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Abstract

This paper presents a framework which relies on the linear dynamical Kalman filter to perform a reliable prediction for solar and

photovoltaic production. The method is convenient for real-time forecasting and we describe its use to perform these predictions

for different time horizons, between one minute and one hour ahead. The dataset used is a set of measurements of solar irradiance

and PV power production measured in a sub-tropical zone: Guadeloupe. In this zone, fluctuating meteorological conditions can

occur, with highly variable atmospheric events having severe impact in the solar irradiance and the PV power. In such conditions,

heterogeneous ramp events are observed making difficult to control and manage these sources of energy. The present work hopes

to build a suitable statistical method, based on bayesian inference and state-space modeling, able to predict the evolution of solar

radiation and PV production. We develop a forecast method based on the Kalman filter combined with a robust parameter estimation

procedure built with an Auto Regressive model or with an Expectation-Maximisation algorithm. The model is built to run with

univariate or multivariate data according to their availability. The model is used here to forecast the univariate solar and PV data

and also PV with exogenous data such as cloud cover and air temperature. The accuracy of this technique is studied with a set of

performance criterion including the root mean square error and the mean bias error. We compare the results for the different tests

performed, from one minute to one hour ahead, to the simple persistence model. The performance of our technique exceeds by far

the traditional persistence model with a skill score improvement around 39% and 31%, respectively for PV production and GHI,

for one hour ahead forecast.

Keywords: Kalman filter, EM algorithm, AR model, Solar Energy, PV forecast.

1. Introduction1

In sub-tropical zone, such as Guadeloupe, a great challenge related to energy production is to perform accurate2

solar and photovoltaic (PV) forecast for the purpose to control and manage renewable energy production. This im-3

portant problem is mostly due to the high variability observed in the solar radiation, since the daily atmospheric4

conditions (weather, temperature, cloud, etc) encounter many changes for very short time scales. The PV production5

is thus highly dependent on the meteorological conditions which encounter severe variability in various timescales,6

from seconds to years. In order to have a good estimation of the PV production, the first problem to solve is to build7

a suitable solar/PV prevision model able to produce reliable forecasts in order to help energy provider to take control8

and manage carefully their energy production. One of the great challenge is to provide PV production or global so-9

lar radiation forecast at a very short timescale under tropical climate. Indeed, large and frequent variations of solar10

radiation can be observed in tropical climates with amplitudes reaching 800 W/m2 and occurring within a short time11

interval, from a few seconds to a few minutes, depending to the geographical location. Such fluctuations can be due,12
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for example, to the dynamic of clouds which can be very complex and depend on cloud type, size, speed and spatial13

distribution and, more generally, due to some specific local meteorological conditions [26].14

It is then an important matter to have a good knowledge of these rapid fluctuations occurring on very short time15

scales and to properly predict the evolution of the solar radiation and the PV production. In addition, the Solar/PV16

forecasts could be performed with the insertion in the model of the exogenous inputs, i.e. the cloud cover and the17

ambient temperature to render the whole prediction more robust. Furthermore these predictions can be used as inputs18

for an infrastructure dedicated to control the PV system. So, in this paper, we implement a robust framework to both19

predict the solar irradiance and the PV production and try to see the impact of the influential features namely the20

cloud cover and the temperature. For this scope, we build a methodology based on statistical inference techniques,21

specifically, the Kalman filtering algorithm. We begin by a learning phase which boils down to defining a convenient22

state-space model which takes into account the main physical properties of the system of solar and PV power. This23

state-space model is dedicated to describe the system with all the parameters needed to capture the statistical properties24

and dynamics of the system. Thereafter, as a second phase, we talk about the methodology to estimate the needed25

parameters which quantify the dynamics of the system. Finally, we apply the Kalman filter and derive some statistics26

to analyze the performance of the technique.27

2. Related works28

The literature is full of methodologies dedicated to solar and PV forecasting. However, a few of them are based on29

the robust statistical Kalman filtering technique, which have been extensively used in various scientific areas including30

signal processing, financial modeling, biology, medicine, aerospace, etc. We have already developed various models31

with this technique for the scope of anomaly detection in communication networks [15],[16],[17],[18].32

In the domain of solar/PV forecasting, in [2], a method based on a combination of an ARMA model and a Kalman33

filter is presented for the scope of solar irradiance and temperature forecasting. The ARMA model is built with34

a high order parameters (p,q) in order to retrieve the state-space parameters needed to run the Kalman filter. The35

whole methodology is used to do prediction only for a time horizon of 5 minutes. Another similar technique based36

on Kalman filtering and ARMA model of high order is presented in [7]. Another study, [4] have presented a work37

which extends previous studies [5],[20], to solve the problem of bias removal from the Kalman forecasts. However38

the technique was applied only on ”persistence” model for a time horizon of 1 hour. Generally, ”persistence” forecasts39

accuracy decrease rapidly with forecast horizon as cloudiness changes severely from one state to another. The works40

in [5],[13] have developed a linear Kalman filtering model to solve a non-linear forecasting problem. They do so to41

avoid the parameter tuning operation (estimation of the state system matrix, the observation matrix, and the two co-42

variance matrices for the state and the measurements) which is a crucial need when using this optimization technique.43

They should use the extended or unscented Kalman filter to solve the problem, but instead they build a high order44

polynomial model for the state and set the identity matrix to simplify the state equation. We found that the complexity45

of this model is high enough and it is not necessary to build at least a 3-rd order polynomial for only the scope of46

bias removal. In the best of our knowledge, we have found any study referred to the linear Kalman filter which gave47

a robust parameter tuning procedure before running the technique for the purpose of solar/PV forecasting.48

In this present work, we build an elaborated method to perform real-time prediction of solar and PV power,49

based on the knowledge we have on the cloud cover and temperature. The method needs few data for initial parameter50

estimation. So, all the quantities necessary to run the filter will be identified properly with robust statistical techniques.51

So an autoregressive (AR) model and a method based on the expectation-maximization algorithm can be suitably used52

to achieve the parameter settings. On the other hand, our methodology can be applied, with the assumption of the53

stationarity of the studied process, to do prediction for a various set of time horizons (from 1 minute to 1 hour ahead).54

The performance level of our methodology is studied with some standard accuracy measures including the root mean55

square error (RMSE), the mean bias error (MBE) and the mean absolute error (MAE) in their normalized forms.56

3. Methodology57

In this work, we aim to build a framework to predict solar radiation and PV power production in real-time condi-58

tions. The high variability observed in the meteorological conditions (clear sky, cloudy sky, wind speed, temperature,59
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etc) is the principal source of the different levels of variability inside the measured radiance and the PV power. So,60

it is necessary to have a model able to take the actual data in time t and predict instantaneously the next data at time61

t+ 1. One solution to perform this prediction is to consider all the past data up to time time t and perform a prediction62

for the next time t + 1. Techniques as vector autoregressive model (VAR), Wiener filter, etc acts in this way, but the63

complexity is very high since they use all the past information. These techniques, generally, use much memory to save64

the history of the data to perform the predictions. Other methods, like first-order Markov model use only the recent65

arrived data at time t to do the prediction at the next time-step. The Kalman filtering technique performs in this second66

way. The advantage of using linear discrete-time Kalman filter is mainly related to its ability to do future prediction in67

real-time conditions for on-line systems in a memory-less way. With this approach, we can build a model from which68

we derive (estimate) an a priori unknown hidden signal (the underlying real-time hidden system state) and re-utilize69

it to have our predictions w.r.t. the measured data.70

We build our forecasting model by assuming that the measured solar/PV power is governed by a hidden signal as71

in the following linear dynamical system:72

Yt = AtXt +Vt (1)

where Yt ∈ Rm denotes a stochastic process containing the real measurement (observation) at time t. The stochastic73

process Xt ∈ Rn is the hidden state of the system which is transformed to the output by the matrix At ∈ Rm×n which74

controls the sources of the measurements. For example, the output Yt can be composed of the variables: solar radi-75

ation, ambient temperature, cloud cover, ...; Yt can also be composed of m variables corresponding to the measured76

solar irradiance or PV power at different points. Generally, due to the intrinsic imperfection of measurement devices,77

errors more often occur during data collection, then Vt denotes a stochastic process representing the measurement78

error.79

Now we aim to find a convenient model for the stochastic process Xt which is able to track the system traffic80

features we want to monitor, ie. the estimated solar irradiance and PV production. We propose a simple stochastic81

model where Xt at discrete time t is represented by the linear combination of two components:82

Xt = CtX̂t + ξt (2)

where X̂t is a predictable component, ξt is a random noise component and Ct ∈ Rn×n is a parameter matrix describing83

the underlying state dynamics.84

Generally the prediction model can have any structure and the noise process can yield from any distribution. How-85

ever linear stochastic predictive models combined with gaussian noise have a long record of successful applications in86

a very large spectrum of engineering techniques. Our idea is to relate the predictable components as network states.87

These variables are not directly observable from the measurement devices, so we refer to them as hidden system states.88

Since we want to estimate the variablesXt as a state, we can use linear stochastic dynamic system based on state-space89

models. Now we build a temporal model that relates Xt+1 to Xt with the following difference equation:90

Xt+1 = CtXt + BtUt +Wt (3)

where the n × n matrix Ct relates the state at the previous time step t to the state at the current step t + 1 andWt is91

the intrinsic noise process. Here, Ct describes the atmospheric conditions since the value of the solar irradiance, or92

equivalently the PV power, at time t depend on ambient temperature, cloud cover and wind speed. The value of the93

solar irradiance between t and t + 1 might change according to that conditions. So we can estimate Ct given a set of94

measured data that contains all types of meteorological conditions to train our forecasting model. If one desires to95

have forecast of the PV power by incorporating in the model other metrics as the temperature, the cloud cover, the96

wind, etc in order to learn more about their influence for the measures, he/she may take into account the term BtUt,97

(Bt ∈ Rn×p andUt ∈ Rp with p exogenous variables). The equations Eq. 1 and Eq. 3 are now combined to form the98

complete state-space model for the specification of our forecasting framework:99

{

Xt+1=CtXt + BtUt +Wt

Yt = AtXt +Vt
(4)

This block of equations is the classic form for a linear dynamical system with inputs. In this model we assume that100

the state-noiseWt and the measurement-noise Vt are uncorrelated zero-mean gaussian white-noise processes with101

covariance matrices Qt ∈ Rn×n and Rt ∈ Rm×m, respectively.102
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4. System parameter tuning103

Building a framework for multi purpose forecasting might rely on the identification of the needed parameters104

θ =
{

Ct,At,Qt,Rt

}

for calibrating the evolving system. To achieve this aim, we use two well-known techniques to105

perform the identification of these parameters before running the filter for forecasting. The first method is based on106

an autoregressive (AR) model which uses a step-wise least square algorithm performing a QR factorization (decom-107

position of a matrix T into a product T = QR of an orthogonal matrix Q and an upper triangular matrix R) of a data108

matrix to evaluate, for a sequence of successive orders, some criterion such as Bayesian Information Criterion (BIC)109

and Akaike Information Criterion (AIC) for the selection of the model order p. Thereafter we compute the parameters110

of the AR model of the optimum order and then retrieve the needed parameter θ. So the matrix Ct can be formed with111

the p parameters of the AR model. The noise variance of the model is used to fix our system covariance matrix Qt.112

This first model does not give us the matrix Rt, so we form it as dependent on the matrix Qt since we know that the113

intrinsic system noise have an influence to the measurement noise. In practice, Rt is heuristically obtained by dividing114

the system noise by some constant. To overcome this problem of setting Rt manually, we use a second parameter115

identification algorithm based on the expectation-maximization (EM) algorithm, as we describe in the following.116

It is important to see that the above parameters θ are time-dependent, so they might be calibrated every time data117

are collected at time t. In this work, we have assumed a stationary case where the parameters are independent of118

time, and then we perform the calibration only once, with a small part of the training dataset. A procedure of data119

normalization is presented to accept this assumption.120

Since we have found a model and system equations for our system, next we need to deal properly with the different121

steps of our optimization algorithm for solar radiance and PV prediction.122

5. Prediction equations of the discrete-time Kalman filter123

The first problem to solve after establishing a real-time state-space model to do our future predictions, is to find an124

optimal estimate X̂t of our unobservable states Xt, given a set of measurements {Y1, . . . ,Yt}. In our dynamical linear125

system, we refer to Yt as the observation at time t. And the state of the system at time t is given by Xt, let also X̂t|t126

denotes the estimate of Xt using all the information available up to time t. X̂t+1|t denotes the prediction of Xt+1 using127

all the information up to time t, (this constitutes the phase predictor). The quantity X̂t+1|t+1 denotes the estimate of128

Xt+1 using all past information and the recently arrived data point at time t + 1. On the other hand, Pt|t denotes the129

error covariance of the state estimate at time t and Pt+1|t indicates the covariance of the state prediction at time t + 1.130

If we have the prediction X̂t+1|t, we plug it into Eq. 1 to derive a prediction Ŷt+1|t at time t + 1.131

In the above formulation and in the rest of the paper, one should always follow the nuance between estimate132

and prediction. So, at time t, we refer to the quantity X̂t|t as an estimate and X̂t+1|t as a prediction. Estimation is133

instantaneous while prediction is done for the future, given the present.134

As it is shown in its earlier elaboration, the linear Kalman filter addresses the problem of estimating a discrete135

state vector when the observations are only a linear combination of the underlying state vector. The filter runs as136

a predictor-corrector algorithm. As an iterative algorithm, it estimates the system state using two steps: prediction137

comes in the time update phase, and correction in the measurement update phase.138

• Prediction step (time update equations):139

In this step, the estimated state of the system at time t, X̂t|t, is used to predict the state at next time t + 1, X̂t+1|t.140

And, as we know that the noiseWt influences the evolution of the system at each time t, we compute only the141

covariance of the prediction, Pt+1|t based on the updated covariance at the previous time t, Pt|t, and the noise142

covariance at the same time, Qt. The error covariance Pt+1|t provides an indication of the uncertainty associated143

with the state estimate.144
{

X̂t+1|t=CtX̂t|t + BtUt|t
Pt+1|t=CtPt|tC

T
t +Qt

(5)

• Correction step (measurement update equations):145

This step updates (corrects) the state and the variance of the estimate in the previous step, using a combination146
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of their predicted values and the new observationsYt+1. The correctness of this update depends on the Kalman147

innovationYt+1 − At+1X̂t+1|t.148



















X̂t+1|t+1 =X̂t+1|t +Kt+1

(

Yt+1 − At+1X̂t+1|t
)

Pt+1 =
(

I −Kt+1At+1

)

Pt+1|t
(

I −Kt+1At+1

)T
+Kt+1Rt+1KT

t+1

(6)

In the measurement equations, Kt+1 denotes the Kalman gain and I the identity matrix. For more details in linear149

dynamical system, estimation and Kalman filter techniques, we refer the reader to [9, 8, 14]. The above equations150

with initial conditions of the state of the system X̂0|0 = E[X0] and the associated error covariance matrix P0|0 =151

E
[

(X̂0 − X0)(X̂0 − X0)T
]

define the discrete-time sequential recursive algorithm for calculating the linear minimum152

variance estimate known as the Kalman filter.153

6. Calibration of the Kalman filter154

In Section 3, we have assumed two types of model calibration which can be used to achieve a good prediction.155

The first method considers that the observation matrix A is precisely known and then we are only interested to find the156

remaining quantities C,Q and R. To estimate dynamically these parameters, we use an autoregressive (AR) model.157

A second, more general model can also be developed, where all the needed parameters, C, A, Q and R, are assumed158

unknown. This method is based on the Expectation-Maximization (EM) algorithm, [6]. This algorithm is an extension159

of a previously proposed technique, [24, 25] where the matrix C is assumed precisely fixed. The work in [6] reinforces160

this technique by assuming C undetermined.161

6.1. Parameter Estimation via an AR model162

The idea behind this parameter estimation technique is to cast an AR model into a state-state form to retrieve the163

parameters θ. The method is based on a stepwise least squares algorithm which uses a QR factorization of a data164

matrix to evaluate, for a sequence of successive orders, a criterion (here AIC [1] and BIC [23]) for the selection of165

the model order p, and to compute the parameters of the AR model of the optimum order. It is sufficient to learn the166

model’s parameters using a sample of the first 20-30 days of measurements from the measured data studied. We run167

this method based on the notes described in [19], and developed in [22]. We form the matrix C using the p parameters168

of the AR(p). The noise variance of the model is used to fix the system noise matrix Q. The measurement matrix R169

cannot be estimated by the AR(p), by experience we take it as a function of Q. In practice, R is obtained by dividing170

the measurement noise by some constant. For our dataset, which is highly variable, we set manually this constant171

in the interval [0.02; 1.2] for our different experiences. To discover carefully this interval in order to fix the value of172

R, we run different scenarios of the Kalman filter and choose the value of R which minimizes some optimal criteria,173

namely the root mean-square error (RMSE) prediction and the mean bias error (MBE) defined respectively as:174

RMSE =















1

N

N
∑

k=1

(x̂k − xk)2















1/2

(7)

and175

MBE =
1

N

N
∑

k=1

(x̂k − xk) . (8)

The methodology implemented in [22] is based on the following AR(p) model (which is equivalent to the state176

equation in Eq. 3 with the interceptW set to zero):177

Vr =W +
p

∑

l=1

AlVr−l + ǫr , ǫr : is white noise with covariance matrix C (9)

which can be expressed in the form of a regression model of the form:178

Vr = BUr + ǫr (10)
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where the matrix B contains the parameters to be estimated:179

B =
(

W,A1, . . . ,Ap

)

, (11)

and the vectorsUr, of dimension np = mp + 1 (m is the dimension ofVr), are found as follow:180

Ur =
(

1,Vr−1, . . . ,Vr−p

)

(12)

Transforming an AR model into a regression model is, in fact, a simple approximation. Indeed, for a regression model,181

the predicatorsUr are supposed to be constant, while in an AR model, these vectors are the realization of a stochastic182

process. Then, the approximation needs to have an initial predicatorU1 in order to initialize the AR model:183

U1 =
(

1,V0, . . . ,V1−p

)

(13)

So, the final step of the QR factorization gives us the matrix C as:184

C =













































A1 A2 A3 . . . Ap

Id 0 0 . . . 0

0 Id 0 . . . 0
...
. . .

. . .
. . .

...

0 . . . 0 Id 0













































, (14)

where Id is the identity matrix and the Ai are the coefficients of the AR(p). By retrieving a set of quantities, our185

co-variance matrix Q can be obtained by the formula:186

Q̂ =
1

N − np

(−WU−1W
′
) (15)

with the following matrices of moments:187

U =

N
∑

r=1

uru
′
r, V =

N
∑

r=1

vrv
′
r, W =

N
∑

r=1

vru
′
r. (16)

This AR transformation does not give us directly the observation matrix A needed in equation Eq. 4. After188

retrieving the states matrices with the AR(p), it is obvious to re-transform this AR model in the form of a state-state189

model. And then the state equation can be plug into the observation equation in order to retrieve the observation190

matrix.191

6.2. Parameter Estimation via the EM algorithm192

Parameter estimation via the EM algorithm boils down, first to combining the state variable Xt and the state193

noiseWt as a single random gaussian process, and doing the same transformation for the output variable Yt and the194

measurement noiseVt. So with equation Eq. (4), we can form the conditional probability densities for the state and195

the output of the system as follow (in the following we use respectively xt and yt for the state and the measurement196

vectors for notation convenience):197

P(yt|xt) =
1

√
(2π)p|R|

exp

{

−1

2

[

yt − Cxt

]′
R−1 [

yt − Cxt

]

}

(17)

198

P(xt|xt−1) =
1

√

(2π)k|Q|
exp

{

−1

2
[xt − Axt−1]

′
Q−1 [xt − Axt−1]

}

(18)

where the notation |R| and |Q| are respectively the determinants of the matrices R and Q.199

Suppose the output of the system is of the form of a multidimensional array with T vectors (y1, y2, . . . , yT ). Let’s200
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denote {y} that observation sequence and {y}t1t0 being the sub-sequence
(

yt0 , yt0+1, . . . , yt1

)

. The state equation of the201

model in Eq. 4 is a first-order Markov process, so:202

P

(

{x}, {y}
)

= P(x1)

T
∏

t=2

P

(

xt |xt−1

)

T
∏

t=1

P(yt|xt). (19)

If we suppose that the initial state is a gaussian random process of expectation π1 and co-variance matrix V1 given by:203

P(x1) =
1

√

(2π)k|V1|
exp

{

−1

2
[x1 − π1]

′
V−1

1 [x1 − π1]

}

, (20)

we can write the logarithm of the jointly probability density between {x} and {y}, as a quadratic sum of terms in the204

form:205

logP
(

{x}, {y}
)

= −
T

∑

t=1

(

1

2
[yt − Cxt]

′
R−1[yt − Cxt]

)

− T

2
log |R|

−
T

∑

t=2

(

1

2
[xt − Axt−1]

′
Q−1[xt − Axt−1]

)

− T − 1

2
log |Q|

−1

2
[x1 − π1]

′
V−1

1 [x1 − π1] − 1

2
log |V1| −

T (p + k)

2
log 2π

(21)

Our linear dynamical system can be seen as a continuous state of a hidden Markov model (HMM) [21]. Then, the206

”forward” part of the ”forward-backward” algorithm for a HMM can be established by a Kalman filter, whereas the207

”backward” part is solved by a recursive ”Kalman smoother” [14]. Finally, if we take into account the measurements,208

we run the forward-backward algorithm and we solve the problem of inferring the above probability densities for the209

system state; this operation is done via the Kalman smoother and constitutes the ”E” step of the EM algorithm. To210

derive this step, we need the three following quantities:211

x̂t ≡ E
[

xt|{y}
]

, (22)

212

Pt ≡ E
[

xt x
′
t |{y}

]

(23)

213

Pt,t−1 ≡ E
[

xt x
′
t−1|{y}

]

(24)

The term x̂t gives an estimate of the system state given the past and future observations, then it differ to the state214

estimate given by a standard Kalman filter, where this estimate is given by (E[xt|{y}t1). Thereafter, we can calculate215

the log-likelihood defined by:216

L(θ) = E
[

logP ({x}, {y}) |{y}
]

. (25)

By setting the quantities xτt = E
[

xt |{y}τ1
]

and Vτt = Var
[

xt |{y}τ1
]

, we can establish the Kalman filter equations for the217

estimation of our parameters, as follow:218

xτ−1
t = Axτ−1

t−1 , (26)

Vτ−1
t = AVτ−1

t−1 A
′
+ Q, (27)

Kt = Vτ−1
t C

′
(CVτ−1

t C
′
+ R)−1, (28)

xτt = xτ−1
t +Kt(yt − Cxτ−1

t ), (29)

Vτt = Vτ−1
t −KtCVτ−1

t . (30)
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To find x̂t ≡ xT
t and Pt ≡ VT

t + xT
t (xT

t )′, we need the variables:219

Jt−1 = Vt−1
t−1A

′
(Vt−1

t )−1, (31)

xT
t−1 = xt−1

t−1 + Jt−1(xT
t − Axt−1

t−1), (32)

VT
t−1 = Vt−1

t−1 + Jt−1(VT
t − Vt−1

t )J
′

t−1. (33)

(34)

The quantity Pt,t−1 ≡ VT
t,t−1
+ xT

t (xT
t−1

)
′

is needed and can be obtained by deriving:220

VT
t−1,t−2 = Vt−1

t−1 J
′

t−2 + Jt−1(VT
t,t−1 − AVt−1

t−1)J
′

t−2. (35)

The ”M” Step maximizes the likelihood of observing the parameter θ = (C,A,R,Q, π1,V1). Each term of this221

parameter is derived by considering the partial derivative corresponding to the logarithm of the likelihood. It suffice222

to put this derivative to zero and resolve the resulting equation, and finally, we find the value of the given parameter:223

- the observation matrix is given by:224

∂L(θ)

∂A
= −

T
∑

t=1

R−1yt x̂
′

t +

T
∑

t=1

R−1APt = 0 (36)

225

Anew =















T
∑

t=1

yt x̂
′

t





























T
∑

t=1

Pt















−1

(37)

- the co-variance of the observation noise is derived as:226

∂L(θ)

∂R−1
=

T

2
R −

T
∑

t=1

(

1

2
yty

′

t − Cx̂ty
′

t +
1

2
CPtC

′
)

= 0 (38)

227

Rnew =
1

T

T
∑

t=1

(yty
′

t − Cnew x̂ty
′

t) (39)

- the system state matrix is equal to:228

∂L(θ)

∂C
= −

T
∑

t=2

Q−1Pt,t−1 +

T
∑

t=2

Q−1CPt−1 = 0 (40)

229

Cnew =















T
∑

t=2

Pt,t−1





























T
∑

t=2

Pt−1















−1

(41)

- and the state noise co-variance is given by:230

∂L(θ)

∂Q−1
=

T − 1

2
Q − 1

2

T
∑

t=2

(

Pt − CPt−1,t − Pt,t−1C
′
+ CPt−1C

′)

=
T − 1

2
Q − 1

2















T
∑

t=2

Pt − Cnew

T
∑

t=2

Pt−1,t















= 0

(42)

231

Qnew =
1

T − 1















T
∑

t=2

Pt − Cnew

T
∑

t=2

Pt−1,t















(43)
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- the initial system state can also be estimated by the quantity:232

∂L(θ)

∂π1

= (x̂1 − π1)V−1
1 = 0 (44)

233

πnew
1 = x̂1. (45)

- and the initial co-variance given by:234

∂L(θ)

∂V−1
1

=
1

2
V1 −

1

2

(

P1 − x̂1π
′

1 − π1 x̂
′

1 + π1π
′

1

)

= 0 (46)

235

Vnew
1 = P1 − x̂1 x̂

′

1. (47)

7. Forecasting criterion of accuracy236

To evaluate the performances of our model, we use several accuracy measures defined to evaluate solar and PV237

forecasts. Benchmarking of solar forecasts has been examined by the International Energy Agency Solar Heating and238

Cooling Program Task 36 on ”Solar Resource Knowledge Management” and the project ”Management and Exploita-239

tion of Solar Resource Knowledge,” which have suggested guidelines for performance analysis of the forecasting240

models [12]. Solar and PV forecast accuracy was assessed in terms of RMSE, mean absolute error (MAE), and mean241

bias error (bias) MBE. RMSE gives more weight to large errors, whereas MAE, less sensitive to large errors, reveals242

the average magnitude of the error, and MBE indicates whether there is a significant tendency to systematically over-243

forecast or under-forecast. When comparing between different models in the training year, RMSE was used as the244

metric for minimization, that is, forecasts were trained with the goal of reducing the largest errors. These performance245

criterion are used here in the normalized forms defined as follow:246

nRMSE =

√

√

1
N

N
∑

i=1

(Pi − P̂i)
2

max(Pi) −min(Pi)
(48)

247

nMAE =

1
N

N
∑

i=1

|Pi − P̂i|

max(Pi) −min(Pi)
(49)

248

nMBE =

1
N

N
∑

i=1

(Pi − P̂i)

max(Pi) −min(Pi)
(50)

We also include a new metric: the forecast skill score (SS) parameter. The latter proposed by Coimbra et al.,[3]:249

SS = 1 − RMSEforecast

RMSEsc-pers

(51)

The skill score gives the fractional improvement in the mean square error of the proposed forecasting model over250

the reference model (here the ”persistence” model): a skill score of 1 indicates a perfect forecast, a score of 0 indicates251

no improvement against the reference, and a negative skill means that the forecast model tested performs worse than252

the reference.253
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8. Forecast methods254

8.1. Basic persistence255

The Kalman filter forecasting technique is compared against the classical scaled persistence model. It is based on256

the assumption that the current conditions will persist so that,257

Îp(t + T ) = Ip(t) (52)

where Îp(t + T ) represents a GHI prediction from the persistence model, T represents the forecast horizon, and Ip(t)258

is the measured GHI value at time t.259

8.2. Smart persistence260

Our forecasting approach is also compared with the smart persistence. The smart persistence model is based on261

the same assumption as persistence model but it corrects for the deterministic diurnal variation in solar irradiance. It262

is defined as,263

Îsp(t + T ) = kc(t)Ics(t + T ) (53)

where Îsp(t) represents a GHI prediction at time t, Ics(t) represents the estimated clear sky solar irradiance [11].264

9. Validation of the approach265

9.1. Experimental data266

9.1.1. Solar and weather data267

The solar data was measured at the campus Fouillole of the University of the French West Indies and Guiana with268

the interval of 1 second from 2010 to 2014. In this paper we show only the results concerning one year (2011) which269

constitutes a complete record of measurements. Before applying the whole methodology and in order to perform270

forecasts with many time horizons, we have build a pre-processing normalization technique to organize the data into271

different time-scales with time horizons including 1, 5 and 10 minutes bin increment. The normalization method is272

exposed in section 9.2. We retrieve then the deterministic component of the signal and obtain consequently a stationary273

process.274

9.1.2. PV data275

The PV system studied in this paper is installed on the roof of a storehouse in Guadeloupe. The system has 238276

flexible PV modules Unisolar of 136Wp each (total of 32,3 kW installed) . The system consists of two inverters of277

15 kW and 20 kW. The data logging of PV output power (in W) is integrated in these inverters (collected every 5278

min). For the objective of forecasting, a weather station has been also installed on the roof of the storehouse in 2014.279

However the duration of data is not long enough and therefore will not be used in this study. The time series data is280

collected in 2 years: 2012 and 2013. However, due to some errors in the data acquisition of the PV output power,281

only a collection of data covering 696 days is available. As during the night, the forecast is not necessary because the282

output power of PV is zero, the study takes into account only the data between 0700 and 1700 LST every day.283

The two exogenous variables, cloud cover (in octa) and ambiance temperature (in ◦C) are measured on an hourly284

basis at the Meteo France meteorological station of le Raizet (16◦26N, 61◦24W, 11m asl). The daily average for the285

solar load on a horizontal surface is around 5 kWh/m2. A constant sunshine combined with the thermal inertia of286

the ocean makes the air temperature variation quite weak, between 17◦C and 33◦C, with an average of 25◦C to 26◦C.287

Relative humidity ranges from 70% to 80%, and the trade winds are relatively constant all along the year. Two main288

regimes of cloudiness are superposed: the clouds driven by the synoptic conditions over the Atlantic Ocean and the289

orographic cloud layer generated by the local reliefs.290
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9.2. Procedure of the data normalization291

As the irradiation and the PV production depend on the sun path during the day, a normalization is needed to292

eliminate this subordination and accept the assumption we have made in the introduction about the stationarity of the293

signal.294

In this study, the irradiation will be normalized by the the theoretical clear sky, GHIcsk curve. The Global Hor-295

izontal Irradiance (GHI) is the total amount of shortwave radiation received by a horizontal surface on the ground,296

which consists of the direct irradiance and the diffuse irradiance. The GHIcsk is the GHI calculated in the condition297

of clear sky, using the Kasten clear sky model. This model accounts for atmospheric turbidity and solar elevation298

angle. The inputs to this model are air mass, Linke Turbidity, and elevation [10]. The Linke turbidity factor is a very299

convenient approximation to model the atmospheric absorption and scattering of the solar radiation under clear skies.300

It describes the optical thickness of the atmosphere due to water vapor and the aerosol particles relative to a dry and301

clean atmosphere. With larger Linke turbidity, there is more attenuation of the radiation by the clear sky atmosphere.302

We obtain then the clear sky index, kc, defined as:303

kc(t) =
GHI(t)

GHIcsk(t)
(54)

The input of the PV production at time (t) is then normalized into P̄(t), the normalized value of the PV production304

with respect to the maximum value at time (t), Pmax(t).305

P̄(t) =
P(t)

Pmax(t)
(55)

This maximum value can be evaluated from the GHImax curve with the following equation:306

Pmax(t) =
GHIcsk(t)

max(GHIcsk)
PVinstalled (56)

9.3. Summary of the results for the different forecast schemes307

This work aims to show the ability of the Kalman filter to perform reliable predictions of solar irradiance and PV308

power production. We have proposed two parameter identification techniques, namely the AR model and the EM309

algorithm, which can be used successfully to calibrate the optimization method for the forecasting.310

9.3.1. Initialization phase311

First, in order to run the AR and the EM initialization, we need only a few set of training data. The Kalman filter312

is an algorithm which performs prediction in the sense of a first-order Markov process. This means that it does not313

consider all the past information up to time t to give an estimate for time t + 1. Instead, we need only the arrived data314

at time t to have a prediction at the next time step, so we say that the algorithm performs a one-step ahead prediction.315

Another interesting feature about the Kalman filter is in its feedback nature; it is able to do robust prediction with316

a strong potential to reducing error estimates by minimizing the variance of this error (with the help of the Kalman317

gain). So, for our training data, for all variables, we consider a short time-interval formed with the first 20-30 days318

of year of the data. And the initial parameters are set at the beginning once a time (since we assume stationary of319

the underlying process) with this part of the dataset. For all our implementations, we have built an AR(1) which is320

convenient to perform our forecasts, the measurement dataset consisting of a single vector. The rest of the data serves321

as test data.322

The obtained initial parameters are then used to perform the calibration of the Kalman filter by running the323

predictor-corrector phases as described in Section 5.324

We plot, in Figure 1, the measured GHI data and the clear sky index, for four days, to give an overview of the325

fluctuations of the solar irradiance, observed at 1 second time horizon.326
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Figure 1. Variability of the GHI data, for 4 typical days. The blue line is the measured GHI and the dashed red line is the estimated clear sky with

the Kasten model. Time Horizon is 1 second. These figures shows how fluctuating is the solar radiation, with ramps rates of about 800 W/m2 .

9.3.2. Data preprocessing327

Before applying the whole procedure, we process the data to ensure it meets all the necessary assumption, i.e. the328

stationnarity of the underlying process. So, we apply the normalization procedure as described in Section 9.2. The329

PV data set is collected at 1 second timestamp and after we average it at a 1 hour bin increment. For the solar data, we330

have collected it also at 1 second and then, we make several averages for 1, 5, 10, 30 and 60 min. So, the Kalman filter331

is applied on the normalized data and thereafter, we reconsider the original signal without normalization, to build the332

final result and compute the performance measures. The exogenous variables are available only for the PV data.333

9.3.3. Results obtained for the PV data without the exogenous variables334

First, we deal with the PV forecast without the knowledge we have on the two exogenous variables, the ambient335

temperature and the cloud cover. The results are shown in the graphs of Figure. 2(a) and the asbolute error is shown336

on figure 3(a). For the scope of comparison, we plot the forecasts performed with the parameter tuning done by the337

AR and the EM algorithms. The Kalman filter is, first, applied to the normalized data and we apply the results to the338

real measurements i.e the not-normalized dataset. We can see that the predicted signal is a good forecast of the real339

PV at future horizon. The accuracy measures are confined in Table 1, with a nRMSE of 8.29% and 8.87% respectively340

for the EM and the AR calibration models. Globally the table says that the initialization method based on the EM341

algorithm is a little bit more efficient than the AR model calibration, but the mean absolute error introduced by the342

EM technique is more important than for the AR case, with the nMAE reaching 4.72% for EM versus 4.61% for343

AR. Another important issue is related to the performance gained with these technique above the classical persistence344

model, which gives us a nRMSE of 13.35%. Comparing the method against the basic persistence model, the two345

initialization methods give a skill score of 33.56%, for the AR and, 37.90% for the EM. Against the smart persistence,346

our forecasts gives a skill score slightly less, with 32.39% for the AR model and 36.81% for the EM technique. The347

difference between the two persistence models is not large since, the smart persistence model performs with slightly348

less error (nRMSE) than the basic persistence. In Figure. 2(d), we plot the measured versus predicted PV power and349

the linear polynomial fitting to show globally the modest performance of the EM initialization above the AR model.350
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Both for all cases, at least 80% of the data are in accordance with the fit, thus we can consider that the two methods351

are satisfactory.352

9.3.4. Results obtained for the PV data with the exogenous variables353

In this study we were also interested in doing forecast for the PV with the knowledge of the exogenous variables,354

the temperature and the cloud cover which are taken as inputs. So we consider our system of Eq. 4 with the input355

BtUt containing the two variables. The matrix Bt is obviously set to the identity matrix since each variable is collected356

in a single point as an unique data vector. If, for example, the temperature were measured at different geographical357

areas, thus, the matrix Bt would be used properly to identify the source of the data each time step. The results are358

depicted in graphs of Figure. 2(b) and Figure. 2(c). Here, we plot the results to show how each given initialization359

procedure performs individually with and without the temperature and the cloud cover. The accuracy measures are360

depicted in Table 1. Here we obtain a nRMSE of 8.03% and 8.77% respectively for the EM and the AR initialization361

techniques. Also we show that each of the techniques performs slightly better with the inputs in terms of root mean362

square error, than without these exogenous variables. Nevertheless, the results are more sensitive to bias but, the363

mean absolute error is less than for the case we run the algorithm without the inputs features. For example, for the364

AR model without inputs, the nMBE and nMAE values reach respectively 0.45% and 4.61% vs 1.81% and 4.18%365

with the exogenous inputs. The EM algorithm gives, for the model with inputs, a nMBE of 0.42% and a nMAE of366

4.57% against a nMBE of -0.08% and a nMAE of 4.72% for the model without inputs. Since the PV production367

depends strongly to the atmospheric conditions, it is very important to be able to do the prediction by incorporating368

this features in the model. We can accept that the results with inputs are more biased since the temperature and the369

cloud cover does not evolve in the same fashion and they might influence the production differently making the bias370

more important. Globally the results found by the two initialization procedures are good with a not negligible benefit371

for the EM which give less errors than the AR model and than with the same technique used without the exogenous372

variables. However the EM method is always more sensitive to bias. This model with exogenous inputs is also better373

than the basic persistence model with an improvement of the skill score which belongs between 34.31% and 39.85%.374

Also, we obtain better results against the smart persistence with a skill score of 33.16% and 38.80%, respectively for375

the AR and EM initialization models. The only point where the persistence model outperforms our model is about the376

bias, which is casually nonexistent.377

9.3.5. Results obtained for the solar data (GHI) without exogenous variables378

For the solar data, we have not at hand the exogenous variables. These variables are only available for the PV data.379

For this data, we have done the calibration for time horizons 1, 5, 10, 30 and 60min but, for the scope of illustration,380

we plot,in graphs of Figures 4(a),4(b), only the results for time horizons 30 and 60 minutes, respectively. On figure381

3(b) the asbolute error is shown for a time horizon of one hour. As for the previous results about the PV forecasts, the382

EM and AR techniques give good performance with a nRMSE in the interval [7.61%; 12.58%] against a nRMSE in383

the interval [7.79%; 16.94%] for the persistence model. We have almost the same results by comparing the obtained384

results with the smart persistence model. Comparing our two tuning algorithms, as we observe in Table 2, the three385

accuracy measures gives better for the EM than for the AR in terms of nRMSE. In Figure. 4(c), we find the trade-off386

between the measured and the predicted solar irradiance and their polynomial fit of degree 1. More generally, the two387

different initialization techniques give globally good results and they can be used according to the need and objective388

of the engineer, to do forecasting with several time scales. The results obtained for very short time scales (1, 5, 10min)389

has a skill score between 5.35% and 20.40%. These results are interesting since for short time scale we have very390

strong flcutuating conditions.391

The performances with the time horizons 30 and 1H are much better than the persistence models; we can achieve392

an improvement with a skill score of 32.16% and 31.64% respectively for the basic and the smart persistence models.393

This results are promising since we are in presence of high fluctuating meteorological conditions for which it is not394

obvious to gather all the knowledge in order to reduce subsequently the error and the bias of the evolving process395

being modeled.396
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(a) Comparison of the two models AR and EM. The EM initial-

ization model gives more reliable results than the AR.
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(b) The AR model performs slightly better with exogenous
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(c) The EM model performs slightly better with exogenous variables than
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(d) Plot of the measured vs predicted PV data to show the perfor-

mances of the two tuning algorithms, namely, AR and EM.

Figure 2. The graphs show the Kalman filter forecast for the PV data at time horizon 1H. In Figure (2(a)), we compare the AR and EM algorithms

to show which one gives better results. In Figure (2(b)) and (2(c)) we plot the results for, respectively, the AR and EM models for parameter

initialization, when we take into account the exogenous inputs (cloud cover and ambient temperature). In graph of Figure (2(d)) we measure and

compare the performance of each initialization method w.r.t. the fit along with a 1-st order polynomial function.
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Figure 3. Kalman filter prediction absolute errors obtained with AR initialization methods for time horizon 1H, PV and solar. We have calculated

and represented (green interval) the 95% confidence interval around the mean.

Table 1. Comparison of the different performance criterion for the different prediction models for the real PV with and without the exogenous

inputs Temperature and the cloud cover. SSp is the skill score calculated for the basic persistence model and SSsp the skill score for the smart

persistence. Time Horizon 1H.

Without exogenous inputs

nRMSE (%) nMBE (%) nMAE (%) SSp(%) SSsp(%)

EM 8.29 -0.08 4.72 37.90 36.81

AR 8.87 0.45 4.61 33.56 32.39

Persistence 13.35 0.00024 8.13

Smart Persistence 13.12 0.0084 8.04

With exogenous inputs

EM 8.03 0.42 4.57 39.85 38.80

AR 8.77 1.81 4.18 34.31 33.16

10. Conclusion397

We have presented in this work a robust forecasting method based on the Kalman filter combined with a prob-398

abilistic initialization, Expectation Maximisation (EM) or Auto Regressive (AR) based. The model is built to be399

performed with both univariate or multivariate data. We test here it’s ability to forecast solar radiation from 1 minute400

to one hour ahead, and photovoltaic power production for one hour ahead. The influence of exogenous inputs on the401

forecasting error is also evaluated. And finally we compare the forecasting errors to those obtained with the naive402

persitence model.403

The proposed technique begins with the establishment of a dynamical state-space model able to capture the dy-404

namics of the system we want to monitor. Thereafter, we propose different algorithms for the scope of parameter405

identification, since a great challenge in order to run properly the Kalman filter is the discovery of the initial values406

of the system quantities. A thorough description is performed about the usage of the defined system in its state-space407

form formulation which could help for system identification.408

On the other hand, our state-space model is defined in a more elaborated form, convenient to including all the409

matrices which govern the whole system and which have a great importance to incorporate the relevant knowledge410

(features) to perform a suitable forecasting operation. Thereafter, the difficult and challengeable task of parameter411

tuning is overcome with two robust optimization techniques, namely the EM algorithm and the AR model, based on412
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(a) Forecast of the GHI at Time Horizon 30min. We plot on the

same grpah the results obtained by the AR and EM initialization

models.
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(b) Same comparison as in Figure 4(a) for Time Horizon 60min.
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(c) Real vs predicted Solar data for the AR and EM.

Figure 4. Kalman filter forecast for the Solar data (GHI) at time horizon 30min (4(a)) and 1H (4(b)). We compare the AR and EM algorithms. In

graph (4(c)) we measure and compare the performance of each initialization method wrt. the fit along with a 1-st order polynomial function.
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Table 2. Comparison of the different performance criterion for the different prediction models for the real Solar data (GHI) without exogenous

inputs. SSp is the skill score calculated for the basic persistence model and SSsp the skill score for the smart persistence.

nRMSE (%) nMBE (%) nMAE (%) SSp(%) SSsp(%) Time Horizon

EM 7.61 0.81 3.91 7.42 6.51

1min
AR 7.78 0.40 4.02 5.35 4.42

Persistence 8.22 0.00008 4.02

Smart Persistence 8.14 0.00074 3.52

EM 9.12 0.56 5.85 19.51 17.99
5min

AR 9.61 0.69 6.02 15.18 13.58

Persistence 11.33 0.0006 6.96

Smart Persistence 11.12 0.0032 5.98

EM 10.22 2.68 7.37 20.40 19.15
10min

AR 10.36 0.84 6.85 19.31 18.04

Persistence 12.84 0.0022 8.39

Smart Persistence 12.64 0.047 8.01

EM 11.23 4.31 9.19 31.06 30.29
30min

AR 11.46 1.18 8.18 29.65 28.86

Persistence 16.29 0.0057 11.50

Smart Persistence 16.11 0.0071 11.03

EM 11.54 1.68 9.17 32.16 31.64
60min

AR 12.08 1.70 9.47 28.98 28.44

Persistence 17.01 0.0057 12.46

Smart Persistence 16.88 0.0086 12.21

the maximum likelihood framework, despite the methods already presented in the literature. In addition, despite the413

fact that there’s an important level of variability in the dataset, our methodology gives good results when accepting414

the stationarity of the process, this assumption having as positive consequence the calibration of the filter only once415

a time with a small amount learning dataset. All these aspects make the whole framework robust enough to perform416

the forecasts for heterogeneous dataset for several time scales.417

The level of performance of the approach is studied with a set of standard accuracy measures largely used in the418

literature, named the root means square error, the mean bias error and the mean absolute error, in their normalized419

form. We have shown that goods results of the PV forecast can be obtained by taking into consideration some420

important exogenous variables, cloud cover and ambient temperature, that have a great influence in the production of421

energy. In this work, these features have been used as inputs.422

Regarding the global solar radiation forecast, the results show that our methodology outperforms by far the clas-423

sical persistence model with a skill score improvement reaching 39.85%. They might be used as variables to be424

estimated as we have done for the PV. Also, other variables should be incorporated in the model, as the speed of the425

wind, to reinforce the prediction. We will address this issue soon in our research.426

The paper tackles an important problem related to the forecast of solar and PV production. We have proposed427

several models for parameter tuning because we believe that in high fluctuating meteorological conditions, it is not428

obvious to build a single model which is reliable to give accurate performances for many time scales. We think that429

it is a necessity to learn more about the variability of the solar irradiance in order to describe the whole system by a430

set of meaningful behavioral classes. So, one could apply in parallel each model to a set of classes according to their431

underlying characteristics. As a final benefit, the whole methodology could be implemented as a single framework432

to do at the same time solar irradiance and PV production prediction in order to help energy provider to control and433

manage carefully their industry.434
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