if ∂U/∂x > 0. This condition is equivalent to ḣ < 0
since the mass equation implies that the material derivative of the water depth is ḣ = −h∂U/∂x.
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Figure 6: Evolution of the maximal value of the enstrophy for δ = 0.048 (solid curve) and of
the virtual enstrophy for δ = 0.137 (dashed curve). The thin vertical lines show the breaking
positions in each case. (a) propagation until the wave breaking. (b) detailed zoom on the initial
values of the virtual enstrophy.

The front part of the wave is thus defined as ḣ > 0. There is many cases where this condition is
needless and, even when it is useful, its omission causes only a transient problem that is rapidly
corrected by the action of the dissipation. However, since its implementation is easy, it seems
that there is no reason not to include it. It remains to be seen if this condition is sufficient or if
a second element is needed for the breaking criterion.

5.3.2 Virtual enstrophy

The nonlinearity parameter of the initial wave is defined by δ = a∗/h∗0 where a∗ is the initial
amplitude of the wave and where h∗0 is the still water level at the initial position of the wave.
When δ < 0.05 the model (83) can be used directly without any breaking criterion other than
the condition of §5.3.1. The breaking position is predicted correctly due to the sudden increase
of the enstrophy. An exemple of a solitary wave with δ = 0.048 propagating on a constant slope
equal to tgβ = 1/60 is presented in Figure 6(a) where the maximal value of the enstrophy is
given as a function of the position during the wave propagation. This is a simulation of an
experiment of Hsiao et al. (2008) whose geometrical characteristics are presented in Figure 7.
In this case, the still water depth at the initial position was h∗0 = 1.2 m. The values of the
parameters of the model are Cr = 0.48 and R = 6 and these values can be used for all solitary
waves with δ < 0.05 on this slope. The increase of the enstrophy corresponds to the breaking
point since it implies also a brutal increase of the large-scale turbulent energy and a diminution
of the wave amplitude. As shown in Figure 6(a), the enstrophy keeps a very small value from
the beginning of the waves propagation until the breaking region where the sudden increase
takes place. In the shoaling zone the values of the enstrophy range from 10−7 s−2 to 10−4 s−2

whereas in the surf zone, the enstrophy is of the order of 1 s−2 or 10 s−2, thus several orders of
magnitude higher. This evolution is also presented in Figure 6(b) with another scale showing
that the enstrophy is much smaller than 10−3 s−2 in the shoaling zone. The extreme steepness
of the enstrophy curve at the breaking point shows that the enstrophy is a relevant quantity to
characterize the wave breaking.

However, for solitary waves with a nonlinearity greater than about 0.05, the initial evolution
of the enstrophy causes an important attenuation of the wave amplitude. Compared to the case
with δ < 0.05, the increase of the enstrophy at the breaking point is less steep and the enstrophy
is also less small in the shoaling zone. The enstrophy is still a relevant quantity for breaking but
its values are not small enough before breaking to be entirely negligible and this is the cause
of the wave attenuation. Therefore for such conditions the enstrophy must not be created in
the shoaling zone. This implies that the turbulent viscosity should be activated only when the
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Figure 7: Experimental setup. A solitary wave of initial amplitude a∗ in an initial still water
depth h∗0 arrives over a sloping beach with an incline angle β. The depth at the breaking point
is hb.

breaking is likely to occur and that a breaking criterion is needed for these waves.
There are several breaking criteria based on empirical relations for the horizontal velocity, the

free-surface gradient or the local energy dissipation (see e.g. Bonneton et al. 2011). For other
criteria we refer to Kazolea et al. (2014), Bacigaluppi et al. (2014) or Duran & Marche (2015).
Although most of those criteria can be adapted to our model, we introduce a new criterion
specific to this model and based on the sudden increase of the enstrophy at the breaking point.
The idea is to calculate the enstrophy produced by the wave while preventing any feedback on
the wave’s characteristics to avoid the spurious amplitude attenuation. A new quantity denoted
by ψ is introduced. It follows the same equation as the enstrophy ϕ except that the turbulent
viscosity is always activated in the equation of ψ if ∂U/∂x < 0. The equation of ψ is thus

∂hψ

∂t
+
∂hUψ

∂x
= B

8h
√
ψ

R

(
∂U

∂x

)2

− Crhψ3/2, (93)

where B = 0 if ∂U/∂x > 0, otherwise B = 1 (see §5.3.1). The equations (83) of the model
are unchanged and they don’t depend on ψ. This means that ψ has no effect on the wave
propagation. This new quantity, homogeneous to the enstrophy, represents the amount of en-
strophy that the wave is potentially able to create and therefore it is called virtual enstrophy.
The virtual enstrophy undergoes a sudden increase when the wave is about to break and this
can be used to characterize the breaking point. The eddy viscosity in the equation of the real
enstrophy is set equal to zero as long as the virtual enstrophy did not reach a threshold value ψ0.
This means that there is no enstrophy creation before the breaking point and thus no amplitude
attenuation in the shoaling zone. The cell where ψ becomes equal to ψ0 indicates the beginning
of the breaking process. The breaking point can be defined as this position or as the position
where the wave amplitude begins to decrease which happens shortly after the former position.
Once ψ > ψ0, the eddy viscosity in the real enstrophy equation takes its normal value (taking
into account the condition of §5.3.1). Consequently the real enstrophy increases rapidly and the
expected breaking process is obtained.

Note that the initial values of the virtual enstrophy and of the real enstrophy should never
be set equal to zero because in this case the turbulent viscosity would be also equal to zero.
Instead of zero, a very small initial uniform value ranging from 10−12 s−2 to 10−7 s−2 must be
given to ψ and ϕ in all cells.

A criterion to remove the eddy viscosity if the wave stops breaking is easy to define along
the same guidelines but for the moment it proved to be useless in all test cases.

The precise threshold value of the virtual enstrophy is found by comparison with the experi-
ments and is presented below. The advantage of the proposed criterion is that its implementation
is straightforward. Since this criterion depends on the value of one of the variables of the model,
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Figure 8: Variation of the maximal value ψmax of the virtual enstrophy for a soliton calculated
with R = 2, h∗0 = 2, 2 m and a nonlinearity parameter δ equal to 0.3 (thin solid curve), 0.5
(dotdashed curve), 0.7 (dashed curve), 0.78 (thick solid curve) and 0.9 (dotted curve).

it does not depend on the mesh size nor on the order of the scheme not even on the numerical
scheme provided that the calculation is close to the convergence.

The evolution of the maximum value of the virtual enstrophy for a solitary wave with a
nonlinearity parameter δ = 0.137 and the conditions of Hsiao et al. (2008) with h∗0 = 2.2m is
presented in Figure 6(a). The increase of ψ just before the breaking point is rapid but it is
less steep than for δ = 0.048. With the different scale presented in Figure 6(b), it can be seen
that the maximum value of ψ increases first from its initial value 10−9 s−2 to a constant value
of about 0.2 · 10−3 s−2 corresponding to the part of the propagation over a horizontal bottom.
When the wave arrives over the sloping bottom (see Figure 7), the maximum value of the virtual
enstrophy is no longer constant and increases until the threshold value for breaking is reached
(see Figure 6(b)). Although the maximum value of ψ in the shoaling zone is small, it is several
orders of magnitude greater than for δ = 0.048.

5.3.3 Propagation of a soliton in a constant water depth

When used with the breaking criterion involving the virtual enstrophy, the model (83), including
all dissipation terms, allows a soliton to propagate indefinitely over a flat horizontal bottom
provided that the virtual enstrophy is smaller than the threshold value (see §5.3.2). If this
condition is satisfied, the eddy viscosity remains equal to zero and the system reduces to its
conservative part and thus admits a soliton solution. It is known that a soliton cannot physically
exist if the nonlinearity parameter of the wave is greater than some limit value. The most
commonly accepted limit value is δ = 0.78 (McCowan 1894). For a nonlinearity greater than
this limit, the wave breaks and dissipation appears.

The propagation of a soliton is simulated numerically taking the expression of the soliton of
the Green-Naghdi equations (Rayleigh’s soliton) as the initial wave conditions and an enstrophy
ϕ equal to 0 (alternatively an infinitesimal value can be used without detriment). The virtual
enstrophy ψ is initially set to an infinitesimal value, for example of the order of 10−9 s−2.
The calculated evolution of the maximum virtual enstrophy is presented in Figure 8 for R = 2,
h∗0 = 2.2 m and a nonlinearity ranging from 0.3 to 0.9. The maximum virtual enstrophy increases
initially quickly and then becomes forever constant. The value of this constant depends on the
nonlinearity parameter of the wave and on the value of R. The maximal value of the virtual
enstrophy is greater if the nonlinearity is greater (see Figure 8) or if R is smaller. Note that
this constant value does not depend on the initial value of the virtual enstrophy provided that
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Trial 3 14 15 17 19 21
h∗0 (m) 1.2 1.2 1.2 1.2 1.2 1.2 2.2
δ 0.048 0.112 0.227 0.248 0.2875 0.338 0.0195

Trial 25 31 37 41 43 49 54
h∗0 (m) 2.2 2.2 2.2 2.2 2.2 2.9 2.9
δ 0.054 0.069 0.120 0.137 0.152 0.019 0.086

Table 1: Conditions of the numerical simulations. Trial numbers refer to Hsiao et al. (2008).

it is small enough. There is much leeway to choose this initial value though, since according to
our tests any value smaller than about 10−6 s−2 is acceptable. Although it is not shown on the
figure, the entire virtual enstrophy profile becomes also invariant during the propagation after
the transient regime and not only the maximal value.

This assumes that the maximum virtual enstrophy in the permanent regime is smaller than
the threshold value. Otherwise the eddy viscosity is activated and the wave breaks. Consequently
the threshold value must be chosen equal to the maximum virtual enstrophy value of the most
nonlinear existing soliton. Taking the limit of McCowan (1894), the threshold value corresponds
to δ = 0.78. However, as the maximum virtual enstrophy value depends also on R, a more
complete study of wave breaking on various slopes and of various nonlinearities must be made
before being able to propose empirical laws for R and for the threshold values ψ0. In particular,
since R controls not only the increase of the virtual enstrophy but also the dissipation in breaking
waves, the determination of the law governing R requires to study also the breaking waves.

6 Application to a mild-slope topography

6.1 Comparison with the experiments of Hsiao et al. (2008)

We study now the propagation of a solitary wave over a mild-slope topography. The experiments
of Hsiao et al. (2008) are used to validate the model (83). In these experiments a solitary wave
is generated with a high-resolution wavemaker and it propagates in a channel 300 m long, 5.0 m
wide and 5.2 m deep. A plane beach with a slope equal to tgβ = 1/60 starts 50 m after the
wavemaker. The setup is shown on Figure 7. The initial still water depth is denoted by h∗0,
the initial wave amplitude by a∗ and the unperturbed water depth at the breaking point by hb.
Several tests were made for an initial depth h∗0 equal to 1.2 m, 2.2 m or 2.9 m and for different
values of the nonlinearity parameter δ ranging from 0.019 to 0.338. The breaking position is
given for each test case and the evolution in time of the water depth at different positions along
the channel are available. The experimental conditions of Hsiao et al. (2008) which we used for
our numerical simulations are given in Table 1 with the values of the relevant parameters. These
14 cases were chosen to cover a wide range of nonlinearities and depths. Each case, except for
one, is referred by the same trial number as in Hsiao et al. (2008).

The localization of the breaking points is a quite challenging issue. Moreover the definition of
the breaking point itself can have several interpretations. For example, the amplitude decreases
dramatically for a strongly nonlinear wave when breaking occurs. In Hsiao et al. (2008) the
breaking point is defined as the location where the front of the wave becomes nearly vertical
tangent and where bubbles subsequently appear. We can relate this to the beginning of a rapid
turbulent energy increase i.e. to a sudden enstrophy growth in the proposed approach. This
idea allows us to determine an appropriate threshold value ψ0 for the virtual enstrophy in order
to reach a good agreement with the experimental breaking points. In our numerical simulations,
the breaking position can be defined either at the place where the criterion on ψ0 is first satisfied

24



Figure 9: Calculated variation in time of the wave amplitude (solid curve) and comparison with
the experimental results in the case of the trial 54 of Hsiao et al. (2008). The dashed curve is
the calculated enstrophy variation.

or where the wave amplitude starts to decrease. The second position follows closely the first
one but takes place nevertheless a little bit later. Given this uncertainty in the definition of
the breaking point, some deviations to the experimental values is inevitable. The values of the
model parameters were chosen to be able to predict the breaking position with a good accuracy
in all cases. The deviation on the abscissa of the breaking point is always smaller than 1 m
(compare to the wavelength which ranges from 20 m to 100 m approximately).

The breaking position depends on both the threshold value ψ0 and on the Reynolds number
R but the amplitude variation of the wave after breaking depends on R but not on ψ0. The
value of Cr has an effect only in the front region of the wave where there is a high value of the
enstrophy. Afterwards only R has a significant effect on the wave profile. The values of the model
parameters can thus be found by comparison of the calculated depth profiles and breaking point
positions with the corresponding experimental values. In order to obtain a predictive model,
the values of the parameters were sought as functions of the bathymetry and of the initial
nonlinearity only. It is important to note that the results presented here were not obtained with
an ad-hoc tuning of the parameters in each case but with the predictive laws which were brought
out from the comparisons with the experimental measures and which are given below.

A good agreement of the numerical simulations with the experimental depth profiles and
breaking positions was found with the following values of the model’s parameters. Firstly Cr
was found to have the same value Cr = 0.48 in all cases. Preliminary calculations with this
model in the case of roll waves and hydraulic jumps (not yet ready for publication) seem to
give also this same value. The value Cr = 0.48 could be universal. Secondly as explained
above, no breaking criterion is needed for a nonlinearity parameter smaller than 0.05 (apart
from the condition of §5.3.1). This means that ψ0 = 0 if δ < 0.05. In this case, the value R = 6
gives a good agreement on the waves profiles after breaking. There is not a great sensitivity
to the value of R however and a value of R slightly different from 6 can be used. Thirdly for
higher nonlinearities, the virtual enstrophy threshold was found to depend on the nonlinearity
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Figure 10: Calculated variation in time of the wave amplitude (solid curve) and comparison
with the experimental results in the case of the trial 19 of Hsiao et al. (2008). The dashed curve
is the calculated enstrophy variation.

parameter as

ψ̃0 = 0.1 +
0.031

δ
(94)

if δ > 0.05. In this expression the dimensionless virtual enstrophy threshold is defined as
ψ̃0 = ψ0h

∗
0/g. The corresponding value of R for δ < 0.05 is constant and lies between 1.6 and

2.0. The constant value R = 1.7 is used in this section.
A representative series of results is presented in Figure 9 in the case of the trial 54 of Hsiao

et al. (2008) (h∗0 = 2.9m and δ = 0.086). Three results in the shoaling zone are presented
at the abscissa 176.55 m, 187.06 m and 192.36 m followed by three results in the surf zone at
the abscissa 202.88 m, 205.57 m and 216.09 m. The breaking point was measured by Hsiao
et al. (2008) at 193 m. The breaking criterion is first satisfied at 192.7 m and the amplitude
starts to decrease at 193.5 m. In each case the variation of the wave amplitude as a function of
time is shown as well as the enstrophy variation (dashed curve). A breaking wave can be easily
identified by the presence of a non-zero value of the enstrophy. The results in the case of a wave
with a high initial nonlinearity (Trial 19 of Hsiao et al. 2008, δ = 0.338 and h∗0 = 1.2 m) are
presented in Figure 10. Only two different representative positions in the surf zone are shown.
The asymmetry of the depth profile and the wave amplitude are both correctly described.

No attempt is made here to improve the dispersive properties. The model is fully nonlinear
and has the same dispersive properties as the equations of Green-Naghdi. Its dispersive proper-
ties are thus better than those of weakly-nonlinear Boussinesq models. However the dispersive
properties can be improved in the same way as those of the Green-Naghdi model as in Bonneton
et al. (2011) or Chazel et al. (2011). Because in this part the standard dispersive properties of
the Green-Naghdi system are kept, a small deviation to the experimental profiles in the shoaling
zone can sometimes be observed. For example, in Figure 9 the calculated wave amplitude is
smaller than the experimental one at x = 192.36 m just before the breaking point.

6.2 Amplitude evolution and breaking depth

The model predictions on the evolution of the wave amplitude are compared to the power-law
of Synolakis & Skjelbreia (1993)

a

hb
=

(
h0
hb

)n
(95)

where a is the amplitude of the wave at a position where the still water depth is h0, hb is the
water depth at the breaking point and n is an exponent depending on the region. Synolakis &
Skjelbreia (1993) showed that four regions exist, two in the shoaling zone before breaking and
two after breaking. During the wave propagation shoreward there is first the zone of gradual
shoaling where n = −1/4 (corresponding to Green’s law), then the zone of rapid shoaling where
n = −1 (Boussinesq’s law) followed by the zone of rapid decay (n = 4) and by the zone of
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Figure 11: Evolution of the amplitude for a solitary wave: numerical results (points) and law
95 (solid lines). (a) h∗0 = 1.2m and δ = 0.338. (b) h∗0 = 2.2m and δ = 0.152.

gradual decay (n = 1). Ting (2006) and Hsiao et al. (2008) showed the existence of a fifth zone
where n = 1/4 after the zone of gradual decay.

The results of numerical simulations in the conditions of Hsiao et al. (2008) are presented
in Figure 11 with h∗0 = 1.2 m and δ = 0.338 (Figure 11(a)) and with h∗0 = 2.2 m and δ = 0.152
(Figure 11(b)). The solid lines represent the slopes corresponding to the above-mentioned values
of n. The numerical results are in good agreement with the experimental results and with the
values of the exponent of the law (95) in each zone including in the fifth zone where we find a
value of the exponent n close to 1/4. The curve is a little bit less sharp than the experimental
one at the breaking point. This is probably due to the dispersive properties of the model which
are identical to the Green-Naghdi equations and which are not optimal as it is explained above.
It results that the amplitude is slightly underestimated just before the breaking point. In all
other regions, the predicted wave amplitude evolution is very similar to the experimental results
of Hsiao et al. (2008).

The breaking depth and thus the breaking position predicted by the model is checked by
comparison with the empirical law proposed by Grilli et al. (1997) who defined the slope
parameter for solitary waves S0 = 1.521 tgβ/

√
δ. They found that the breaking types depend on

the value of this parameter. According to this criterion the waves studied by Hsiao et al. (2008)
are all of the plunging type since 0.025 < S0 < 0.30 (the wave with the highest nonlinearity has
δ = 0.338 and S0 = 0.044). However Hsiao et al. (2008) observed that for S0 < 0.05 the breaker
type is not a pure plunging type but that the spilling breaker prevails. They also found that
the properties of amplitude evolution are not significantly affected by the breaker types. Grilli
et al. (1997) found that the breaking depth was correctly predicted by the law

hb
h∗0

=
0.149

(S0/δ)0.523
(96)

if S0 < 0.30. On the whole this law was also confirmed by the experiments of Hsiao et al. (2008).
The comparison of the breaking depths predicted by our model with this law are presented in
Figure 12. Our numerical results are very similar to the experimental results of Hsiao et al.
(2008). There is an overall agreement with the law (96). The deviations follow exactly the same
trends as the experimental measures. In particular, as noted by Hsiao et al. (2008), the law
(96) under-predicts slightly the breaking water depth for S0/δ < 2. This small deviation has
the greatest value, both in the experiments and in the numerical simulations, for S0/δ close to
1. Conversely, for large values of S0/δ (between 9 and 10), the numerical results are smaller
than the values predicted by the law (96). In the experiments of Hsiao et al. (2008), most
values of hb/h

∗
0 for S0/δ between 9 and 10 are also smaller than the predictions of this law.

This comparison shows that the model gives an accurate prediction on the breaking depth and
position, in a very good agreement with the experiments.
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Figure 12: Comparison of the numerical breaking depth (points) with the prediction by (96).

6.3 Dependence on the slope

The influence of the slope on the values of the virtual enstrophy threshold ψ0 and on R is
studied from recent experimental works by Fuchs & Hager (2015) and Hafsteinsson et al. (2017)
for various slope angles (β = 1◦, 3◦, 6◦ and 11◦) and a nonlinearity parameter ranging from 0.2
to 0.7. The value of the bottom slope angle for the numerical simulations of the experiments of
Hsiao et al. (2008) is β = 0.95◦ which is very close to β = 1◦. The numerical tests confirm that
the proposed laws for ψ0 and R (see §6.1) give also satisfactory predictions for the case β = 1◦

of Hafsteinsson et al. (2017).
However numerical tests show that these values are not valid for other slope angles. Since the

increase of the virtual enstrophy is faster if R is smaller, a given breaking point can be obtained
with different sets of values for ψ0 and R. The wave breaks later if ψ0 or R are increased.
However given the steepness of the variation of the virtual enstrophy near the breaking point
(see Figure 6), the threshold value ψ0 has a much smaller effect on the breaking position than
R. The value of ψ0 must be strongly modified to change significantly the breaking point. It
is therefore more practical to keep the same value of ψ0 as above and to suppose that only R
depends on the slope. This choice is also simpler to implement in the numerical scheme because
in this case R is locally determined by the bathymetry. Another criterion to determine R is
the comparison with the depth profiles of the breaking waves and this method was used in §6.1.
However for higher slopes, this method cannot be used. For β = 11◦ the wave does not break
at all (Fuchs & Hager 2015). For β = 6◦ the wave breaks so close to the shore than no bore
is generated and for β = 3◦ the bore lasts only for a short moment (Hafsteinsson et al. 2017).
According to our numerical tests, supposing that R depends on the slope but not ψ0 is not only
the simplest choice but it works also better.

The assumption that R depends only on the slope and that ψ̃0 depends only on the nonlin-
earity as in §6.1 gives immediately the value of R in the case of a horizontal bottom if the value
of McCowan (1894) of the maximum height of a soliton is taken (see §5.3.3). With δ = 0.78,
the law (94) gives the dimensionless threshold value ψ̃0 = 0.14. Then the numerical calculation
shows that the highest nonlinearity for a non-breaking soliton is δ = 0.78 if and only if R = 0.85,
which is thus the value of R for tgβ = 0.

For each nonlinearity parameter of the waves studied by Hafsteinsson et al. (2017), the
value of ψ̃0 is found by (94) and the value of R is sought in order to obtain breaking depths
and positions in agreement with the experimental measures. This gives values of R for β = 1◦,
β = 3◦ and β = 6◦ besides the value for β = 0.95◦ of Hsiao et al. (2008) already known.
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Figure 13: Numerical results for β = 1◦ (•), β = 3◦ (�) and β = 6◦ (◦) and comparison with
the law (96) (solid curve).

The obtained values allow us to propose the following expressions in the case δ > 0.05:

ψ0 =

(
0.1 +

0.031

δ

)
g

h∗0
(97)

and
R = 0.85 + 60 tg β. (98)

If δ < 0.05, ψ0 = 0 and R = 6. Predictions obtained with these expressions for β equal to 1◦,
3◦ and 6◦ and δ equal to 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 are compared to the law proposed by
Grilli et al. (1997) (96) in Figure 13. The results are in good agreement with the law (96). The
deviations are of the same order as those found by Grilli et al. (1997). The case δ = 0.2 and
β = 6◦ has S0 = 0.36 and is not shown since the breaking type is a surging breaker (Grilli et al.
1997) and the law (96) does not apply. With the proposed laws (97) and (98), a solitary wave
on an incline slope of 11◦ does not break in accordance with Fuchs & Hager (2015).

7 Conclusion

We derived a new model for coastal waves capable of describing shoaling and breaking waves.
This one-dimensional model resolves the large-scale turbulence while the small-scale turbulence
is modelled through a turbulent-viscosity hypothesis. The three equations of the model are
obtained by averaging over the depth the balance equations for mass, momentum and kinetic
energy with a shallow-water hypothesis. This approach can be seen as a depth-averaged large-
eddy simulation model with a cutoff frequency in the inertial subrange. No assumption is made
on the order of magnitude of the nonlinearity. As a result, the model is fully nonlinear and
its dispersive properties are identical to those of the Green-Naghdi equations. The model’s
variables are the fluid depth, the average velocity and the enstrophy, which includes the large-
scale turbulence effects. The viscous and dispersive terms preclude discontinuities arising and
the enstrophy transport equation can be conveniently substituted for the energy equation.

The breaking point is characterized by a sudden increase of the enstrophy. In some cases
no breaking criterion is necessary to predict the wave breaking and the propagation in the surf
zone. In other cases, a breaking criterion must be implemented to prevent a decrease of the wave
amplitude before breaking. Most breaking criterions can be used although a breaking criterion
based on a virtual enstrophy is proposed. The model is validated in the case of a solitary wave
on a mild sloping beach by comparisons with experimental results of the literature, most notably
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from Hsiao et al. (2008). Numerical simulations were made over a wide range of values of the
nonlinearity parameter and of the slope. The three dimensionless parameters are a dissipation
coefficient Cr which has the constant value 0.48, a turbulent Reynolds number depending only
on the slope and a threshold value, if the breaking criterion based on the virtual enstrophy
is used, which depends only on the initial nonlinearity parameter of the wave. If the bottom
topography and the initial wave conditions are known, the model can thus predict the whole
solitary wave propagation.

The continuation of this work will extend the model to the two-dimensional case and will in-
clude complex bathymetries, run-up, run-down, wave trains and improved dispersive properties.
Further developments are envisaged to model particles and sediment transport for applications
in coastal erosion.
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