M. G. Ammendolia, F. Iosi, B. De-berardis, G. Guccione, F. Superti et al., Listeria monocytogenes behaviour in presence of non-UVirradiated titanium dioxide nanoparticles, PLoS One, vol.9, 2014.

J. Audinot, S. Schneider, M. Yegles, P. Hallégot, R. Wennig et al., Imaging of arsenic traces in human hair by nano-SIMS 50, Applied Surface Science, vol.231, issue.232, 2004.
DOI : 10.1016/j.apsusc.2004.03.192

. Sci, , pp.490-496

R. Behrisch and K. Wittmaack, Sputtering by Particle Bombardment III: Characteristics of Sputtered Particles, Technical Applications, pp.10-1007, 1991.
DOI : 10.1007/3-540-53428-8

S. Bettini, E. Boutet-robinet, C. Cartier, C. Comera, E. Gaultier et al., Food-grade TiO 2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon Elemental mapping of Neuromelanin organelles of human Substantia Nigra: correlative ultrastructural and chemical analysis by analytical transmission electron microscopy and nano-secondary ion mass spectrometry, 2016.

, J. Neurochem, vol.138, pp.339-353

G. Carré, E. Hamon, S. Ennahar, M. Estner, M. C. Lett et al., TiO 2 photocatalysis damages lipids and proteins in Escherichia coli, 2014.

, Appl. Environ. Microbiol, vol.80, pp.2573-2581

S. P. Claus, H. Guillou, and S. Ellero-simatos, The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes, 2016.

M. Derrien and J. E. Van-hylckama-vlieg, Fate, activity, and impact of ingested bacteria within the human gut microbiota, Trends in Microbiology, vol.23, issue.6, pp.354-366, 2015.
DOI : 10.1016/j.tim.2015.03.002

R. Doj?ilovi´doj?ilovi´c, J. D. Pajovi´cpajovi´c, D. K. Bo?ani´cbo?ani´c, V. V. Vodnik, S. Dimitrijevi´cdimitrijevi´c-brankovi´cbrankovi´c et al., A fluorescent nanoprobe for single bacterium tracking: functionalization of silver nanoparticles with tryptophan to probe the nanoparticle accumulation with single cell resolution, Analyst, vol.141, p.10, 1039.

M. Dorier, D. Béal, C. Marie-desvergne, M. Dubosson, F. Barreau et al., exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress, Nanotoxicology, vol.454, pp.1-54, 2017.
DOI : 10.1038/nature07203

URL : https://hal.archives-ouvertes.fr/cea-01564506

M. G. Dowsett, C. , and R. , Noise, Resolution and Entropy in Sputter Profiling, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.354, issue.1719, pp.2713-27290125, 1996.
DOI : 10.1098/rsta.1996.0125

W. Dudefoi, K. Moniz, E. Allen-vercoe, M. H. Ropers, and V. K. Walker, Impact of food grade and nano-TiO 2 particles on a human intestinal community, Food and Chemical Toxicology, vol.106, pp.242-249, 2017.
DOI : 10.1016/j.fct.2017.05.050

URL : https://hal.archives-ouvertes.fr/hal-01608185

W. Dudefoi, H. Terrisse, M. Richard-plouet, E. Gautron, F. Popa et al., Criteria to define a more relevant reference sample of titanium dioxide in the context of food: a multiscale approach, Food Additives & Contaminants: Part A, vol.75, pp.653-665, 1080.
DOI : 10.1021/cm0340781

URL : https://hal.archives-ouvertes.fr/hal-01608565

A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, Computer control of microscopes using µManager Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on Titanium dioxide, Curr. Protoc. Mol. Biol, vol.92, p.163, 2005.

, Scientific opinion on the re-evaluation of titanium dioxide (E171) as a food additive, EFSA Panel on Food Additives and Nutrient Sources Added to Food, p.4545, 2016.

A. Erdem, D. Metzler, D. K. Cha, and C. P. Huang, The short-term toxic effects of TiO2 nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation, Environmental Science and Pollution Research, vol.97, issue.5, pp.17917-17924, 2015.
DOI : 10.1016/j.colsurfb.2012.03.010

J. J. Faust, K. Doudrick, Y. Yang, P. Westerhoff, C. et al., Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation, Cell Biology and Toxicology, vol.21, issue.3, pp.169-188, 2014.
DOI : 10.1088/0957-4484/21/35/355103

E. Fröhlich, R. , and E. , Oral uptake of nanoparticles: human relevance and the role of in vitro systems, Archives of Toxicology, vol.6, issue.3, pp.2297-2314, 2016.
DOI : 10.1186/1745-6673-6-7

E. E. Fröhlich, E. A. Fröhlich, Y. L. Balachandran, P. Rosenkranz, M. Dusinska et al., Cytotoxicity of Nanoparticles Contained in Food on Intestinal Cells and the Gut Microbiota, International Journal of Molecular Sciences, vol.1, issue.4, pp.509-1168, 2013.
DOI : 10.1101/gr.107987.110

A. Giuliani, F. Jamme, V. Rouam, F. Wien, J. Giorgetta et al., DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL, Journal of Synchrotron Radiation, vol.16, issue.6, 2009.
DOI : 10.1107/S0909049509034049

URL : https://hal.archives-ouvertes.fr/hal-01479318

J. and S. Rad, , pp.835-841

C. Höschen, T. Höschen, C. W. Mueller, J. Lugmeier, S. Elgeti et al., Novel Sample Preparation Technique To Improve Spectromicroscopic Analyses of Micrometer-Sized Particles, Environmental Science & Technology, vol.49, issue.16, pp.9874-9880, 2015.
DOI : 10.1021/acs.est.5b01636

F. Jamme, S. Villette, A. Giuliani, V. Rouam, F. Wien et al., Synchrotron UV Fluorescence Microscopy Uncovers New Probes in Cells and Tissues, Microscopy and Microanalysis, vol.91, issue.05, pp.507-514, 2010.
DOI : 10.1366/0003702953965597

URL : https://hal.archives-ouvertes.fr/hal-00609593

K. A. Jensen, Y. Kembouche, E. Christiansen, N. R. Jacobsen, H. Wallin et al., Final Protocol for Producing Suitable Manufactured Nanomaterial Exposure Media (Nanogenotox), 2011.

W. Jiang, H. Mashayekhi, and B. Xing, Bacterial toxicity comparison between nano- and micro-scaled oxide particles, Environmental Pollution, vol.157, issue.5, 2009.
DOI : 10.1016/j.envpol.2008.12.025

Y. Jin, S. Wu, Z. Zeng, and Z. Fu, Effects of environmental pollutants on gut microbiota, Environmental Pollution, vol.222, 2017.
DOI : 10.1016/j.envpol.2016.11.045

F. Joint and . Who, Combined Compendium of Food Additive Specifications, Expert Committee on Food Additives, 2006.

U. Joost, K. Juganson, M. Visnapuu, M. Mortimer, A. Kahru et al., Photocatalytic antibacterial activity of nano-TiO 2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids, J. Photochem. Photobiol. B, vol.142, pp.1178-1185, 2015.

S. Ka??áková, L. Maigre, J. Chevalier, M. Réfrégiers, and J. M. Pagès, Antibiotic Transport in Resistant Bacteria: Synchrotron UV Fluorescence Microscopy to Determine Antibiotic Accumulation with Single Cell Resolution, PLoS ONE, vol.14, issue.4, 2012.
DOI : 10.1371/journal.pone.0038624.s004

A. Kumar, A. K. Pandey, S. S. Singh, R. Shanker, and A. Dhawan, , 2011.

, Engineered ZnO and TiO 2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic, Biol. Med, vol.51, pp.1872-1881

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2006.

C. Lechene, F. Hillion, G. Mcmahon, D. Benson, A. M. Kleinfeld et al., High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry, J. Biol, 2006.

T. Li, T. D. Wu, L. Mazéas, L. Toffin, J. L. Guerquin-kern et al., Simultaneous analysis of microbial identity and function using NanoSIMS, Environmental Microbiology, vol.52, issue.3, pp.580-588, 2008.
DOI : 10.1186/jbiol49

URL : https://hal.archives-ouvertes.fr/hal-00297141

X. Lin, J. Li, S. Ma, G. Liu, K. Yang et al., Toxicity of TiO 2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry, PLoS One, vol.9, 2014.

P. Liu, W. Duan, Q. Wang, L. , and X. , The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light, Colloids and Surfaces B: Biointerfaces, vol.78, issue.2, pp.171-176, 2010.
DOI : 10.1016/j.colsurfb.2010.02.024

C. Mccullagh, J. M. Robertson, D. W. Bahnemann, and P. K. Robertson, The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review, Research on Chemical Intermediates, vol.101, issue.3-5, pp.359-375, 1163.
DOI : 10.1016/j.cattod.2005.03.062

G. Mcmahon, B. J. Glassner, and C. P. Lechene, Quantitative imaging of cells with multi-isotope imaging mass spectrometry (MIMS)???Nanoautography with stable isotope tracers, Applied Surface Science, vol.252, issue.19, pp.6895-6906, 2006.
DOI : 10.1016/j.apsusc.2006.02.170

M. Mercier-bonin, B. Despax, P. Raynaud, E. Houdeau, T. et al., Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles, Critical Reviews in Food Science and Nutrition, vol.10, issue.6, pp.1023-1032, 2016.
DOI : 10.1016/j.colsurfb.2012.03.010

URL : https://hal.archives-ouvertes.fr/hal-01595691

A. Nel, T. Xia, L. Madler, L. , and N. , Toxic Potential of Materials at the Nanolevel, Science, vol.311, issue.5761, pp.622-627, 2006.
DOI : 10.1126/science.1114397

C. Pagnout, S. Jomini, M. Dadhwal, C. Caillet, F. Thomas et al., Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli, Colloids and Surfaces B: Biointerfaces, vol.92, pp.315-321, 2012.
DOI : 10.1016/j.colsurfb.2011.12.012

J. D. Pajovi´cpajovi´c, R. Doj?ilovi´doj?ilovi´c, D. K. Bo?ani´cbo?ani´c, S. Ka??áková, M. Réfrégiers et al., Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells, Colloids and Surfaces B: Biointerfaces, vol.135, pp.742-750, 2015.
DOI : 10.1016/j.colsurfb.2015.08.050

A. Pietroiusti, A. Magrini, C. , and L. , New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials, Toxicology and Applied Pharmacology, vol.299, 2016.
DOI : 10.1016/j.taap.2015.12.017

S. Pigeot-rémy, F. Simonet, E. Errazuriz-cerda, and C. Guillard, Photocatalysis and disinfection of water: Identification of potential bacterial targets, Applied Catalysis B: Environmental, vol.104, issue.3-4, pp.390-398, 2011.
DOI : 10.1016/j.apcatb.2011.03.001

M. Planchon, T. Léger, O. Spalla, G. Huber, and R. Ferrari, Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli, PLOS ONE, vol.148, issue.6, 2017.
DOI : 10.1371/journal.pone.0178437.s008

URL : https://hal.archives-ouvertes.fr/cea-01532100

H. Proquin, C. Rodríguez-ibarra, C. G. Moonen, U. Ortega, I. M. Briedé et al., Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions Adhesion of the genome-sequenced Lactococcus lactis subsp. cremoris IBB477 strain is mediated by specific molecular determinants, Mutagenesis Appl. Microbiol. Biotechnol, vol.32, issue.100, pp.139-149, 2016.

J. M. Radziwill-bienkowska, V. Robert, K. Drabot, F. Chain, C. Cherbuy et al., Contribution of plasmid-encoded peptidase S8 (PrtP) to adhesion and transit in the gut of Lactococcus lactis IBB477 strain, Applied Microbiology and Biotechnology, vol.211, issue.14, pp.5709-5721, 2017.
DOI : 10.1016/j.ijfoodmicro.2015.07.009

URL : https://hal.archives-ouvertes.fr/hal-01605918

J. M. Radziwill-bienkowska, D. Zochowska, J. K. Bardowski, M. Mercier-bonin, and M. Kowalczyk, Lactococcus lactis IBB477 presenting adhesive and muco-adhesive properties as a candidate carrier strain for oral vaccination against influenza virus, Acta Biochim. Pol, vol.61, pp.603-607, 2014.

K. Rasmussen, J. Mast, P. De-temmerman, E. Verleysen, N. Waegeneers et al., Titanium Dioxide, NM-100, NM-101, NM-102, NM- 103, NM-104, NM-105: Characterisation and Physico-Chemical Properties (JRC), 2014.

C. Ribière, P. Peyret, N. Parisot, C. Darcha, P. J. Déchelotte et al., Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model, Scientific Reports, vol.7, issue.1, pp.31027-31037, 1038.
DOI : 10.1038/nmeth.f.303

L. Sangely, B. Boyer, E. De-chambost, N. Valle, J. Audinot et al., CHAPTER 15. Secondary Ion Mass Spectrometry, pp.439-499, 2014.
DOI : 10.1039/9781849735407-00439

C. Saulou-bérion, I. Gonzalez, B. Enjalbert, J. Audinot, I. Fourquaux et al., Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses, PLOS ONE, vol.12, issue.10, 2015.
DOI : 10.1371/journal.pone.0145748.s003

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-682, 2012.
DOI : 10.1093/bioinformatics/btr390

URL : http://europepmc.org/articles/pmc3855844?pdf=render

N. Serpone, D. Lawles, and R. Khairutdinov, Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor?, The Journal of Physical Chemistry, vol.99, issue.45, pp.16646-16654, 1021.
DOI : 10.1021/j100045a026

A. Simon-deckers, S. Loo, M. Mayne-l-'hermite, N. Herlin-boime, N. Menguy et al., Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria, Environmental Science & Technology, vol.43, issue.21, pp.8423-8429, 2009.
DOI : 10.1021/es9016975

URL : https://hal.archives-ouvertes.fr/hal-00430587

B. Sohm, F. Immel, P. Bauda, and C. Pagnout, in the dark, PROTEOMICS, vol.15, issue.1, pp.98-113, 2015.
DOI : 10.1002/chem.200802542

URL : https://hal.archives-ouvertes.fr/hal-01101796

O. Tenaillon, D. Skurnik, B. Picard, E. Denamur, I. M. Urrutia-ortega et al., The population genetics of commensal Escherichia coli, Nature Reviews Microbiology, vol.75, issue.3, pp.207-217, 1038.
DOI : 10.1016/j.tig.2007.12.007

P. Veiga, N. Pons, A. Agrawal, R. Oozeer, D. Guyonnet et al., Changes of the human gut microbiome induced by a fermented milk product, Scientific Reports, vol.39, issue.1, pp.6328-6338, 1038.
DOI : 10.1007/BF00228615

T. Waller, C. Chen, and S. L. Walker, Food and Industrial Grade Titanium Dioxide Impacts Gut Microbiota, Environmental Engineering Science, vol.34, issue.8, pp.537-550, 2017.
DOI : 10.1089/ees.2016.0364

A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, V. Goetz et al., Titanium Dioxide Nanoparticles in Food and Personal Care Products, Environmental Science & Technology, vol.46, issue.4, 2012.
DOI : 10.1021/es204168d

URL : http://europepmc.org/articles/pmc3288463?pdf=render

. Sci,

T. Wirtz, P. Philipp, J. Audinot, D. Dowsett, and S. Eswara, , 2015.

, High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy, Nanotechnology, vol.262643, pp.10-1088

Y. Yang, K. Doudrick, X. Bi, K. Hristovski, P. Herckes et al., Characterization of Food-Grade Titanium Dioxide: The Presence of Nanosized Particles, Environmental Science & Technology, vol.48, issue.11, pp.6391-6400, 1021.
DOI : 10.1021/es500436x

C. Zhang, M. Derrien, F. Levenez, R. Brazeilles, S. A. Ballal et al., Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes, The ISME Journal, vol.24, issue.9, pp.2235-2245, 2016.
DOI : 10.1186/1471-2105-9-173

URL : https://hal.archives-ouvertes.fr/hal-01604968

L. V. Zhukova, J. Kiwi, and V. V. Nikandrov, TiO2 nanoparticles suppress Escherichia coli cell division in the absence of UV irradiation in acidic conditions, Colloids and Surfaces B: Biointerfaces, vol.97, pp.240-247, 2012.
DOI : 10.1016/j.colsurfb.2012.03.010

, Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

©. Copyright, . Radziwill-bienkowska, . Talbot, . Kamphuis, . Robert et al., This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, 2018.