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Abstract—In this paper, we present a fast and low memory
image reconstruction algorithm from a burst of RAW images.
Existing algorithms produce high-quality images but the number
of input images is limited by severe computational and memory
costs. Our algorithm processes the images sequentially so that
the memory cost only depends on the size of the output image.
Data are combined using classical kernel regression and blur is
removed by applying the inverse of the corresponding asymptotic
equivalent filter that we introduce. In addition, we propose an
accurate and efficient registration method for mosaicked images.
We verify the performance of our algorithm on synthetic and
real images. For a large amount of data, the results are similar
to slower memory greedy methods.

Index Terms—Image reconstruction, kernel regression, denois-
ing, demosaicking, registration.

I. INTRODUCTION

Many computational imaging methods produce high-quality
images from a set of lower quality images. They compensate
for the shortcomings of the imaging system by an adequate
digital processing of the accumulated data. This idea has been
sucessfully exploited for increasing resolution [1], [2], denois-
ing [3], [4], reducing blur [5] or extending depth-of-field [6].
A particularly interesting problem is image reconstruction
from a burst of RAW images since it solves simultaneously
demosaicking and denoising, and eventually super-resolution,
problems [7], [8]. The reconstructed image does not suffer
from artefacts introduced by uncontrolled processing such as
quantization, JPEG compression or demosaicking. However
in practice the use of accumulated data is limited by huge
computational and memory costs.

In this work, we focus on the low memory image reconstruc-
tion problem from a burst of RAW images. By burst we mean a
set of digital images taken from the same camera, in the same
state, and quasi instantaneously. The images differ because of
small motions of the camera, noise and illumination variations.
The scene is assumed to be static. The color intensity values
are available through a color filter array (CFA), commonly the
Bayer filter array [9].

Building an image from a burst is generally decomposed
into two main steps: the registration, where the images are
expressed in a common system of coordinates, and the com-
bination, where the data are combined to form an image.
An accurate subpixel motion estimation for CFA images is
necessary to reconstruct a high-quality image. According to [7]
it can be done by applying a registration method designed for

grayscale images on the luminance part of the luminance and
chrominance decomposition of [10]. However, the proposed
Fourier-based method [11] for estimating a rigid transfor-
mation is not accurate enough. In addition, a homographic
transformation model may be preferable.

In burst denoising methods [3], [4] aligned RGB images are
computed from the estimated transformations by interpolation
and a denoised image is obtained by averaging. In a demo-
saicking or super-resolution context [2], the aliased images
cannot be interpolated. A color image, expressed on a regular
grid, is generally computed from the irregularly sampled data
obtained by gathering all the pixel values in the reference
system of coordinates. A band-limited color image can be
computed by applying the adaptive weights conjugate gradient
Toeplitz (ACT) method [12] independently on the three chan-
nels. The method proposed by [8] is based on a maximum
a posteriori estimation technique by minimizing a multiterm
cost function, which handles the channel correlation. In [7] the
luminance and chrominance parts of the reconstructed image
are computed using an adaptive normalized convolution [13].
This is a robust variant of normalized convolution [14] using
polynomial bases and taking into account local linear struc-
tures. It can also be described as an iterative steering kernel
regression method [15], [16].

While registration is performed sequentially on the images,
all the above mentioned combination methods use an iterative
scheme and require the availability of all the data in memory
at once. A fast and low memory method requires a simpler
combination. For instance a blurry image can be computed
pixel-by-pixel without any iterative scheme using classical
kernel regression, which takes into account the spatial distance
but not the photometric distance. As shown in [17], each pixel
value is a local weighted averaging of the data, i.e., a local
linear filtering. The equivalent filter depends on the data spatial
repartition.

This paper proposes a fast and low memory image re-
construction algorithm from a burst of RAW images. The
combination, using classical kernel regression of second order
with Gaussian kernel, is split into an accumulation part and
an image computation part. Using the particular structure of
the linear systems involved for computing the pixel values,
the input images are processed sequentially during the ac-
cumulation. An asympotic equivalent filter is introduced and
its inverse is applied during a sharpening step. In this paper,



the reconstructed image has the same size as the input CFA
images so that the super-resolution potential of the algorithm
is not discussed. The main contributions of this work are:
(1) an accurate registration method for CFA images, (2) the
introduction of the asymptotic equivalent filter used to remove
blur and (3) a fast and low memory combination method
whose performances are similar to more complex and costly
methods.

The paper is organized as follows: Section II presents the
computation of pixel values using classical kernel regression
and introduces the corresponding asymptotic equivalent filter.
Our low memory image reconstruction algorithm from a burst
of RAW images is presented in Section III and is experi-
mentally validated in Section IV. The work is concluded in
Section V.

II. CLASSICAL KERNEL REGRESSION

Let S be a set of irregularly sampled data and x0 = (x0, y0)
be a pixel position. Denote by w the two-dimensional Gaussian
function of scale σs > 0, i.e.,

w(x) =
1

2πσ2
s
exp

(
−‖x‖

2

2σ2
s

)
. (1)

Pixel value computation. Within a local neighborhood
B(x0, r) of radius r = 4σs around x0, the intensity value
at position x = (x+ x0, y+ y0) is approximated by a second
order polynomial expansion

P (x,v) = v1 + v2x+ v3y + v4x
2 + v5xy + v6y

2. (2)

Denote by (Ii,xi)1≤i≤N the samples of S located in B(x0, r)
at position xi = (xi + x0, yi + y0) and with intensity value
Ii. Write to simplify wi = w(xi − x0). The parameter v =
(v1, . . . , v6)

T is chosen as the solution to a weighted linear
regression on the intensities Ii, which amounts to minimizing
the energy

E(x0,v) =

N∑
i=1

wi (Ii − P (xi,v))2 . (3)

Set Xi = (1, xi, yi, x
2
i , xiyi, y

2
i )
T and Ai = XiX

T
i . The

minimization problem can be interpreted as a weighted least
squares problem whose solution satisfies the 6-by-6 symmetric
linear system Av = b where

A =

N∑
i=1

wiAi and b =

N∑
i=1

wiIiXi. (4)

In a non-degenerate case A is positive semi-definite and the
system admits a unique solution. Finally, the pixel value at
position x0 is given by P (x0,v) = v1.

Asymptotic equivalent filter. Consider the ideal case where
the data in S correspond to the sampling, with a uniform
spatial distribution, of a bounded function I : R2 → R . As N
and r go to infinity, the energy in (3) is approximated, after
renormalization by 1

N , by

E(x0,v) =

∫
R2

w(x− x0) (I(x)− P (x,v))2 dx. (5)

One can easily show that the above asymptotic energy has a
unique minimum v. The corresponding polynomial expansion
verifies

P (x0,v) = (k ∗ I)(x0) (6)

where k is called the asymptotic equivalent filter and is defined
by

k(x) = w(x)

(
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s

)
. (7)

This kernel does not depend on x0 and its Fourier transform
is given by

F(k)(x) =
(
1 +

σ2
s

2
‖x‖2

)
exp

(
−σ2

s
‖x‖2

2

)
. (8)

To summarize, an image computed by classical kernel re-
gression can be asymptotically interpreted as the convolution
between the ideal unknown target image and k. The image
may seem blurry since k attenuates the high-frequencies. This
justifies the application of an enhancement filter reverting the
blur.

III. ALGORITHM

From a burst of Nim RAW images of size W × H , our
image reconstruction algorithm builds an RGB image of size
W ×H . An additional reference RAW image is used during
the preprocessing and registration steps. The main steps are
summarized in Fig. 1(b).

Preprocessing. A variance stabilizing transformation (VST) is
applied to the RAW images to approximate a homoscedastic
noise. For the channel c, using the classical assumption that the
variance Vc of the noise is an affine function of the intensity
Vc(u) = acu + bc, the VST is given by fc(u) =

√
acu+ bc.

The noise curve of the reference RAW image is estimated
using the Ponomarenko et al. method [18], [19] and the
parameters ac and bc are computed by linear least squares.

Then, a multiplicative mean equalization of the reference
image’s channels is done and its maximal value is arbitrarily
set to 255. Finally, multiplicative mean equalizations between
all the images and the reference are performed.

Registration. First, the burst and reference CFA images are
converted to grayscale images by applying the 11 × 11 filter
of [10, Fig. 4(b)]. Then, homographic transformations linking
the images to the reference are estimated by applying the
inverse compositional algorithm [20] to the corresponding
filtered images. More precisely, the registration is done using a
robust error function and a multiscale coarse-to-fine approach
as described in [21].

Accumulation. Computing pixel values by classical kernel
regression is equivalent to solving a symmetric linear system
Av = b. Thanks to the redundancies in A the system
is determined by only 21 coefficients (instead of 42). The
accumulation step consists in computing and storing the 21
system coefficients for each output pixel. It takes as input the
images and their corresponding homographic transformations.



(a) Memory greedy algorithm

(b) Our algorithm

Fig. 1. Main steps of our image formation method. (a) and (b) are theoretically equivalent.

Thanks to the summative expressions in (4) the contribution
of a sample to the system coefficients can be computed by
accumulation. The system coefficients are initialized to 0.
Then, for each of the Nim CFA images the contributions of
its W ×H samples are added to the system coefficients. Note
that a sample only contributes to pixels of the same channel
and at a distance lower than r.

In the following the value σs = 1/
√
2 is used. It insures a

non-negligible contribution to a sample at distance 2σs =
√
2,

which is approximately the distance separating red (or blue)
samples of a CFA image. Each sample contributes to at most
20 surrounding pixels, which represents 420 updates.

Image computation and sharpening. For each pixel of the
color regular grid of size W×H , the symmetric linear system,
corresponding to the computed system coefficients, is solved
using a Cholesky decomposition. The blur of the resulting
RGB image is corrected in the sharpening step. It consists in
applying the inverse of the asymptotic equivalent filter k to
the RGB image. This is done using the inverse of (8) and the
discrete cosine transform (DCT) convolution method.

Low memory requirement. Theoretically the accumulation
and image computation steps are equivalent to a single com-
bination step taking as input the three sets, one per channel,
of irregularly sampled data. The structure of the resulting
algorithm is shown in Fig. 1(a). The storage of the data
makes this algorithm memory greedy. It requires to store three
floating point numbers per sample with a total amount of
3NimWH .

On the contrary the memory cost of the proposed algorithm
is constant with the number of images Nim since the images
and their samples are processed sequentially. The main cost
comes from the storage of the system coefficients, which only
represents 63WH floating point numbers.

IV. EXPERIMENTS

Our image reconstruction algorithm was compared to an
algorithm using the memory greedy structure of Fig. 1(a)
where the combination is done using the ACT method [12]. It
uses the same preprocessing and registration but requires no
sharpening.

When the reference target image is known we define Eref as
the root mean square error (RMSE) of the reconstructed image.
We define Eset as the root mean square difference (RMSD)
between reconstructed images from two separated subsets of
the burst. In the case of an ideal denoising from n images
we would have Eref =

√
10
3

σ√
n

and Eset =
√
2Eref. The factor√

10
3 is due to the different number of samples available in

the channels (two times more in the green channel). Note that
before any image comparison a band of 20 boundary pixels is
discarded and a mean equalization is performed.

The first goal of the experiments is to show that we are able
to provide similar results as the ACT with less computation
time. Secondly, we verify that the decay of Eref and Eset
empirically follows the ideal denoising error decay.

In the figures, we display details on a small relevant zone.
For the difference of color images we display the root mean
square (RMS) over the channels. The experiments were made
using C-language implementations and an Intel(R) Core(TM)
i7-7820HQ CPU (2.90GHz).

On synthetic data. We generated a burst of Nim = 200
CFA images from the Rubberwhale image [22], which is
a color image of size 584 × 388. The images were linked
by homographies obtained by randomly moving the four
corners of the input image. Each displacement was uniformly
distributed in [−3, 3]2. After resampling with a high-order
interpolation method, the color filter was applied and Gaussian
white noise of standard deviation σ = 5 was added. A noisy
CFA reference image was also generated.

The registration step was performed in 30s, i.e, 150ms
per image. The end-point error was on average 0.00909
pixel. With such a subpixellic precision, the results with or
without estimating the transformations are similar. Therefore,
we present the results using the estimated transformations.

The reconstructed images using our algorithm and ACT
are displayed in Fig. 2(a)-(b). It is hardly possible to detect
differences to the naked eye. As shown in Fig. 2(c)-(d), the
residuals using both methods are mainly composed of noise.
Our result has higher errors at the discontinuities. This effect
is less important with ACT since it is Fourier based. As shown
in Fig. 2(e), both reconstruction errors are close to the ideal



(a) Our algorithm (b) ACT
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Fig. 2. Image reconstruction on synthetic data. The computation times in (e)
do not take into account the registration.
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(b) Eset

Fig. 3. Error evolution with the number of input images using our algorithm
on synthetic data.

denoising error. The error Eref using our algorithm is slightly
higher than using ACT but the RGB image was computed 8.5
times faster using about Nim

21 ' 10 times less memory. The
evolutions of Eref and Eset with the number of input images
are shown in Fig. 3. In both cases the curve shape is similar
to the ideal denoising one.

On real data. We built images from a burst of Nim = 200
RAW images and an additional reference RAW image. The
images were acquired using an Olympus E-M5 Mark II camera
set in sequential mode and then cropped to have a size of
1024× 1024.

The registration was performed in 167s, i.e., 835ms per
image. The combination and sharpening were done in 367s
using our algorithm and in 2705s using ACT. The constructed
images are shown in Fig. 4(a)-(b) and compared in Fig. 4(c).
The result using ACT is slightly better at the discontinuities
but our result is computed 7 times faster and required about
Nim
21 ' 10 times less memory.
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Fig. 4. Image reconstruction on real data. (c) is the difference between (a)
and (b), and (d) is the difference between reconstructed images built using
our algorithm on two separated sets of 100 images.

The evolution of Eset with the number of images is shown in
Fig 4(e). It confirms that the error decay is close to the ideal
denoising one. Indeed, the error between 20 and 100 images is
divided by a factor 2.18 for an ideal denoising decay factor of√
5 ' 2.23. The difference image corresponding to the fusion

of 100 images is shown in Fig 4(d).

V. CONCLUSION

This work proposes a fast and low memory image recon-
struction algorithm from a burst of RAW images. Thanks to a
simple combination method and a sequential processing of the
input images, the memory cost only depends on the size of the
output image. The registration method used for CFA images is
proven experimentally to be efficient and accurate. Classical
kernel regression has a particular structure that allows for the
accumulation of the data and admits an asymptotic equivalent
filter, which is successfully inverted to remove the blur. For
a large amount of data our algorithm provides similar results
as slower and memory greedy methods. The residual noise
decreases as expected.

The super-resolution potential will be discussed in a coming
paper. This efficient algorithm opens the way to real time
image formation.
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