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Abstract

In the light of factories of the future, to ensure productive and safe interaction

between robot and human coworkers, it is imperative that the robot extracts the

essential information of the coworker. We address this by designing a reliable

framework for real-time safe human-robot collaboration, using static hand ges-

tures and 3D skeleton extraction. OpenPose library is integrated with Microsoft

Kinect V2, to obtain a 3D estimation of the human skeleton. With the help of 10

volunteers, we recorded an image dataset of alpha-numeric static hand gestures,

taken from the American Sign Language. We named our dataset OpenSign and

released it to the community for benchmarking. Inception V3 convolutional

neural network is adapted and trained to detect the hand gestures. To augment

the data for training the hand gesture detector, we use OpenPose to localize

the hands in the dataset images and segment the backgrounds of hand images,

by exploiting the Kinect V2 depth map. Then, the backgrounds are substituted

with random patterns and indoor architecture templates. Fine-tuning of Incep-

tion V3 is performed in three phases, to achieve validation accuracy of 99.1%

and test accuracy of 98.9%. An asynchronous integration of image acquisition

and hand gesture detection is performed to ensure real-time detection of hand

gestures. Finally, the proposed framework is integrated in our physical human-
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robot interaction library OpenPHRI. This integration complements OpenPHRI

by providing successful implementation of the ISO/TS 15066 safety standards

for ”safety rated monitored stop” and ”speed and separation monitoring” collab-

orative modes. We validate the performance of the proposed framework through

a complete teaching by demonstration experiment with a robotic manipulator.

Keywords: Physical Human-Robot Interaction, Safe Collaborative Robotics,

Convolutional Neural Networks, Real-time Vision, Transfer Learning.

1. Introduction

The advent of Industry 4.0, as a modern trend of automation and data

exchange in the manufacturing industry, has proposed the concept of smart

factories of the future [1]. This evolving industry demands a more effective

and involved collaboration between humans and robots, where each partner can5

constructively utilize the strengths of the others to increase productivity and

work quality [2].

Safety of the human coworkers and an efficacious interaction between hu-

mans and robots are key factors of success in such an industrial setting [3, 4].

To ensure safety, the ability of the robot to detect an external force, differen-10

tiate between intended and accidental forces and to adapt to the rapidity of

the human coworker is essential [5]. Nevertheless, the sense of vision is also

imperative for modern collaborative robots to monitor the behavior and actions

of their human coworkers for communicating or preventing accidents [6].

Generally, robots are designed and programmed to perform specialized tasks.15

Hence, it is difficult for an unskilled worker to reprogram the robot for a new

task [7]. The traditional robot teaching methods are tedious, non-intuitive and

time consuming. Multi-modal interfaces that include vision-based gesture de-

tection frameworks, constitute instances of natural and tangible user interfaces

(NUIs and TUIs). NUIs exploit the user’s pre-existing knowledge and actions20

– related to daily practices – to offer natural and realistic interactions. This al-

lows humans to directly interact with robots through voice, gestures, touch and
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motion tracking rather than instructing them the same by typing commands [8].

In many industrial settings, communication through speech is not appreciated

because of the interference produced by machines operations. The conventional25

use of teach pendants is itself too complicated for new users to learn. Portable

devices are always required to be charged almost on daily-basis and may also

have complex menu trees or networking problems in the interaction software.

Manoeuvring the robot to specific target locations by hand, in physical human-

robot interactions like in teach-by-demonstration applications, is the most in-30

tuitive way of interaction. To unburden the human coworker from carrying any

extra device while s/he manoeuvres the robot with her/his hands, gestures are

considered to be natural and intuitive ways to communicate/interact with the

robot [9].

Hence, in this paper we propose a real-time robust and background inde-35

pendent hand gesture detection module based on transfer learning [10] with

convolutional neural networks. The intuitiveness of our system comes from the

fact that the human does not need to wear any specific suits (Motion capture

suits or inertial sensors) nor to carry a specialized remote control or learn com-

plicated teach pendant commands. Such additional burdens would make the40

interaction unnatural [11].

We integrate the proposed hand gesture detection module with our physical

human-robot interaction library OpenPHRI [12] for robot control. On one hand,

this ensures safety of the human coworker – by complementing the standard

collaborative modes in OpenPHRI – while on the other provides a natural means45

for robot programming and reprogramming, through hand gestures.

Background and related work are described in Sect. II. We summarize our

contributions in Sect. III, while Skeleton extraction and hand localization are

detailed in Sect. IV. We describe our convolutional neural network for hand ges-

ture detection in Sec. V, while OpenPHRI integration and collaborative modes50

imposed by safety standards are briefly explained in Section VI. The robotic

framework and example industrial application of the proposed framework are

presented in Sect. VI. We conclude in section VII.
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2. Background and related work

The authors of [1] present the emerging concept of cyber-physical structure,55

which will employ extensive automation and self-organization of machines and

component parts in complex manufacturing scenarios, using different sensor

modalities. The primary role of human workers will be to dictate a production

strategy and to supervise its implementation by the robotic systems.

To achieve this goal, safe Human-Robot Interaction is crucial. According60

to [13], collaboration can be achieved only when safety is first guaranteed. We

will hereby survey the state of art with a similar perspective. We will review the

literature on safety in collaborative robotics, gesture detection for interaction

and sign language detection relevant to our research.

2.1. Safety in Collaborative Robotics65

A recent survey on human-robot collaboration in industrial settings is pre-

sented in [8]. The authors talk about safety citing several ISO standards, discuss

intuitive interfaces for robot programming/collaboration and explore different

industrial applications of human-robot collaboration. With regards to safety,

they recall the four collaborative modes from ISO 10218-1/2 and ISO TS 1506670

[14, 15, 16]: “Safety-rated monitored stop”, “Hand guiding”, “Speed and sep-

aration monitoring” and “Power and force limitation”. Since in this work we

addressed the first and third, let us now focus on works related to these modes.

In [17], the authors present a tire workshop assistant robot. SICK S300

laser sensors are utilized for navigation, obstacle avoidance and human detec-75

tion. The authors define three areas surrounding the robot namely “Safe area”,

“Collaboration area” and “Forbidden area”. The main disadvantage of this

technology[18] is that several thousands of reflective landmarks are required for

reliable navigation of the robot in a cluttered environment.

The authors of [19] thoroughly discuss several aspects of speed and sepa-80

ration monitoring in collaborative robot workcells. They analyze laser-based

human tracking systems. The human coworkers are detected through centroid
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estimation of the detected objects and as the authors state, this varies based

on the motion of legs, shifting of clothes, and sensor noise. The authors em-

phasize the technological advancement of safety-rated cameras and on-robot85

sensing hardware for enabling speed and separation monitoring in unstructured

environments. Moreover, the importance of human-specific identification and

localization methods is discussed for reliable physical human robot collabora-

tion.

In [20], the authors present the preliminary results of their research on90

sensor-less radio human localization to enable speed and separation monitor-

ing. A wireless device-free radio localization method is adopted with several

nodes connected in mesh configuration, non-regularly spread over a large in-

door area, so that the human-operator being localized does not need to carry

an active wireless device. The concept of user tracking in wireless sensor net-95

works is extended in [21]. This study considers the availability of the source

attached to the human coworker’s body in the industrial scenario.

The idea of trajectory dependent safety distances is proposed in [22] to attain

dynamic speed and separation monitoring. This method avoids fixed extra safety

clearances and is optimized with respect to the functional task at hand.100

Alternative sensing modalities for speed and separation monitoring include

motion capture systems [23] and vision based depth cameras [13, 24]. In this

regard, [18] compares structured light depth cameras and stereo-vision cameras

for mobile robot localization in the industry.

As all these works highlight, an advantage of vision over other sensors is that105

it does not require structuring the environment and/or operator. Furthermore,

it is generally more rich, portable (a fundamental feature for mobile robots)

and low-cost, even when depth is also measured by the sensor (as with Mi-

crosoft Kinect). While at present Kinect is far from being certifiable for safety,

we are confident that in the near future similar RGB+D sensors will. For all110

these reasons, in this work we have decided to use RGB+D vision for addressing

safety-rated monitored stops and speed and separation monitoring. As in [19],

we adopt the idea of human-specific localization to effectively identify the pres-
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ence of humans in cluttered environments. Our contributions on safety will be

detailed in the subsequent section after reviewing literature on gesture detection115

in human-robot interaction.

2.2. Gesture Detection in Human-Robot Interaction

Once safety is guaranteed, collaboration is possible. To this end, researchers

have proposed to use body gestures for communicating with the robot. The

literature on gesture detection in human-robot interaction scenarios is enormous.120

Here, we focus on works that are related to the idea we propose, by relying

mainly on RGB+D sensing.

A task-oriented intuitive programming procedure is presented in [25] to

demonstrate human-like behavior of a dual-arm robot. The authors decompose

complex activities in simpler tasks that are performed through task-oriented125

programming where the focus is given to “what to be done, rather than how

to do it”. Moreover, through the development of intuitive human interfaces,

high level commands are transferred to a sequence of robot motion and actions.

For human-robot interaction, the authors use Kinect V1 [26] to extract human

skeletal coordinates for gesture detection, and the built-in microphone array of130

Kinect V1 to detect the oral commands. Whole body gestures (extended arms)

are used to achieve robot motion in a dashboard assembly case. Although the

idea of task decomposition and controlling the robot through human gestures is

beneficial, the considered gestures, as in [27], are counterintuitive and tiring.

The authors of [28] present methods for obtaining human worker posture135

in a human-robot collaboration task of abrasive blasting. They compare the

performance of three depth cameras, namely Microsoft Kinect V1, Microsoft

Kinect V2 [29] and Intel RealSense R200 [30]. Kinect V1 uses a structured

light approach to estimate the depth map, Kinect V2 is a time-of-flight sensor,

while RealSense R200 has a stereoscopic infra-red setting to produce depth.140

In the blasting process, the abrasives are suspended in the air or fill the sur-

rounding environment, and significantly decrease the scene visibility. The use

of image-based methods to extract human worker pose is challenging in such
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environments. The experimental observations suggest that Kinect V1 performs

best in the real blasting environment, although no concrete reason could explain145

this. They also present a novel camera rig with an array of four Kinect V1 to

cover a 180◦ horizontal field of view. The use of Kinect V1, to extract human

pose for a marker-less robot control method is also presented in [31].

In [32], the authors present an online robot teaching method that fuses

speech and gesture information using text. Kinect V2 localizes the position of150

hands in the scene, while their orientation is measured by an inertial measure-

ment unit. The gesture and speech data are first converted into a description

text, then a text understanding method converts the text to robot commands.

The proposed method is validated by performing a peg-in-hole experiment, plac-

ing wire-cut shapes, and an irregular trajectory following task.155

To ensure safe interaction, [33, 34] proposes a virtual reality training sys-

tem for human-robot collaboration. A virtual game simulation is developed for

real-time collaboration between industrial robotic manipulators and humans. A

realistic virtual human body, including a simple first person shooter view, simu-

lates the user’s vision. A head mount display and a Kinect V1 track the human160

head and skeleton pose respectively. Several interaction tasks are accomplished.

These include selection of objects, manipulation, navigation and robot control.

This technique is useful to establish the acceptability of a collaborative robot

among humans in a shared workspace, as well as to tackle mental safety issues.

In [7], the authors present a strategy to use speech and a Wii controller165

to program a Motoman HP6 industrial robot. This helps workers, with no

knowledge of typical programming languages, in teaching different activities

to the robot. A neural network is trained to recognize hand gestures using

features extracted from the accelerometer output of the Wii-controller. In [35],

the authors train artificial neural networks to classify 25 static and 10 dynamic170

gestures to control an industrial 5 degrees-of-freedom robotic arm. A data glove,

CyberGlove II, and a magnetic tracker, Polhemus Liberty, are used to extract

a total of 26 degrees-of-freedom.

The authors of [5] present a study for measuring trust of human coworkers
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in fence-less human-robot collaboration for industrial robotic applications. To175

ensure safety of the human coworkers, it is essential to equip the robot with

vision sensors, so that it can understand the environment and adapt to the

worker’s behavior. The paper also discusses the use of RGB+D cameras to

detect pointing gestures and proximity monitoring for safety using the depth

information. In [36], authors use human gestures to navigate a wheeled robot180

through pointing gestures directed on the floor. The interaction scheme also

includes detection of facial gestures which often fails, as stated by the authors,

because the untrained users make those gestures subtly.

In [37], the authors propose object recognition through 3D gestures using

Kinect V1. They exploit the depth information from Kinect V1 to subtract185

the object background. This strategy often fails if predefined environmental

assumptions are not met. Moreover, a histogram matching algorithm is used

to recognize the objects placed on a white color table. Such techniques have

recently been outperformed by modern deep learning ones like convolutional

neural networks [38]. The authors of [39] propose a human-robot interaction190

system for the navigation of a mobile robot using Kinect V1. The point cloud

acquired from Kinect V1 is fit on a skeleton topology with multiple nodes,

to extract the human operator pose. This technique is not reliable to obtain

the skeletal pose unless the human body non-linear anatomical constraints are

modeled in the design of the skeleton topology.195

According to [40], sign language is among the most structured set of gestures.

Hence, in our work, we proposed the use of American Sign Language (ASL) for

communicating with the robot. In the following subsection, we discuss previous

works on sign language detection.

2.3. Sign Language Detection200

Hand gesture detection techniques can be mainly divided into two categories:

electronic/glove-based systems and vision-based methods. Some researchers pre-

fer the use of wearable sensors to deal with occlusions or varying light conditions

[41]. These sensors are expensive, counterintuitive and limit the operator’s dex-
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terity in his/her routine tasks. The vision-based methods can be further divided205

into two categories; a) methods that use markers and b) pure vision-based meth-

ods [42]. Since pure vision-based methods do not require the users to wear any

data-gloves or markers, they offer ease-of-use for the operators to interact with

the robots/machines. Furthermore, in Sect. 2.1 we have highlighted the ad-

vantage of using vision for safety monitoring. For these two reasons, here we210

opt for a pure vision-based method and review only works on vision-based sign

language detection.

Early research on purely vision-based methods for ASL recognition dates

back to 1992 [43]. In this work, the authors use motion detection to capture

start/stop instances of the sign/gesture, hand location tracking to record the215

trajectory of the gesture, trajectory shape (using curve eccentricity) and detec-

tion of hand shapes at each stop position. The hand shapes are classified using

the Hough Transform method described in [44]. The authors in [42] utilize a

similar method as in [43]. It consists of a Canny filter that detects the hand

edges in the scene, followed by a Hough Transform that extracts the feature220

vector of size 200. A neural network is then devised to classify the hand ges-

tures. The dataset used to train the neural network is extremely small and it

is assumed that the image background is uniform. The authors do not mention

the hands’ localization in the scene during the recognition phase. Thus, it is

assumed that the system only works if the hand appears in a specific region of225

the image.

One of the initial works in detecting ASL gestures through Hidden Markov

models is discussed in [40]. The authors propose two settings in this research

i.e., the second person view (desk based recognizer) and the first person view

(wearable based recognizer). The proposed system recognizes sentences of the230

form “personal pronoun, verb, noun and adjective, pronoun” generated through

40 randomly chosen words. In both systems, videos were recorded and analyzed

offline for ASL translation. An a priori model of the skin color is used to segment

hands in the scene, while the absolute positions of the detected blobs in the

image are used to distinguish left and right hand. The use of absolute positions235
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of the hands in addition to a cumbersome wearable camera and computer system

on the head significantly constrain the movement of the “signer” in the scene.

Recently in [45], researchers proposed an ASL translation system using bi-

nary hand images by keeping the edge information in the image intact. They

use an image cross-correlation method to identify the signs by comparison with240

gesture images in a database. A similar hand gesture detector based on binary

images is proposed in [46]. The author proposes a color-independent (using

preprocessed binary hand images) hand gesture detector that relies on a con-

volutional neural network (CNN), inspired by LeNet [47]. The classification

accuracy of such system depends largely on the preprocessing steps of image245

segmentation performed with color or intensity thresholding, while CNNs are

inherently able of learning color features robustly, as shown in [48]. Such sys-

tems also normally require a plain or white background for hand segmentation,

which is hard to obtain in realistic human-robot interaction scenarios.

The use of depth cameras is becoming increasingly popular in applications250

like hand gestures detection or sign language translation. A thorough survey on

3D hand gesture recognition is presented in [49]. The depth information from

such sensors can be used to segment the hands in cluttered backgrounds, by

setting a depth threshold, while the normalized depth image of the hand adds

the information for correct classification of the hand gestures [50]. The accuracy255

of such techniques depends on the range and resolution of the depth sensors.

Nevertheless, the use of depth sensors is beneficial, since it aids the detection of

fine-grained hand gestures [51]. Latest works in deep learning have allowed the

extraction of 2D hand skeletons from conventional RGB images [52, 53]. This

can be used as a basis to fit a 3D kinematic hand model through an appropriate260

optimization technique as described in [54], thus eliminating the need of depth

sensors for this purpose.

In recent years, the idea of deep learning has made a concrete impact on

computer vision research and has been reported to even surpass human-level

performance in image classification [48]. Hence, in our work we chose to exploit265

convolutional neural networks to recognize static hand gestures. We localize and
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crop the image regions containing the hands, by exploiting the data from our

integration of Kinect V2 with a state-of-the-art 2D skeleton extractor library.

Then, we perform background substitution and image processing operations

(e.g., histogram equalization, introduction of salt and pepper noise etc.) on the270

cropped hand images to increase data variance, before training the CNN. This

allows the network to learn robust hand features, by avoiding time-consuming

rigid image processing methods during the recognition phase.

3. Our Contributions

This paper is an extension of our previous work proposed in [55] which275

presented a tool handover task between robot and human coworker through

static hand gestures. A convolutional neural network, inspired mainly by LeNet

[47] was developed, to classify four hand gestures. The aim of the previous work

was to build a robust hand gesture detection system. However, the dataset was

small, and the hand images were recorded only by one individual. This could280

not guarantee correct detection of hand gestures made by other individuals and

with backgrounds having rich textures.

We extend our work by training a hand gesture detector on ten gestures in-

stead of four presented in [55]. Moreover, the backgrounds are now replaced with

random pattern/indoor-architecture images to make the detection robust and285

background invariant. The vision pipeline is then integrated with OpenPHRI

[12] to complement the library with two collaborative modes of the ISO/TS

15066 safety standards. This integration is detailed in Section 6. We propose

an interaction setting where a human coworker can safely instruct commands

to the robot via gestures. In summary the contributions of this paper are the290

following:

• Development of a real-time hand gesture detection framework that lo-

calizes hands through asynchronous integration of OpenPose 2D skeleton

detector and classifies hand-gestures at frame-rate of approximately 20fps.
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• Integration of Kinect V2 depth map with the obtained 2D skeleton to get295

a pseudo 3D skeleton, which is used for ”speed and separation monitoring”

to ensure the safety of the human coworker.

• Training a background-invariant hand-gesture detection system through

transfer learning from Inception V3 convolutional neural network.

• On-line release of hand gestures database of Kinect V2 recordings for300

benchmarking and comparison.

• Integration of the developed hand gesture detection module with our safe

physical human robot interaction framework, namely OpenPHRI.

• Validation of the proposed framework for robot teaching and control of

Kuka LWR 4+ arm with the detected hand-gestures.305

The overall pipeline of the proposed framework is illustrated in Fig. 1. Each

named box is a cyclic process and dotted arrows represent asynchronous com-

munications between these processes. Each process is described in the following

sections in detail.

4. Skeleton Extraction and Hand Localization310

For safe Human-Robot Interaction, it is essential for the robot to understand

its environment, particularly the human coworker. In this research, we opted for

Microsoft Kinect V2 as the main sensor to capture the visual information of the

human coworker. Kinect V2 is a time-of-flight sensor and provides a larger field-

of-view and higher resolution RGB and depth images than its predecessor Kinect315

V1. This allows the robot to extract functional information from the scene, like

human(s) presence or object/obstacle detection, including depth perception.

4.1. Skeleton Extraction Module

In our work we utilize OpenPose [53, 52], to extract skeletal joint coordinates,

as in [56, 57]. This library returns 2D skeletal coordinates (xi, yi, ci), for i =320
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1, ..., 18, from a RGB image, using confidence maps and parts affinity fields in a

multi-person scene; xi and yi are the abscissas and ordinates respectively of 18

COCO body parts [58], while ci represent their confidence measure. OpenPose

works on the principle of “convolutional pose machines” described in [52].

Skeleton Extraction ModuleImage Acquisition and Hand Localization Module

Robotic FrameworkConvolutional Neural Network for Hand Gesture Detection

Frames 
Acquisition from 

Kinect V2 

Check If Skeletal 
Coordinates With Depth 

Received

TrueCheck Frame 
Request From Skeleton 

Extractor 

Send Serialized 
Color and Depth 

Frames to Skeleton 
Extractor

Display Color Image

Estimate the Size 
and Orientation of 

Bounding Box

Draw the Bounding 
Box, Skeleton 

Coordinates and Crop 
the Hand Image

False

True

False

Start Start

Send Frame Request to 
Image Acquisition and 

Gesture Detection 
Module

Request 
Acknowledged

False

Unserialize the 
Received Color and 

Depth Frames

True

Run the Color 
Frame through 

OpenPose

Send the Serialized 
Coordinates to the Image 
Acquisition and Gesture 

Detection Module

Serialize 2D Skeleton 
Coordinates and the 

corresponding Depth Values

Unserialize the 
Received Coordinates 

and Depth

Send the detected 
Hand Gesture to the 
Robotic Framework

Pass the Cropped 
Image through 
Trained Model

Get the cropped 
Hand Image OpenPHRI

Figure 1: The overall pipeline of our framework for pHRI using hand gestures

OpenPose is a robust skeleton extractor and is not trained on pre-defined325

body poses. It extracts each joint independently from the overall body pose.
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Hence, it is preferred over libraries like OpenNI and Microsoft SDK as they

are often not accurate in skeleton extraction, require initialization pose and

constraint the user to face the sensor. For real-time skeleton extraction, this

method requires a multi-GPU hardware with the output frame-rate mainly de-330

pendent on the number of persons appearing in the scene. The average frame

rate that is achievable using two Nvidia GeForce GTX 1080 on full-HD Kinect

V2 RGB image is approximately 14 fps. Since we currently employ only one

GPU in our framework, we obtain 6 fps with 1 person in the scene.

4.2. Image Acquisition and Hand Localization Module335

The strategy to localize human body and its sub-parts (i.e., hands or face)

depends mainly on the output of the sensor of choice. In [59] the authors use skin

color for hand segmentation using a conventional RGB camera, as in [46]. In [60],

human body localization is performed using laser sensors, and its sub-parts are

obtained through Kinect with the OpenNI library as in [61]. In [39], the authors340

localize the human body, inspired by [62], by merging clusters of the point cloud

obtained from the Kinect V1 after voxel filtering and ground plane removal.

Lately, infrared based sensors e.g., Leap Motion, are developed to track fingers

of a hand in the near proximity (within 25 to 600 millimeters) of the sensor.

However this range is too close for our application. In [54], authors adapt a state-345

of-the-art object detection deep learning technique namely YOLOv2, adapted to

localize hands and head/face of a person in a scene. The authors have utilized

OpenPose to first extract hands and face images from recorded videos with

human activity, and then used these images to train YOLOv2 to detect hands

and the face of the person in the scene in real-time. The face is detected to350

differentiate left hand from the right one. This is an efficient method to detect

hands in the scene in real-time but requires a separate training/adaptation of

YOLOv2 for hands and faces.

In our research, since we obtain the skeletal joint coordinates from OpenPose,

training a separate hand detector to localize hands is not required. To estimate355

the hands position, we fit a line between the elbow joint and the wrist joint
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returned by OpenPose and extend this line to one-third of its original length

(empirical value) in the direction of hand to approximately reach the center of

hand. A bounding box is then centered at the approximated hand center at an

angle which the forearm makes with the horizontal. This makes the hand image360

acquisition rotation invariant. The size of the bounding box is determined by

the mean depth value of a 6 × 6 matrix centered at the wrist joint, obtained

through Kinect V2 depth map as shown in Fig. 2. The hand images are cropped

with reference to the tilted bounding box, re-scaled to size 224×224 pixels and

rotated again such that the cropped image becomes vertical.365

Figure 2: Localization of hand through OpenPose is illustrated. The bounding box is titled

with an angle that the forearm makes with horizontal, while the size of bounding box is

determined by the mean depth value of the wrist joint. The mean depth value is computed

by averaging the depth pixel values of a 6 × 6 matrix centered at the wrist joint.

4.3. Asynchronous Integration of the Modules

In our previous work [55], we integrated OpenPose with gesture recogni-

tion sequentially to obtain an overall temporal resolution of approximately

4 fps. In this work, an inter-process distributed system is designed through
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nanomsg socket library1 which has drastically increased the frame rate of the370

vision pipeline. The afore-mentioned inter-process distributed system works

using a ”request-reply” communication pattern, known as scalability protocol.

Furthermore, it ensures that no frames are lost during communication. Figure 1

illustrates this asynchronous communication between the proposed framework

modules via dotted lines. The image acquisition and hand localization module375

retrieves the image stream from Kinect V2 and checks if a frame request has

arrived from the skeleton extraction module. When a frame request is received,

the current RGB and depth image are first serialized through flatbuffers2 and

then passed to the skeleton extraction module. The skeleton extraction module

unserializes the received frames with flatbuffers and then pass the RGB image380

through the forward-pass of OpenPose which returns a vector of 2D skeleton

coordinates (xi, yi, ci). The calculated mean depth values, as described in the

previous section, are concatenated with the 2D skeleton coordinates and this

3D vector (xi, yi, di) is then sent to the image acquisition and hand localization

module. The integration of Kinect V2 depth map with the 2D skeleton coor-385

dinates from OpenPose however does not represent the actual 3D coordinates

of the joints and represents the surface depth value of the joints. There is a

possibility that a joint is occluded in the scene by an object or the body itself.

To prevent false detection of depth hence preventing potential accident, we use

the confidence measure for each joint returned by OpenPose. The depth value390

of each joint is only updated if ci > 0.5 (this is an empirical value), otherwise

the previous depth value is kept. The image acquisition and hand localiza-

tion module expects to receive coordinates from skeleton extraction module in

each execution cycle. Once the coordinates are received, the hand is segmented

and cropped image (described in Section 4.2) runs through the forward-pass of395

trained convolutional neural network for hand gesture detection. The detected

hand gesture label is sent to the robot controller running OpenPHRI to pilot the

1https://nanomsg.org
2https://google.github.io/flatbuffers.
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experiment. The overall frame rate of our gesture detection pipeline is approx-

imately 20 fps while the skeleton is extracted and the hand location is updated

at around 5 fps. This significantly improves the execution performance of the400

vision system as compared to that in [55], which finally leads to a system that

better reacts to human commands.

5. Convolutional Neural Network for Hand Gestures Detection

In our previous work [55], we designed the CNN architecture for hand im-

ages with relatively plain backgrounds, while the number of gestures were set405

to 4 and the gestures were recorded by a single person. In this research, we

used 10 static hand gestures recorded by 10 volunteers (8 males and 2 females)

of age 22 to 35 and the backgrounds of the hand images are substituted with

random pattern and indoor architecture images (explained in Section 5.2). This

makes the recognition problem more complex as compared to the one presented410

in [55], where only 1 volunteer and 4 gestures had been considered. Therefore

we opted for transfer learning for gesture recognition, exploiting state-of-the-art

CNNs pre-trained on large image data from the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [63]. In particular, Inception V3 [64] which

is state-of-the-art in image classification for 1000 classes, is adapted for our415

background-independent hand-gesture recognition task. Inception V3 is avail-

able in Keras python library [65] with pre-trained weights. Figure. 3 shows

samples of the static gestures we trained our framework on. The gestures in-

clude 9 letters/numbers taken from ASL [66] and a None gesture that is not

among these nine. The letters/numbers are chosen such that they resemble with420

each other (like F, 7 and W; A, L and Y) so as to challenge the training and

ensuring robustness of the CNN. The None gesture is important to determine if

the person does not intend to interact with the robot. Our system also generates

this label when the line joining the elbow and wrist joint (forearm) of the user is

too low (in the lower two quadrants of the axes centered at the elbow joint). In425

this case, the robot controller ignores this command and does not initiate any
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action (which is likely undesired, since the user’s hand is low). We could have

excluded the None gesture from the trained network, by applying a predefined

threshold to the nine (one per class) network scores. However, since the relative

scores of the ten classes vary a lot according to the operating conditions, it is430

not possible to fix a priori such threshold.

Figure 3: Samples of the gestures considered for training. The labels represent the letters

and the numbers taken from American Sign Language. The last gesture is one of the several

None gestures included in the training set.

5.1. Preparation of Dataset/Dataset recordings

To create a dataset for gesture recognition and off-line development, RGB

and depth image streams from Kinect V2 are saved in the local workstation.

The frames are saved with an approximate frame rate of 20 fps. Each gesture is435

recorded by each volunteer for around 12 seconds with both hands (see Fig. 4),

at three distances of 5, 3 and 1.5 meters away from the sensor. The depth

information near Kinect V2 is rich and accurate, thus the images recorded at

the distance of 1.5 meters are used for the fine-tuning of Inception V3 (discussed

in Section 5.3). However, since the network is trained only on RGB images,440

the hand gestures can also be recognized at other distances. We are releasing

our dataset OpenSign3 online. OpenSign contains RGB and depth (registered)

3http://bit.do/OpenSign
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frames of volunteers recording 10 gestures. The RGB images are saved in png

format, while the float data of the depth images are saved in bin files. The total

number of images in our dataset is 20950. These include 8646 original images,445

and 12304 synthetic images obtained by substituting the background with the

technique that we will explain in Sect. 5.2.

Figure 4: A volunteer recording ’7’ gesture in the laboratory

We divide the dataset of 20950 images with a ratio of 3:1:1, i.e., 12570 train

images and 4190 images each for cross validation and test. Train images go

through extensive preprocessing (explained in Section 5.2), while only selective450

preprocessing operations are applied to cross-validation images to keep them

near those obtained during recognition in the robotic interaction experiments.

5.2. Background substitution and Preprocessing of the Hand Images

Background substitution is performed so the network is trained to detect

hand gestures independently from the background. We use nearly 1100 images455

of random pattern and indoor architectures which are freely available on the

internet4. The background substitution process is illustrated in Fig. 5. A binary

mask for background substitution is created using the depth information from

Kinect V2. All the pixels that lie at distance within ±18 % (empirical value) of

4https://pixabay.com/

19

https://pixabay.com/


the mean depth value computed at the wrist joint (obtained through OpenPose)460

are set to 1, while the rest are zeroed.

Mask Inverted Mask

* *

+

Figure 5: The process of background substitution.

This binary mask is broadcasted into three channels and then multiplied by

the cropped RGB hand image to get a background subtracted hand. An in-

verted mask is also created by simply applying a “NOT” operation on the mask

originally computed. The background pattern images are cropped to multiple465

224×224 sized images (as it is the set size of hand images) which are subse-

quently multiplied by the inverted hand mask. The hand image with subtracted

background and the pattern images multiplied with the inverted binary mask

are then added in the final step of background substitution. Figure 6 shows the

samples of gestures with original and substituted backgrounds. As discussed in470

Section 5.1, all the training images (images with substituted and original back-

grounds) go through several preprocessing steps. Image processing operations of

histogram equalization and introduction of Gaussian and salt and pepper noise

are applied on 30% of training images each while the remaining 10% are left

unprocessed. Figure 7 shows random samples of original and processed images475

after the addition of Gaussian noise and histogram equalization. For robust
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gesture detection, we also use the real-time data augmentation feature of Keras

library.

Figure 6: Samples of hand gesture images with original (labeled images) and substituted back-

grounds (below originals). Note the remnants of the original backgrounds. This phenomenon

is due to dilation of the binary masks. While it could be avoided by using techniques like

chroma key, we do not intend to use a uniform background, to avoid bringing any extra

apparatus in operation. In the experimental results (Sect. 5.4), we show that despite these

remnants, gesture detection is highly accurate.

Keras real-time data augmentation is designed to be iterated by the model

fitting process, creating augmented image data in defined batch size during480

training. This reduces the memory overhead of the computer but adds addi-

tional time cost during model training. The image processing operations that
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are applied on all training images (after the addition of noise and histogram

equalization as discussed above) using the Keras library include channel shift,

zoom, shearing, rotation, axes flip and position shift.485

(a) Samples of training images after histogram equalization

(b) Samples of training images after the introduction of Gaussian noise

(c) Samples of training images after the introduction of salt and pepper noise.

Figure 7: Image processing operations of histogram equalization, introduction of Gaussian

and salt and pepper noise are performed on the training images. First row in each sub-image

shows unprocessed image while the processed images are shown in the second rows.

The batch size for model fitting is set to 100 training images. These transfor-

mations are applied in real-time during model training. So the number of train

images remains the same while each batch for training is applied with selected
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– yet randomly chosen – transforms. In Fig. 8, we show samples of processed

training images with Keras being passed to the CNN.490

Figure 8: Image processing operations applied to the training images include color-shift, zoom,

shear, rotation, axes flip and position shift processes.

5.3. Adapting Inception V3 to gesture recognition

In image classification problems, the input data i.e., an image, is formed

by low-level edges, curves and color combinations irrespective of the type of

object that the image represents. It is therefore assumed that the early layers

in the pre-trained state-of-the-art networks have learned to efficiently extract495

those features from the images thus they need to be preserved. Inception V3 is

trained to recognize 1000 classes of objects as explained in Section 5. To adapt

Inception V3 to classify only 10 gestures, the last softmax activation layer of this

network with 1000 neurons should be replaced with a new layer of 10 neurons.

As implemented in Keras, the Inception V3 has 10 trainable inception blocks.500

We perform training in three phases. In the first phase all the layers (hence

inception blocks) in the network are frozen with the exception of the new layer

added and the CNN is trained for 10 epochs only. This fine-tune the weights of

the new layer exploiting the knowledge of all pre-trained inception blocks. Then

we unfreeze last two inception blocks and trained the CNN for 10 epochs, and505

then we trained top four inception blocks so the network is fine-tuned properly
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on our dataset. This gradual unfreezing of inception blocks prevents damaging

the pre-trained weights and thus avert over-fitting.
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Figure 9: Plot of validation accuracy (top) and validation loss (bottom)

The validation set is used to chose the best performing weights and then the

network is tested on the unseen test set to quantify/estimate the accuracy of the510

selected weights. Figure 9 illustrates the training curve of validation accuracy

and loss of our dataset. Each epoch took approximately 130 seconds to pass and

the network was able to achieve validation accuracy of 99.12% at 745th epoch

taking around 27 hours of training.

5.4. Quantification of the Trained CNN515

To validate and quantify the results even further, the accuracy of the trained

CNN is tested with a test set of 4190 new images. The overall test accuracy of

the trained CNN is found to be 98.9% on test set. The normalized confusion

matrix in Fig. 10 shows the accuracy of each gestures and misinterpretation of

one gesture against the others. It can be observed that despite 94.3% accuracy520

of the None gesture, it was misinterpreted the most among all. The reason for

this lower accuracy is that the None gesture defines all gestures that do not

appear like the other 9 as well as all transitional gestures.
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Figure 10: Normalized Confusion Matrix Quantified on Test-Set

It is difficult to include all the transitional gesture possible to be classified

as None gesture. Moreover, it can be observed from a close inspection of the525

test results that the CNN is very accurate in identifying a gesture as None

when a person is holding an object in his hand. It is inferred that if the CNN is

additionally trained on a gesture like ”an object in hand”, this gesture will be

easily distinguished. Meanwhile, this misinterpretation can be dealt by adding

a software constraint, as explained in Section 5, of not invoking gesture detector530

until the arm is in the upper two quadrants of the axes centered at the elbow

joint of the person, as we did in [55]. We release the source code of our hand
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gesture detection

6. OpenPHRI Integration

To control the robot and to remain safe during human-robot collaboration,535

we have used OpenPHRI open-source control library. This library allows to

describe the task to perform using force and velocity inputs in both the joint

and task spaces while enforcing safety constraints such as velocity limitations,

speed and separation monitoring or safety-rated monitored stops.

As discussed in Section 2.1, ISO 10218-1/2 and ISO/TS 15066 have imposed540

safety requirements for industrial robot systems. Moreover, these ISO standards

have identified four collaborative modes which are briefly explained as follows:

• Safety-rated monitored stop - This states that the human and robot can

operate in a shared space but not at the same time. As soon as the human

operator occupies the shared space, the robot must stop until the human545

exits the shared space.

• Hand guiding - In this mode, the human coworker can teach the robot

positions/waypoints by physically moving the robot without any means

of an intermediate interface.

• Speed and separation monitoring - This defines three zones of the shared550

space say red, yellow and green. The operation of robot depends on the

presence of human in each zone. If human coworker is in the green zone

the robot operates at its full speed, at reduced speed in yellow zone and

it should stop in the red zone.

• Power and force limiting - This mode prescribes the limitation of power555

and force to allow humans to work side-by-side with the robot. The robot

should be able to handle collisions with the human to prevent any harmful

consequences.
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OpenPHRI inherently is able to adopt all four collaborative modes efficiently.

The first and the third modes however, require safety-rated monitoring sensors.560

As described in the previous sections, our proposed framework obtains a pseudo

3D human skeleton, which is used to determine the distance of the closest body

part of the human coworker to the robot. This is integrated with OpenPHRI

to complement the two collaborative modes.

Kinect V2

BAZAR Dual Arm 
Mobile Robot

Workspace

Human 
Operator

Figure 11: Safe Physical Human Robot Interaction Setup

7. Example Industrial Application of The Proposed Framework565

To demonstrate the effectiveness of the proposed approached, we set up

an industrial-like experiment where multiple operators can safely interact se-

quentially with the robot using both hand gestures and physical contact. The

experiment is decomposed into two phases: 1) a teaching by demonstration

phase, where the user manually guides the robot to a set of waypoints and 2)570

a replay phase, where the robot autonomously goes to every recorded waypoint
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to perform a given task, here force control.

BAZAR robot used for the experiments is composed of two Kuka LWR 4+

arms with two Shadow Dexterous Hands attached at the end-effectors and a

Kinect V2 mounted on top of it [67]. The arms are attached to a Neobotix575

MP700 omnidirectional mobile platform. In our scenario, shown in Figure 11

the mobile base is kept fixed and only the left arm, without the hand, is used.

The communication with the embedded arm controller is done using the FRI

library 5. The external force applied to the arm’s end-effector is estimated by

the embedded controller (based on joint torque sensing and on knowledge of the580

robot’s dynamic model) and retrieved by FRI. The control rate is set to 5ms.

Teach 
initialization

 - Joint space trajectory
+ Vel. limit (0.25 m/s)
+ External force

Manual guidanceRecord waypoint

Teach 
end

- Vel. limit (0.25 m/s)
- External force

Replay 
initialization

+ Virtual stiffness
+ Soft stop
+ Acc. limit (0.15 m/s²)

Go to waypoint
 - Force control
+ Emergency stop
+ Separation distance 
    monitoring

Task performed at

waypoint ? 

Execute task
+ Force control
 - Emergency stop
 - Separation distance 
    monitoring

More tasks to

perform ?

Replay 
end

- Virtual stiffness
- Soft stop
- Acc. limit

End

Go to initial 
joint

configuration
+ Joint space trajectory

Start

Record Replay

Reteach Repeat

End

Configuration reached

Waypoint reached

Force applied for 2 seconds

Figure 12: The FSM used for the experiment. A plus sign indicates an addition to the

controller (a new constraint or new input) while a minus indicates a removal.

5https://cs.stanford.edu/people/tkr/fri/html/
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To orchestrate the experiment, we have designed a finite state machine

(FSM), depicted in Figure 12. The transitions between the states are either

automatic (no text), depending on sensory information (arrow with text) or

triggered by gestures (hand sign with text).585

Figure 13: Screenshots from the robotic experiment by operators Op1 and Op2 (a) Op1

manually guiding the robot to a waypoint in the workspace. (b) Op1 records the way-points

using Record gesture. (c) Op1 replay the taught waypoints by Replay gesture. (d) Op2

stands far from the robot so it moves with full speed. (e) Op2 stops the robot by applying

external force (or accidental touch). (f) Op2 stands near the robot, so it moves slowly ensuring

operator’s safety. (g) Op2 gives Reteach command to the robot. (h) Op2 sets the new

waypoints manually. (i) Op2 gives Record command. (j) Op2 stops the robot by Stop gesture.

(k) Op2 resumes the robot operation by Resume gesture. (l) Op1 ends the robot operation

by giving End command.

A video of the experiment is available online6 and snapshots are given in

Figure 13. The experiment goes as follow. First, the robot goes to a predefined

6https://www.youtube.com/watch?v=lB5vXc8LMnk
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initial joint configuration before initializing the Teach phase. Once this initial-

ization is performed, the robot is ready to be manually guided and taught the

waypoints where the tasks have to be performed during the Replay phase.590

Each time a Record gesture (L letter sign) is detected, the current end-

effector pose is recorded. When a Replay gesture (A letter sign) comes in, the

Teach phase is ended and the Replay phase is initialized. Then, the robot goes

to the first recorded waypoint while limiting its velocity thus ensuring safety of

the human worker (speed and separation monitoring in the FSM) according to595

the distance of the closest detected body part. This distance corresponds to the

depth value given by Kinect V2 at the joint image coordinates obtained from

OpenPose as explained in Section 4.3. If the closest body part is occluded by

the robotic arm, the depth value (that will then correspond to the depth value

of the robot itself) is discarded while the next closest body part visible in the600

scene is considered a reference for depth.

This estimation of body parts distance is not available with the default

output of OpenPose but it is possible, thanks to our integration, of Kinect

V2 depth map. This amplifies the usefulness of OpenPose skeleton extraction

while assuring a safe interaction of a human coworker with the robot. While in605

autonomous motion, the robot can be stopped at any time (Soft Stop constraint

in the FSM) using a Stop gesture (number 5 sign). Making this gesture will slow

down the robot until a full stop is reached. This is useful if an operator must

enter the robot workspace without fearing any injury. The Resume gesture

(Y letter sign) can be made to resume normal operation. When the robot610

reaches the waypoint, it switches to the task execution. In this scenario the

task is to apply a 30N force for 2s along the vertical axis. Once the task has

been executed, the robot goes back to its waypoint and moves to the next

ones to repeat the same operations. If the task has been performed at all the

waypoints, the Replay phase ends and the next action is determined by the615

operator. A Reteach gesture (number 7 sign) will move the FSM to the Teach

phase while a Repeat gesture (F letter sign) will repeat all the tasks at the

recorded waypoints. If no other operation is needed, an End gesture (number
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2 sign) will end the experiment.

Experimental results are show in Fig. 14. The time axis has been limited to620

the 132-185s range for better readability. The top graph displays the result of

the hand gesture detection where each vertical dashed line corresponds to the

detection of a gesture. To filter out false positives, a gesture is considered valid

if it appears in five consecutive frames.
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Figure 14: Experimental results. From top to bottom: hand gesture detection (dashed lines

correspond to detection instants and plain line to the activation signals), control point trans-

lational velocity, external force at the end-effector, distance between the camera and the

closest human body part and velocity scaling factor computed by OpenPHRI to slow down

the motion.

Considering the hand-gesture detection frame rate of 20Hz, this gives a625

250ms delay between the making of the gesture and its detection. This delay

should not impact human-robot interaction since the average human reaction
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time usually lies within the 200-250ms range7. Once the same gesture has been

detected five times in a row, the corresponding signal is activated. False pos-

itives can be observed, e.g. at t=139 s when the first record signal ends, but630

thanks to the filtering systems no incorrect signal activation is made. The two

following graphs in Fig. 14 show the end-effector translational velocity and force.

It can be seen that through the Teach phase, i.e. until t=135 s, the velocity

simply follows the force applied to the robot. Then, the Replay phase starts and

the end-effector velocity is now the result of the motion made to reach the way-635

points and also by the force regulation applied at these locations. Between the

two task executions (t=153 s and t=170s), one can observe some force applied

to the robot at t=162 s. A safety feature is programmed to prevent accidents

due to unexpected contact between the operator and the robot, leading to a

monitored stop. In this situation, the robot stays still until the contact disap-640

pear and then resumes its motion to the second waypoints. The fourth graph

displays the distance to the closest body part. The values are the raw ones pro-

vided by the Kinect V2 and are unitless. As mentioned previously, this distance

is used to adapt the velocity limitation so that the robot can move quickly when

nobody is around but slows down when an operator is approaching. The veloc-645

ity limit is at a minimum of 0.02m/s at a distance of 300 and at a maximum

of 0.3m/s at a distance of 600. The effect of this limitation can be observed

multiple times, including after the beginning of the Replay phase where the dis-

tance suddenly drops below 300, enforcing a very slow motion of the robot. The

last graph shows the evolution of the scaling factor computed by OpenPHRI.650

A value equals to one means that no velocity reduction has to be performed to

comply with the constraints (velocity and acceleration limits, speed and sepa-

ration monitoring and safety-rated monitored or soft stop). When at least one

constraint would not be respected considering the current inputs, the scaling

factor decreases below one to make sure that all constraints are satisfied. When655

the value reaches zero, the robot is at a complete stop. Using this technique

7http://humanbenchmark.com/tests/reactiontime
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allows to easily slow down the robot only when it is necessary.

8. Conclusion

In the perspective of smart factories – also known as factories of the future

– we have introduced a real-time human-robot interaction framework for robot660

teaching using hand gestures. The proposed framework relies on our novel ro-

tation and background invariant robust hand gesture detector. This is achieved

by adapting a pre-trained state-of-the-art convolutional neural network, namely

Inception V3, to the classification of 10 hand gestures. The CNN is trained on

an image dataset of 10 hand gestures, recorded with the help of 10 volunteers.665

The dataset OpenSign, is open and available to the computer vision commu-

nity for benchmarking. We also release the source code of our hand gesture

detector8.

The accuracy of the trained CNN is validated with a set of test images and

is found to be 98.9%. To reaffirm the quality of the hand gesture detector670

and to validate it on a mock-up example industrial scenario, we perform a

robotic experiment. Safety and effectiveness of the experiment are guaranteed

by our physical human-robot interaction library, OpenPHRI. Besides, real-time

operation is established by asynchronous integration of the different modules

present in our framework. The experiment proves the efficiency of the proposed675

framework, that ensures a natural means for robot programming. The robot

is also aware of its distance from the human worker thanks to the integration

of Kinect V2 and OpenPose. To guarantee the safety of the human coworker

in close vicinity, the robot slows down using the velocity scaling feature of

OpenPHRI.680

Our approach requires the user to know the gestures the robot can perceive.

However, once s/he has memorized these gestures, it will be more natural for

her/him to communicate with the robot. Integrating face identification algo-

8https://github.com/OsamaMazhar/openhandgesture
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rithms in this framework, could also be a security feature. It will allow only

selected people to interact with the robot without entering any passwords or685

fingerprints scanning which might require the users to come in close proximity

to the robot.

Despite the quantified accuracy and experimental results, the capabilities of

our system are limited by the depth range of the vision sensor. Moreover, the

system is trained and tested in indoor settings and may fail in bright light due690

to the resulting contrast in RGB images. Backgrounds with intense texture may

also compromise detection. To handle this, distinct background images should

be substituted in the hand images to train the proposed network. Neverthe-

less, we believe that the preliminary results presented in this paper are a very

promising step towards the development of vision-based robot programming.695

We encourage researchers interested in these topics to profit from our open im-

age dataset for benchmarking their algorithms, and to enrich the dataset with

more images.
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