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An artificial oil in water emulsion analogue to those found in bioresources or food
matrices is simulated and studied experimentally. It is composed of one of the major
natural free fatty acids (the oleic acid, OA) and the corresponding triacylglyceride
(trioleic glyceride, or triolein, GTO). Because of the large time and length scales
involved, the molecular simulations are done with the Ma%ni force field, a coarse-
grained model. This allowed us to study the water—O T stem at different
compositions with more than 20000 molecules and upto S.

Interfacial tension was measured using the pe N ethod and compared

with molecular simulation results. We observe very'gdod agreement at high OA con-

—
centration and deviations up to 15% at low O conceslt tions. The water solubility
in the lipid phase is in fair agreement With@eri , between 0.03 and 0.32 mol/L,
rising with the OA content. ‘)

! -
The area occupied by OA and éq%t~ he interface between water and pure
data, (

product fitted with experimental oa = 36.6 A2 and Agro = 152.1 A?).

The consistency between simulatiom,and experimental results allowed a structural
analysis of the interface. bi§
is proposed, containin prg\rw

results the usefulness of“goarse-grained simulation for the description of water—oil

interfacial organi aﬂb.xié demonstrated. This method will be used later on to bring

structure of the lipids at the water/oil interface
ly oleic acid but also triolein. Through all these

local information the organization of target compounds, necessary in biomass
ces

fractiona?m

Keywo d.So i¢_acid, triolein, interfacial tension, emulsion, coarse-grained simula-

396 Or food additives formulations for example.
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Publishihg INTRODUCTION

The local organization of lipids in complex mixtures, like oil in water emulsions, is more
and more needed in different application fields. Its knowledge is necessary for the de-
velopment of innovative extraction and separation processes, in tlie context of renewable
bioresources valorization (i.e. microalgae) for food, feed (polyumsaturated lipids) and en-

ergy (triglycerides)!. For example, the many different lipids prediiced by microorganisms

are dispersed in aqueous phase after grinding and a suitable fraetionation strategy must be

ed.chains don’t mix together

employed. It was shown that lipids with different unsa

and form rafts at fat globule interfaces, and that t 'gi?cerh rganization at the globule
a

2

interface, changing with temperature, may modé’ ythe™ cial properties . Depending

on the detailed composition, the molecules cam b t}‘la lipid droplet interface, in the lipid
| -

bulk, organized as liquid crystals or oleoso%aqueous phase etc. and the separation

procedure may vary.

Thus, the determination of the logal mon (3D structure with eventual heterogene-

ity) will allow building fractionat'gn\s h&g&es (for example destabilization of aggregates by

N

the impact of molecular organizm the oil-water and liquid-solid interfaces that are key

shear rate or temperature variati uce reorganization). It will help to understand

parameters for the proc

Or:ﬁ) understand the behavior of the polyunsaturated lipids (w-3

It becomes also i

and w-6) that have'no day;/to be introduced in food matrices, because of recent nutritional
recommendations. ovative formulations containing the unsaturated fatty acids also have

'r)xidation or degradation. Berton et al.®> have shown that the oxidation

to prevent t
of fragilefunsaturated lipids depends on the nature of the water-oil droplet interface com-
positién. ™~ A 1éolled local structure is therefore needed. The organization of lipids in

S ileso very important in the domain of cosmetics and medicine, for controlled

drug delyery for example.

<

Unfortunately, direct observation of local organization through experimental means is
difficult? and/or expensive®®. Molecular simulations are becoming a tool of growing impor-
tance, applied to different systems, from simple fluids to complex biomolecules, soft-matter

and nano-materials. By looking at phenomena at the molecular scale, computer simulations
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PubliShi'lI[g] sribute to a better understanding of the structure-property relationships. It is a remark-
able tool to investigate the effect of small changes in molecular structure or composition

onto spatial organization for e.g. surfactants in water or lipid in water emulsion stability.

One requirement for reliable molecular simulations is a correct sampling of the various

degrees of freedom in the system. When using atomistic molecular dynamics, a correct

sampling can be achieved if simulated times exceed the largest r tionime in the system.
In a recent paper, Skjevik et al.’ have used large GPU based wrs to study lipid bilayer

self-assembly. They have shown that the typical timescale e fexmation of a phospholipid

bilayer is of the order of a few hundreds of nanoseconds,“a’quite large value for all-atom

—-—

simulations. Therefore, the timescales involved in the physical processes studied are too

high to be studied systematically by molecular simulatio the atomistic level.

One route to reach larger time and length seales i@ adopt coarser models where parti-
cles represent a group of atoms, typically between 3jand 10 heavy atoms (C, N, O, S, etc).
By reducing the number of particles to %l\x&r a given physical system), simulations can

time:

be realized over a reduced computi g,S Moreover, because interaction forces between

particles are softer, larger timestéps canfbe ‘employed during the simulations. Finally, ac-
sep}\k
u

cessible timescales can be incpea. wo or more orders of magnitude, depending on the
details of the coarse—graining;%‘h\ﬁ?.

The second require ntwolecular simulation is a good description of the interparticle

forces. These forcesAre deseribed empirically by simple functions of the particle positions.

The set of paraméters'plus he analytical force expressions is called the force field (FF). In

recent years, }thS have been made to derive coarse-grained (CG) force fields adapted

to differentst a.Sof molecules (see e.g.”). However, when dealing with lipids, the Martini

FF appefus td be one of the most used and validated®. As every coarse-grained force field,

dynaﬁf‘iu a/lly faster than real one, although a global time scaling factor seems to
en

sing the Martini force field. As mentioned by Baron et al.?, thermodynamic

a
pﬁw{tiéf could be reproduced provided the CG model is re-parameterized on the basis of
K?same liquid-phase properties. Recently, Bereau and Kremer!'® proposed an automated
parameterization procedure for common small organic molecules. The method was able to
reproduce the water-octanol partitioning free energy of more than 650 neutral compounds
with a deviation of the order of magnitude of the thermal energy at room temperature.

One of the advantages of the original Martini force field is its limited set of parameters,

4
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PublishiwHich make it relatively easy to adjust or optimize the interactions't. Although it was de-
signed primarily for lipids (free fatty acids, triglycerides, phospholipids, cholesterol etc.!?13)

extensions to proteins have been proposed!'* as well as carbohydrates'®

Recently, Neyt et al.'® compared atomistic and coarse-grained (Martini force field) pre-
dictions for the interfacial tension (IT) at the oil-water interface,/They mention that CG
models are able to reproduce qualitatively the effect of the sali onthe interfacial ten-

o the prediction of in-

sion of the system, although a more developed calibration be necessary for more
quantitative results. Ndao et al.!” applied the same me %g&t

terfacial tension in several organic molecule-water syste They also insist on the need
=

for a re-parameterization to better match the interfagial telssion. They emphasize the fact

that liquid-liquid interface equilibration is an issue which be partially resolved using CG
rather than all-atoms models. L:.)

In this work, an artificial oil in water er\: analogous to those found in bioresources or

food matrices is simulated, composed % number of compounds: oleic acid and the
1 d

corresponding triacylglyceride, triol ycexride, or triolein. Before studying oil mixtures in
N

ead is calibrated against the water-OA interfacial

water, force field parameter for the
tension. Then we investigate moleculeerganization, mainly at the interface, and its impact
on a macroscopic parameter,M acial tension of the mixture. Results are compared

with our experiments a, d%gs from literature (interfacial tension, water solubility in oil,

e 1onstrate the relevance of the CG simulation to describe the

£

water-oil mterfa I'b avuy of organic compounds.

area per molecule).

LOGY

xpersm nts
l‘

Xpeﬁments were performed to measure the interfacial tension. The oily mixtures were
?Osl}gsed of pure glyceryl trioleate (purity grade > 99%, 885.43 g mol™!, Sigma-Aldrich)
and oleic acid (purity grade > 99%, 282.46 g mol~!, Sigma-Aldrich). The proportion of
each compound was adjusted with an automatic pipette and verified through weighting.
The oleic acid proportion in the organic phase was 0, 5, 10, 20, 40, 60, 80,100 %.,,,. The
density of glyceryl trioleate, oleic acid and water are respectively 0.910 kg L=, 0.890 kg L~*


http://dx.doi.org/10.1063/1.5021753

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishiffgma-Aldrich data) and 0.99786 kg L. The density of a mixture GTO-OA (40/60v/v)
was measured at 0.904 kg L1

The interfacial tension between oil and water was measured using the pendant drop

method (Drop Shape Analyser DSA 30, Kriiss) at a constant temperature of 295 K. A

pendant water drop was formed with a clean disposable syringe ﬁ%d with ultrapure water

associated to a needle (diameter 1.8 mm) inside a 8 mL cuve quartz filled with

ssure difference between

lipid phase, so that the drop profile allow a mathematical ig with a model based on
the Young-Laplace equation coupled with the calculation Q\Q

inside and outside the drop '®' (equation 1). The sha f"t‘ber defined by Song!'® was

> (.5 to minimize the interfacial tension error. The erlmszn | densities of oil and water

ilibrium was reached after a few

minutes. Finally, the interfacial tension was wd‘a}m the equation 1. The schematic

were input parameters and were supposed constant.

droplet profile is presented in figure 1.
—|— Apgz (1)

with 7, the interfacial tension, R R} curvature radii of the non-spherical interface,
Ap, the density difference be W\ e and oil, g, the gravitational acceleration, z, the

vertical height measured from t m plane.

) .

Figure 1: Pendent drop with curvature radii Ry, R; and R, at an arbitrary point S on a

convex surface
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PublishiBg Molecular Coarse Grained Simulations

We used the MARTINI force field'® to describe interactions between all particles in the
system. The Martini force field has been optimized to reproduce partitioning free energy of
a large number of chemicals between polar and non-polar phases. Each particle represents
a small number of atoms, typically 3 or 4 heavy atoms. The foree field considers only four

@use of MARTINI force

main types of interaction sites and up to 18 subtypes. Hence;

field first requires to represent the molecules of interes@@@

rained particles and

to associate them with the correct subtype. The force™ield parameters are given in the

) ) -~
supplementary information. k&
1. Modeled molecules \\D

In this work, four water molecules a m@ as a single P4 particle. In order to prevent

the coarse-grained water model fromdigezingyso called “antifreeze” water particles have been
introduced at a mole fraction ofg0.1 i%
with identical parameters as Py g}&
Lennard-Jones parameters betw%ﬁ; and P4 particles. The Lennard-Jones size parameter
and“the interaction energy parameter ¢ is equal to 5.6 kJ mol~!.
The cis-9-Octade enoicaxs(
bic tail with one(tfnsa /"atgd bond. At the MARTINI coarse-grained level, it is composed
of three partigl tMn a total of five particles, as shown in figure 2a. The OA tail is
modeled wit 3@6 C; beads and one slightly more polar bead of type Cs to account for
the unsafuration. We considered that the acid head -CH,COOH is neutral of main type P.

From (the’ pagO {y Marrink et al.'3, the most natural choice would be the type Ps which
tesponds

e
ic acié) aggregates, Bennett et a

il

adld whereas it is described as Py in serine, threonine, lysine and glutamic acid. We found

atér '*. Anti-freeze particles are of subtype BP,

he antifreeze effect is obtained by scaling up the

o is changed to 0.57 n

id/(OA) is composed of a carboxylic head and a long hydropho-

acetic acid. However, other choices are possible. In a study of pH effect on

1.2021 ysed parameters adapted from aspartic acid from

TINI 2.1 force field'®. The amino-acid region is modeled as a P3 bead in aspartic

a model for palmitic acid where the head group is represented by a P, bead??. Therefore,
as will be shown below, we decided to select the correct subtype by comparison between

the experimental and the simulated interfacial tension of the pure OA with water interface.

7
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PublishiRgery P subtype was studied, but Ps which is more polar than water. OA molecule will
then be described as: P;-C;-C5-C;-C;.

Glyceryl trioleate parameters are taken as provided by Timu Vuorela on the MARTINI

web site??. This parameter set is based on standard MARTINI 2.1 force field plus angle

potential refinement as described in Vuorela et al.?®. A schema?'{ of the GTO molecule

along with the coarse-grained types is given in figure 2b. Eac d répresents four heavy

atoms, but the glyceryl bead, composed of three heavy atoms . Each tail is described

by a non-polar group of subtype N, corresponding to ejst followed by an OA tail
t 4 C‘f(\Na—Cl—Cg—Cl-Cl)g.

(-C1-C3-C4-C) leading to a general coarse-grained struc

ff_ -Q

Figure 2: Schematie om and (b) GTO molecules at both atomistic and

coarse-grained descript ‘%& Each coarse-grained particle contains four heavy atoms.
P (red), N, (yellow), C; (black) and Cj (blue).

2. Sim
Mdlecular /amics simulations were done with the LAMMPS code?*. We controlled

L in)ut parameters in order to reproduce precisely the interactions that were used
d(i{gféce field optimisation. Thus, dispersion-repulsion interactions are described using
T‘hﬁ L\ennard—Jones 12-6 potential with energy and forces vanishing at a cut off distance
rey, This is implemented in LAMMPS using a standard shift function (third-order polyno-
mial)?. The Lennard-Jones potential was shifted between rg,it, = 0.9 nm and 7. = 1.2 nm.
Lennard-Jones interactions also apply between second (and more) nearest neighbors inside

each molecule. Bonded interactions between adjacent beads are described by an harmonic

8
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PUbliShi]](gt >ntial of the corresponding bead distance and chain bending is represented using an har-
monic potential of the cosine of angles between adjacent bonds. Equations of motion are
integrated using the velocity-Verlet algorithm as implemented in LAMMPS with a time step
of 20 fs. During NVT simulations and N P,.T simulations (see below), a time constant of

40 ps is used for the thermostat and a time constant of 400 ps is Eé/ed for the barostat.

3.  Stmulation \h
In this work, the influence of the oil phase compos the oil-water interfacial

tension, 7, is studied. For all studied systems, the ater nt is constant and roughly

represents one third of the system volume. Qﬂ t systems were simulated with

1g the initial amount of OA and GTO

different OA to GTO ratio. Detailed compositions-are @en in table I. The initial OA molar
fraction was calculated according to equati \

molecules in the simulation box, nd, a pectively.

Tl
xo\?* Tt e @)
\\ OA GTO

Initial configuration W@Buﬂt using the PACKMOL package®® to speed up the equili-
bration part. The s pe 0 simulation box is parallepipedic. Box length in z direction
is four times the#val 1n 2 and y directions. Two interfaces are created normal to the

z direction a Wat molecules are initially separated from oil molecules. OA and GTO

molecules are omly distributed inside the oil phase. After creation, the total energy of

the box mx(umlz using a conjugate gradient method. Then, box volume is rescaled in
order to‘-blrmih e system close to the experimental density. The system is then allowed to
reJax, fi s at 300 K and 1 bar using the isothermal-isobaric algorithm of Shinoda et

. M@e precisely, the pressure along the z axis, P,., is imposed during the run and box

Te:i,gta in z direction is allowed to change while box lengths in x and y directions remain
coustant. This step enables to reach mechanical equilibrium, a crucial step before comput-
ing interfacial tension. During this NP..T run, the average box length in the z direction
is computed over the last 100 ns where a plateau clearly appears. This average box length

is therefore applied to the simulation box. Typical box dimensions are 107 x107 x 465 A.


http://dx.doi.org/10.1063/1.5021753

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

PublishiRgally, a very long production run of 2 s is realized for each system in the NV'T" ensemble
at 300 K and equilibrium properties are computed along the last 1.6 us.

Some verifications were made but not detailed in the paper: we checked that the demixing
arises if we start with all species placed randomly; we verified on system 2 that the interfacial
tension value and the final organization are identical if all OA molf{ules are initially placed
at the oil-water interface or placed randomly into the oil phase; as algo verified that the

temperature change between 290 and 310 K has a negligible impactdn the interfacial tension.

N
—
4. Interfacial tension ks

Interfacial tension 7 can be computed fr%e alowing expression (known as the

-

Kirkwood-Buff expression) *7: \
K :\&@ 7)) (3)

_—

tion{wormal to the interface) and P, and P are the

where L is the box length in the z di

instantaneous pressure componeuts, re

factor one half comes from t fk wo interfaces appear in the simulation box. The
ensemble average is taken ovgrgt\%omcal ensemble. During the course of the simulation,
the full pressure tenso is%sputed, from which instantaneous values of P, = P,. and
Py =1/2(P,, + Py, re/d céd.

ec?i‘vely normal and parallel to the interface. The

It must be notéd thag equfation 3 is valid only in the limit where the range of interaction

forces is smal

Lﬁl\th\to the distance L. In the practical case of molecular simulation, it

means thatghegimulation box must be large enough to avoid any interaction between the two

oil-waterinteffaces™ This can be checked by looking at the pressure profil along the direction

normdl to the fuferface. In this work, we used the algorithm proposed by Nakamura et al.?®
to@ompute the local pressure tensor in Cartesian coordinates in LAMMPS. In this approach,
t simu‘i}ition box is divided into 300 slices parallel to the interface and the pressure tensor
?}sfngl s are computed inside each region. The slice thickness varied between 1.55 A and
168 A depending on the system studied. Figure 3 shows the evolution of P (z) and Py(2),
local values of pressure components in a slice around z. We observe that P, (z) is constant

along the z axis, as expected for a system at mechanical equilibrium. On the contrary, large

variations of Pj(z) are observed around layers 50 and 230, corresponding to the location

10
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Publishinfgthe water-oil interfaces. However, both components are identical far from interfaces,
indicating that the simulation box is large enough to compute the interfacial tension. In

this work, the interfacial tension will be computed using the local pressure components?’-3°:

(4)

20— 74

v,
1
L

100f P||

: _ = th _
&

water 4{| water |

P [bar]
o
I
e
T
)

-200

050 7100 I50~ 200 250 300
wwmber

~
Figure 3: Local pressure compon forgsystem 7 (see table I), along the z direction. The
time average normal compc‘u\ ' (2)) is constant along the z axis, as expected for a
riu

system at mechanical equilibrium™~The location of interfaces can be clearly seen around

layers 50 and 230, where large\variations of the pressure component (Pj(z)) occur. Layer

1dth for system 7 is 0.156 nm.

III. R U}

w /

A. aramﬁt ization of the polar head of OA

—

S m%qtionned in section [1 B, several particle types can be used to describe the polar head
WD& 1.e. the carboxylic acid group. No unanimous opinion can be gathered because the
polarity of the acidic group depends on the electron donor capacity of the lateral chain!43!.
In this work, we decided to test several polar head types for the oleic acid, namely types
Py to P4, and to select the one giving the best estimate of the interfacial tension for the

water—oleic acid binary.

11
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Publishing System|nlro n0,  n% 20,
1 | 1874 015000 0
2 | 1780 300 15000 0.144
3| 1686 600 15000 0.262
4 | 1500 1200 15000 0.444 / \
5 | 1126 2400 15000 0.681 5
6 | 938 3000 15000 0.762\
7| 750 3600 15000 027 ) -
8 | 374 4800 15000 928
9

0 6000 iQOO 1

Table I: Composition of the studied sys T 1s‘"fhe initial number of molecules of
species ¢ introduced in the simulation. C(MW g the initial full phase separation, =, is
the initial mole frastion 0FOA in the oil phase.

<

We present in figure nterfamal tension at the water—OA interface (system 9) com-

puted from molecula; dy nics using different polar head types. The computed values are

compared With { me)atal data obtained using the DSA apparatus, 11.440.3 mN m~!.
It is worth notln t ourwvalue is much lower than the one reported by Demond and Lind-
er’?, 15.59 * (see reference 3 therein, from Young and Harkins, 1928). However, it

is in good agreement with recent data from Kallio et al?3,12.0 4+ 0.5 mN m™!

w /

As expected, the interfacial tension decreases as the polarity of the polar head increases

get &loser to the water bead type polarity. The interfacial tension calculated with

?ﬁvﬁti& e

the simulations to describe the OA polar head in order to reproduce correctly the water—OA

o fits well with the experimental one. Type Py was thus selected for the rest of

interfacial tension. This result indicates that the polar head in OA is less polar than acetic
acid (P3) which is consistent with a more important donor character of a long aliphatic

carbon chain.

12
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-- Experimental value |

12+ .

““““““ T
£
| :

§
o . NG

2 3
Indicei of the OA head par: cle‘b \
—
—
Figure 4: Interfacial tension of the water-OA mixtu (systSm ) versus the index i of the

carboxylic acid polar bead P;. The higher the ir@( iyt igher the polarity of the bead.

! -
B. Reaching the equilibrium state \‘\\

S

Before computing any property, ‘g%m datory to check that simulation boxes have
reached thermodynamic equilibrifun. The initial configurations already contain two phases
but some time is required befgr %anentrations reach their final values: depending on
the lipid phase composition, %TO molecules leave or enrich the interfaces whereas

a few water molecules deave the aqueous phase and solubilize into the lipid phase. The

y (MmN m™?)

LB |

timescale associateddwith
field like MARTINT. mgditor the system behavior during the transient state, the time
evolution of t LMOf water, OA and GTO molecules in the bulk of the lipid region was
followed (s ‘37

sé processes is rather long, even with a coarse-grained force

ow for a precise definition of the bulk lipid region). We present in figure 5 the

number dfunoleculés into the bulk region n’. As expected, the number of water molecules in

the lipid phasc'ifst increases with time, OA molecules leave the bulk lipid region and migrate
towardssghe interfaces while GTO molecules move in the opposite direction. Obviously, this
precess %spends on temperature, phase composition and dimensions of the simulation box;
\f‘hﬁu&, as can be seen in figure 5, the timescale for this process is typically in the range
400-600 ns. The same range is observed for all systems studied. Moreover, the MARTINI

3 .
, meaning

force field has been shown to speedup dynamical processes by a factor of four®!
that the “physical” time needed to reach chemical equilibrium in this system can therefore

be as large as 2 us.

13
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C. Local organization in the ternalﬁ‘%’g& es

\
i3 density of bead types in systems 2 and 7, i.e. with

. The mass density profil is built using the position

Figure 5: Time evolution of the number of water ( and GTO molecules into the

ton timescale).

We present in figure 6 the local

low and high OA/GTO ratio, resgectiv
of each bead type along the zfa &\oﬁqa to the water—oil interfaces. Each full box length
is divided into 300 layers of Oml nm. The local density is thus the mass per layer for
each bead divided by t I@xiolume, averaged over 1.6 us data at equilibrium. Water (P4
type) and anti-freezg wateri(BP, type) densities are represented explicitly along with OA
head (P, type), @A tail (Cfand C; types) beads, GTO ester groups (N, type) and GTO
tails (Cy and @g types). The total density per layer is also shown.
Three dist 11)

260-300, ke lipid
and lﬁa"‘iulk gions are homogeneous and not perturbed by the presence of the interfaces:

egions can be distinguished: the aqueous region, between layers 0-40 and

lk region between layers 120-180 and two interfacial regions. Aqueous

thetotaldensity profile is flat in the corresponding regions. We also notice that the average
density y water in the aqueous region is 0.896 g cm~3, very close to the bulk density of
Wer\ plus anti-freeze water (0.1 bead ratio BP4/P4) obtained by us using independent
simulations under the same thermodynamic conditions: 0.898 g cm™3. For the lipid bulk
region, we did independent simulations of pure OA and pure GTO and obtained equilibrium
densities of 0.818 g cm ™3 and 0.841 g cm ™3, respectively. These values are identical within

0.1% to the OA density in system 9 (water—-OA) and the GTO density in system 1 (water—
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Figure 6: Local
Layer width is 0.156 nm.

GTO) g& as the bulk properties are reproduced in the aqueous and lipid regions, the

snnula on b@(es are considered large enough to study at the same time bulk and interfacial
p opertiss.

SAlt ough computed densities in the water and lipid regions agree with bulk densities of
the models, they are notably different from experimental values (by roughly 10% for water
and 8% for the lipids). This clearly indicates some limitations of the MARTINI force field.
A spurious effect was also observed concerning the local organization of P, versus BP, beads

at the water—oil interface, discussed in the SI.

15


http://dx.doi.org/10.1063/1.5021753

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishin go lipid molecule is totally dissolved in the aqueous phase whereas several water beads
are totally dissolved in the lipid region. A fraction of oleic acid and trioleate molecules are
organized at the water—oil interface. The corresponding polar beads, P, for OA and N,
for GTO, are in contact with water beads, whereas tail beads C; and C3 are in contact

with the lipid phase only. When OA and GTO are present at thefinterface, the P, beads

are more in contact with water beads than N, beads. All t ry mixtures (systems 2

nd N, coincide with the

to 8) present the same characteristics. We also notice some iteresting structure for the
interfacial region. The maxima of local density of polar "xi

minima of tail beads. A detailed analysis and inspection ofithe density profile shows that a
lipid bilayer is formed by OA and GTO molecules a ‘;I?e \Mgte —oil interface whatever the
composition of the system, even for pure GTO.fThis_is her confirmed by the distance
between the two planes of polar beads (25-30Ay) com ;aad with the length of OA molecule
(14A). Snapshots showing the bilayers for systems 1 and 9 (pure GTO and pure OA

oil phases) are presented in figure 7 and a sc atic representation of the bilayers is shown

in figure 8. A more quantitative an I% iven in SI, as well as movies of system 5 that
demonstrate the bilayer presence, thX\gP\occupation of the interface by OA molecules,

and the exchange of OA and GT

D. Lipid phase co (Qﬁsn

As mentione‘d<¢ar ’,,Wzyer, OA and GTO local molar fractions change with time until

h%(ih . The equilibrium state is characterized, in particular, by the
molar fractj (Dche different species in the lipid bulk phase 2} (layers 120-180), i.e. the

i

eeén the bulk and the interfacial layer.

some equilibri

molar ctioSl in the lipid bulk region, x2, can be significantly different from the initial

lar fré)ction ), (equation 2) and from the interfacial molar fraction =% (equation 6).

NI

”](D)A
ToA= p o (5)
noa + Néro
int
int __ oA (6)
OA ™ _int int

noa T NaTo
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Local density [kg/m’]

~— GTO.N, beads \

— GTO,C, &C, beads

Local density [kg/m’]

0.8

0.6F

— Water
0. — OA, P, beads
OA,C, & C, beads

0.2

A
N

_\&) (b) pure OA

re): Snapshots of the bilayer at the water—oil interface in the systems 1 containing

1e«GTO oil phase (a) and 9 containing pure OA oil phase (b). The snapshots with all
theévbeads and with only the polar beads (Py or N, ) are compared to the density profiles of

the corresponding simulation. Snapshots produced thanks to VMD software343°
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Figure 8: Graphical representation of the bilayer at the gva
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L
This is not true for macroscopic systems \$Qe\t};e umber of molecules in the bulk phase is

much larger than the number of moleculgs M 1
nd(&Q)

rfaces. In macroscopic systems, the bulk
phase serves as a reservoir for OA ‘\ﬁlolecules and 22, ~ r,. Therefore, care
should be taken to account for this dlh , when comparing interfacial tension (or other
composition dependent propertieshobtained from molecular simulations with experimental
data. We report table II the“e¢o ted OA mole fraction in the lipid bulk phase and
i l‘wifor ach system. It is important to note that, although OA

is not a surfactant lec

compare it with the init

, the final bulk concentration is always smaller than the initial
concentration, espec lf at)pw OA composition.

We present 1( NQ he estimation of water solubility in the lipid bulk phase as a
function of Q(;ljr fraction. Computed values are compared with measurements from
Platford* and Chien®". Experimental data give water solubility in pure OA and pure GTO
in thefrange -410 K. They show that water is much more soluble in OA than GTO and
also th solboility strongly depends on temperature: according to Platford®®, solubility in

chaﬂfes from 0.13 mol L™! at 283 K to 0.26 mol L' at 310 K and solubility in GTO
‘ehsng\ rom 0.051 to 0.1 mol L=! over the same temperature range. Water solubility in

O given by Chiou is 0.056 mol L=! at 298 K, smaller than Platford value of 0.072 at
293 K. A single data point in a OA-GTO mixture, at z% , ~ 0.75 is provided by Platford,
at 310 K.

As can be seen in figure 9, molecular simulation data are in fair agreement with experi-
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Publishing System| 20, 25,
1 0 0
2 0.144 0.105
3 0.262 0.203
4 (0.444 0.362 /\
5 ]0.681 0.630 ‘)
6 ]0.762 0.720 \
7 ]0.827 0.802 Q_\
8 ]0.928 0.917
SIS

Table II: Initial and equilibrium OA mole f@"@'ﬁe lipid bulk phase (layers 120-180).

N

D
o_
oL
N
oL
~
o><
>
oL
(o]
oL
(o]
a

simula da};a are compared with experimental measurements from Platford®® and
,ﬁ

Chiou®”

40 .
Figure 9: &Cemraﬁon versus OA concentration in the lipid bulk phase. Molecular
£
)

an& ater solubility is lower in GTO than OA. Molecular simulation data overestimate

ter solubility in OA and underestimate water solubility in GTO. The solubility value in
the OA-GTO mixture is not correctly predicted by simulation. Platford measured a solu-
bility close to the one in pure OA at 310 K. Molecular simulations clearly show that water

solubility strongly increases with OA concentration, though only for z2), larger than 0.65.
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Figure 10: Measured and computed interfacial tension -, vSt‘sus OA molar fraction in the

bulk regior@A ‘)

! -
Clearly, more experimental data at interm %’entration would be required to confirm
the water solubility values in OA-GT m&\(es.

\S

E. Interfacial tension and &p molecule analysis

We present in figure 10 the '\pﬁ‘ted interfacial tension between water and OA-GTO
mixtures versus OA m ar"ﬂxScion in the bulk region. The interfacial tension v decreases
linearly with increasifig OAsgomcentration in the organic phase. This is consistent with the
amphiphilic propeftie ,EOA’ due to the polar head and the apolar tail. A good agreement is
observed betw, 3Nted and experimental data shown in figure 10 for OA molar fraction

o

23, < 0.6, the interfacial tension is overestimated by up to 15%. How-

O and water—OA systems are well predicted: the computed interfacial
tensiofis for and OA are respectively 30.2 & 0.3 mN m~! and 10.8 + 0.3 mN m™!,
withc esp)nding experimental values of 29.2 & 0.1 mN m™! and 11.4 4+ 0.1 mN m™'.

e disa?greement observed at low OA concentration suggests that OA-GTO interactions
’aﬁpﬁrﬁ well described, leading to incorrect concentrations at interfaces: OA concentration
abnterfaces should be larger in order to recover experimental data.

We tried to compare these values with theoretical predictions. There exists only a few
methods to predict interfacial tension data for multicomponent mixtures. From a practical

point of view, the Fu et al. method®® is one of the most employed for ternary mixtures. It is
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Publishihgsed on a thermodynamic relationship established by Shain and Prausnitz®. Using several
assumptions, Fu et al. were able to relate interfacial tension to the mutual solubilities of the
different species. Since OA or GTO and water are almost immiscible, the mutual solubilities
can hardly be measured or even more computed. It is therefore difficult to estimate v in
the ternary systems from data obtained using simulation. Instead we computed interfacial

tension of binary systems, assuming that OA and GTO concen aﬂj)n ihgvater is zero. The

interfacial tension can thus be obtained from: \
KRT ‘)

I RNEAC I W 7)

where z¢ is the water molar fraction in the oil phase, K % 0.9414 is a constant proposed
by Fu et al., R is the perfect gas constant, T" the te@erature and A,, = 35.6 A2 per molecule,
the Van der Waals surface area of the water hﬁl}& Using water concentrations issued
from molecular simulations, we obtain Vw40 = 25.0mN m~! and vy_gro = 37.8 mN m™!
It is clear that the model proposed by x\ in disagreement with a direct computation
of interfacial tensions. This may e f an incorrect value for K. As evidenced by
Santos et al.“’, the constant K c d1 fﬁn the one proposed by Fu et al., depending on
the type of mixtures investlg , precise molecular simulations on model systems
could help to check the Fu et al uation.

Although the comp edmsrfamal tension is not in full agreement with measurements,
we believe that thesg/simulations contain realistic informations about the local structure at
the oil-water intgffaces, Thé number of OA and GTO molecules in the interfacial region
J%M local density profiles of P, and N, beads, by direct integration of

were compute

their first

akeatfthe oil-water interface. From our simulations on systems 1 and 9, the area
occupied r @A and GTO at the interface between pure product and water are respectively
Aba . and Afpo = 152.1 A2, The results are compared to Langmuir balance

eriments )hat were described in the literature for OA and GTO*"™* and complemen-
%ylmental results (figure 11). The principle of these experiments is to spread lipid
C

ules as a monolayer on an water—air interface and to compress this interface with bar-
Accordlng to literature, a film of pure OA presents a compressed liquid organization

with an area per molecule between 20 and 50 A2. A film of pure GTO presents an expended
liquid phase with an area per molecule between 100 and 150 A2. The film collapses for lower

area per molecule. In the simulation, in presence of a majority of OA at the interface, the
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Figure 11: Surface pressure II at the water-oil interface vefgus the area per molecule A;.

compared to experimental data obtainedfwith pu A and pure GTO 4143

S

! -
area is 36.6 A2. This result corresponds tw sed liquid phase and correlate to the

experimental results. Considering thes'qiu\ ioirs with pure GTO, the area is 152.1 A2

similar to the experimental data ingthe sampe conditions and an expended liquid phase is

present. ~
We present in figure 12 th ew\ f the global area per molecule, A, along with the

excess area per molecule, Ag, \a

(S Se
% A— [-Tiélxtx oat(1- fUi(r)lfx)AETo} (8)
V.

where the term ?{ bra etsAS an ideal contribution, A*, and % represents the OA molar
fraction at theduterfaege. The excess area presents a small positive deviation, showing that
the interfage 1 ]ﬁl)ghtly less compact than ideal product. The excess area reaches 5 A? for
ribt = 08914 However, the small values observed show that a rather good mixing of OA

and C@g at the interface, which seems realistic with identical hydrophobic tails.

ﬁ
ISQ NCLUSION
~

S

Nine systems containing oleic acid and triolein mixtures in contact with water were sim-
ulated using a coarse grained molecular simulation and the MARTINI force field. The polar
bead P, was chosen to represent the fatty acid head in order to reproduce the experimental

interfacial tension.
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Large simulation boxes (107 x 107 x 465% equired to ensure that the two present
ra

interfaces have no interaction. The sim%\:

during 2000 ns, 500 ns to reach chemical
\

equilibrium and 1500 ns to produce grajecteries along which interfacial tension, water solu-

bility and local densities were cogt AIf*we account for the dynamical speedup (roughly
foxc

4) introduced by the MARTINT \@
\Sf*br 6 ps. Such long timescales support the use of CG

simulations. Inspectio ofﬂBilsity profiles suggests that a bilayer structure of the lipids

, the physical time needed to reach equilibrium

is 2 ps and the production run

intexfac

exists at the water—qi

Computed inteffaci {tepSions are close to experimental values with a small deviation
of maximum 5{; ow OA concentrations. The water solubility in the lipid phase is in
fair agreemeittwith experiments, between 0.03 and 0.32 ¢ L™!, rising with the OA content.
The surfage aftea oecupied by OA and GTO fit with experimental data; under simulation
condifions O o{ganization at the interface is that of a compressed liquid whereas GTO
behayesdike )n expended liquid.

Thro@gh all these results the usefulness of CG simulations for the analysis of water—oil
Wr&mal organization is demonstrated. This method will bring local informations on the
organization of target compounds, for example in biomass fractionation processes or food
additives formulations.

Also, we are quite confident that this CG model can be extended to the prediction of

interfacial tension and water solubility of fatty acids and triglycerides with different chain
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Publishileggths (e.g. palmitic, arachidic, linoleic acids, and the triglyceride derived from these fatty
acids). These quantities can be useful in order to derive new theoretical models which are

really scarce in this area (water, fatty acids, triglycerides).

SUPPLEMENTARY MATERIAL 3\

See supplementary material to obtain details on the force N eters, the behaviour

of P, and BP, at the oil-water interface, a deepened™analysis of the lipid organisation
demonstrating the bilayer organization, movies that hIs\craS 1e bilayer and the evolution
of local OA and GTO composition at the interfacCers OA mole fraction in the oil phase.
{ -
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