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ABSTRACT

We present a neuronal architecture to control a compliant robotic model of the human vertebral
column for postural balance. The robotic structure is designed using the principle of tensegrity that
ensures to be lightweight, auto-replicative with multi-degrees of freedom, flexible and also robust
to perturbations. We model the central pattern generators of the spinal cords with a network of
nonlinear Kuramoto oscillators coupled internally and externally to the structure and error-driven
by a proportional derivative (PD) controller using an accelerometer for feedback. This coupling
between the two controllers is original and we show it serves to generate controlled rhythmi-
cal patterns. We observe for certain coupling parameters some intervals of synchronization and
of resonance of the neural units to the tensile structure to permit smooth control and balance.
We show that the top-down PD control of the oscillators flexibly absorbs external shocks propor-
tionally to the perturbation and converges to steady state behaviors. We discuss then about our
neural architecture to model motor synergies for compliance control and also about tensegrity
structures for soft robotics. The 3D printed model is provided as well as a movie at the address
https://sites.google.com/site/embodiedai/current-research/tensegrityrobots.
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1. Introduction

Animal’s musculoskeletal system is based on a com-

Q1

plex network of muscles, bones, nerves, tissues, and soft

bodies which are hard to replicate accurately in robots

[1,2]. This dense architecture is however well ordered so

that the control done in the nervous system can realize

easily �exible sensorimotor coordination at a very low

energy cost with the dynamical grouping of the muscles

known as motor synergies [3–5]. Nonetheless, in order

to exploit fully the body structure, the nervous system

has to organize itself �exibly and complementarily [6–8].

For instance, the well distribution of stress and strain

throughout the body warranties its ecological control so

that when we are exposed to a violent shock, we can still

stand or bend our knees or sti�en (or soften) our body

and joints with a small amount of control, just as a build-

ing would absorb an earthquake wave and balance itself,

or as a bridge would lean into the wind. In comparison,

current robots are still di�cult to design and to control in

order to achieve robust postural balance under external

perturbations and dynamic motion.

In this paper, we propose to take inspiration of both

(1) the humanmusculoskeletal system of the dorsal spine

CONTACT Alexandre Pitti alexandre.pitti@u-cergy.fr Laboratoire ETIS, Université Paris Seine, Université de Cergy-Pontoise, CNRS UMR 8051, ENSEA,
Cergy-Pontoise, France

and (2) the neural architecture at the spinal cords level

to realize a multi-degrees of freedom vertebral column

robot [9–12] and its neural controller in order to cope

with external perturbations. Our �rst contribution is

on the one hand on the design of an original neural

controller composed of a proportional derivative (PD)

controller and nonlinear oscillators in order to gener-

ate controlled rhythmical patterns and convergence to

steady state behaviors. Our second contribution is on the

other hand on the design of a novel vertebral column

robot constituted of connected auto-replicative tenseg-

rity elements [13] mounted vertically as a multi-segment

inverted pendulum with soft links. To our knowledge,

this coupling between a PD controller and nonlinear

oscillators to control synchronization as a minimization

process was never presented before.

Wemodel the central pattern generators (CPGs) of the

spinal cords with a network of nonlinear Kuramoto oscil-

lators coupled internally and externally to the structure

and error-driven by a PD controller using an accelerom-

eter for feedback. We suggest that our proposed neural

controller, although simple, is similar to the role played by

the neuromodulators in the spinal cord thatmodulate the

© 2018 Taylor & Francis and The Robotics Society of Japan
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gain of the sensory feedback on the alpha-motor neurons

activity to generate the desired synergy [14–16]; which

means selecting the most expected resonant modes rela-

tive to the perturbation. In line with [8,17], we consider

postural coordination modes as emergent phenomena

giving rise to non-linearity properties such as phase tran-

sition, multistability and hysteresis [18].

The paper is organized as follows. In Section 2, we

present �rst our motivation for the design of a tensile

structure. In Section 3, we describe then its assembling

with replicated 3D printed elements, its motors and sen-

sors used in order to replicate the tendon-driven mecha-

nism and control of the human upper-body. We present

the neural oscillators used to model the so-called CPGs

and the feedback-driven PD control used to model the

neuromodulators. Tested in passive and active condi-

tions, themulti-DOF tensile structure shows a large spec-

trum of behaviors from very soft dynamics capable to

generate rhythmical oscillations to very rigid static pos-

tures capable to handle its own weight in every posture.

In Section 4, we propose four experiments to dis-

play the capabilities of our framework. In the �rst setup,

we de�ne the dynamics in open-loop control for var-

ious modes of coordination by varying the phase and

the duration of a pulse-width modulation (PWM) con-

trol and by analyzing the resonant frequencies of the

system and its rhythmical patterns. In the second exper-

iment, we analyze the system statically from a postural

viewpoint and study its robustness in the upward posi-

tion. In the third experiment, we propose to exploit error

feedback for closed-loop control of the structure using

CPGs [19]. Depending on the values of the internal and

external coupling parameters, we can synchronize non-

linear oscillators modeled with Kuramoto units to the

resonant modes of the structure and entrain it freely

to speci�c directions. These privileged modes of syn-

chrony represent the natural motor synergies that are

possible to generate and control in the multi-segmented

structure [20].

In the fourth experiment, we employ a top-down

mechanism, a PD controller, that controls the amplitude

level of the oscillators in order to absorb the external per-

turbations gradually on the vertebral structure so that it

can return back to its resting upward posture. Depending

on the strength of external perturbation, the controller

will set the oscillators to a certain regime producing big

oscillations till recovery in order to absorb the shock.

In reverse, for tiny perturbations, the controller will set

the oscillators to a di�erent regime that can dampen the

perturbations.

We discuss then the interest of our mechanical design

and of our neural network for controlling soft robots as

well as the links to human motor synergies.

2. State of art andmotivation

One architectural design that explains well biomechani-

cal compliance is tensegrity structures [21,22]. Tensegrity

structures can be seen as physical networks of stress and

loads so that they have an inner stress and plasticity in

their structure that make them resilient, adaptive and

robust to some external loads. In comparison to most

robotic designs, they do not follow Newton’s law for rigid

bodies as they have no joints and no momentum or

torque since themotors are not on the axis of articulation.

Instead, they follow Hooke’s law for elastic bodies. These

features make them a promising paradigm for integrat-

ing structure and control design [23–25]. For instance,

we can easily formalize a tensegrity system as a network

of tension (muscles and soft tissues) and compression

(bones), or as a network of springs and masses [26,27].

Therefore, they can be viewed as complex dynami-

cal systems with many degrees of freedom [10,28,29],

which is a property often seen in biological systems

[30–32].

The redundancy and nonlinearity within such dynam-

ical system might be considered at �rst as an obstacle

to control, however, the symmetries of the overall struc-

ture and themany resonantmodes generated can serve to

decrease the dimensionality of the control problem. For

instance, one way to have an adaptive control is to exploit

phase synchronization of these modes similar to coupled

chaotic maps [7,33].

In human control, this work is achieved by the CPGs

at the spinal cord level, which are primitives that con-

trol the muscle grouping for general motion behaviors

[14,34]. When we are standing upward, for instance,

groups of muscles are dynamically selected to contribute

to our stability depending on the error perturbation level

and the force direction [35,36]. In robotics, such bio-

inspired control is still di�cult to model when we design

a compliant bodywithmanydegrees of freedomandnon-

linearities. In previous works, we have shown how we

can control such high degrees-of-freedom system with

chaotic controllers that sync dynamically to the resonant

frequencies of several robotic devices [29,37–39] and to

human partners [40]. We believe that this type of control

conveys some important features of the humanmusculo-

skeletal system control as done in the spinal cord by the

CPGs [34,41,42].

3. Material andmethods

We present a tensegrity structure based on auto-

replicative elements, 3D printed and similar to the ones

proposed in [13,43], see Figure 1(a,b). This particular
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Figure 1. Multi-joint vertebral column model based on auto-
replicative tensile elements for soft robotics. (a–c) Each element
forms a tetrahedron by its four edges, which ensures the whole
compliance and tension distribution in the three directions when
connected to other elements in line. (d) An Inertial Measure-
ment Unit (IMU) is placed at the end of the structure for position
control and acceleration feedback. We provide the design of the
replicative element freely at the address [44].

motif reproduces the very stable structure of the tetrahe-

dron (i.e. the pyramids) which can stand easily upward,

see Figure 1(c,d). When two structures are assembled as

two inverted pyramids, the coupled unit structure can

move in two directions and can support small sheer tor-

sions as well in the third direction, which is ideal for

modeling the human’s rotational joints.

In comparison to other types of tensegrity motives,

this one has the advantage to require fewer structures and

few junctions part. Each element is connected to others

with springs, which confers to the design some visco-

elastic properties comparable to pre-stressed structures.

The tensile elements possess a stable con�guration that

returns even after applying some external force pressure

(self-stabilisation). The whole structure has 10 elements

connected with spherical joints (ping-pong balls), which

models well the excentric rotations of bones articula-

tion. The vertebral column measures around 1-meter

height; and each element is occupying a volume of 11

centimeters cube. The system can be viewed as a three-

dimensional version of mass–spring dampers mounted

in series. The total weight of the robot vertebrae is under

800 g, counting the weight of the motors (25 g each) and

of each element (30 g), which is very light concerning

its size.

Conception.We display in Figure 2 the prototyping of

the tensegrity model with motors inserted and springs

attached. A better understanding of which part of the

robot each motor actuates is provided further in the

Muscle-Tendon section Figure 3. To show the proper-

ties of compliance and postural stability of the structure,

we co-contract the motors and set its neutral postural

con�guration respectively in the horizontal plane and in

upward tension, so that the structure has a maximum

momentum and tension on its morphology horizontally

and has to exploit its physics fully to stand vertically; see

resp. Figure 2(a–c). The balanced forces distribution of

each motor-driven cables on the whole structure makes

it stabilized in every position, even for the less energet-

ical ones as the horizontal plane or the vertical plane,

which are also di�cult for humans who develop di�er-

ent strategies to support their own postural balance [18,

31,36,45].

Sensory acquisition. To perceive the motion, an iner-

tial measurement unit (IMU) is placed at the top of the

vertebral column as shown in Figure 1(d). This module

possesses one accelerometer and a gyroscope, which per-

mits to measure an angular velocity in rad/s and linear

acceleration in rad/s2. Since the Gyro drifts slowly from

its position and the accelerometer has high-frequency

parasites, we can combine the two information to get

rid of the slow variations of the gyroscope (high-pass

�lter) and the fast variations of the accelerometer (low-

pass �lter). The equation of the complementary �lter for

the Y angle is: θIMU = 0.98x(θ + Gy/dt) + 0.02xYacc.

Where Yacc is the angle of the accelerometer in degree

and Gy the variation of the gyroscope. We mount the

IMU at the extremity of the structure to have the maxi-

mum amplitude variation as the feedback signal. We plot

in Figure 1(d) the XY Z coordinate system in which the

x-axis is opposite to the gravitational �eld and points

upward so that the IMU is aligned along the longitudinal

axis of the robot, the z-axis is perpendicular to gravity

and lies in the horizontal plane of the robot body and

the y-axis is aligned in accordance to both the x- and z-

axis in order to form a right-hand three-axis coordinate

system. The rotations in roll φ, yaw ψ , and pitch θ rep-

resent changes in orientation about the x, z and y-axes

respectively, see Figure 1(d).

Muscle-tendon model. The structure is actuated by six

electrical micro-motors with a gear head and a shaft that

reel up a 10 cm tendon-like wire and assembled in oppo-

site sides, two by two, all over the structure and every two

segments to have some �exibility (under-actuation).

Using the same the nomenclature proposed by Geyer

andHerr [46], we propose tomodel the system dynamics

as actuated mass–spring–dampers connected in paral-

lel and in series. For instance, each tensile element is
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a) b) c)

d) e)

Figure 2. Robustness in co-contraction in horizontal and upward postural configuration. Static postures demand to set the contraction
of all the motors to specific lengths. In these situations, the motors act as rigid tendons and loads are distributed overall the structure.
Maximal efforts are delivered on the structure when set at the horizontal in (a), in the vertical plane with different directions in (b), and
upward at the vertical in (c).
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Figure 3. Muscle model in co-contraction within the structure. Motors are mounted with springs in parallel and in series on the structure,
Q22

which ensures the tensegrity system to be always pre-tensed. Themotors pairsM1/M2 andM3/M4 aremounted in the opposite direction
for co-contraction.

formed with an active contractive element (CE) together

with elastic series (ES) springs constituting one muscle-

tendon unit (MTU), see Figure 3(a). Each spring has

an optimum length lopt in which the global system

is in a static con�guration. if the CE stretches an ES

spring beyond its optimum length (lES > lopt), a parallel

elasticity (PE) spring engages in the opposite direction

so that its length becomes lPE < lopt. Conversely, as each

tensile unit possesses two actuators mounted in oppo-

sition, the opposite PE prevents the ES of abrupt slack.

We can now put in equation the system’s behavior using

these elements depending on the action of CE. Knowing
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the stimulation S(t) of the muscle m and the muscle

time delay (�t) and gainG, we have S(t) = S0 + G(lCE −

lo� )(t − �t) where lo� is a length o�set and S0 a stimu-

lation o�set.

3.1. Controllers

We describe in this section the three di�erent con-

trollers used to explain our original model to control the

soft vertebral robot. In the �rst section, we present the

error-driven PD controller and how it is implemented

to control the structure as a classical invert-pendulum.

In the second section, we present the oscillatory-based

Kuramoto network that creates the rhythmical synchro-

nization pattern in open-loop or in closed loop. And in

the third section, we present our original approach that

combines both approaches, PD+Kuramoto, for rhyth-

mical synchronization and error-based attenuation of

oscillations during external perturbation.

PD control.One common way to control the structure

in its upward position is to use PD controllers to mini-

mize the proportional (P) and derivative errors (D) based

on sensory feedback [46]. The variable (e) represents the

tracking error, the di�erence between the desired input

value (R) and the actual output (Y), the angular position

computed from the IMU from the vertical axis.

This error signal (e) will be sent to the PD controller,

and the controller computes both the derivative of this

error signal. The signal (u) just past the controller is now

equal to the proportional gain (KP) times the magni-

tude of the error plus the derivative gain (KD) times the

derivative of the error: u = KPe + KDė.

This signal (u) will be sent to themotors fed as a PWM

controller, and the new output (Y) will be obtained.

This new output (Y) will be sent back to the sensor

again to �nd the new error signal (e). By convention, the

motor units on the left side will receive the command (u)

whereas themotors on the right side will receive the com-

mand (-u). In the following experiments in Section 4, we

will control the tensegrity column in one plane only in

the Y -axis using a PD controller on the motor units or

the oscillators respectively in Sections 4.3 and 4.5.

Kuramoto oscillators. The PD control presented in the

previous section is driven by error feedback and can serve

as an adaptive strategy for stabilization if the proper coef-

�cients are found. In comparison, oscillator-based con-

trollers can model rhythmical patterns that can improve

the control of speed as well as robustness against noise

when the proper feedback-driven coupling is found. We

propose to model also this second type of controllers for

the balance andpostural control of the tensegrity column.

We will use for that limit-cycle nonlinear oscillators,

which are employed in many robotic experiments to

model the spinal cord’s CPGs [42,47,48].

The archetypal limit-cycle oscillators are the van der

Pol or Fitzhugh-Nagumo ; however, we adopt in our

experiments the adaptive Kuramoto oscillator for its sim-

plicity to control the motor units. Each oscillator has its

intrinsic frequency and can receive interoceptive signals

either from other oscillators or descending controllers

and exteroceptive signals (in our case from the IMU

sensor), see Figure 4 the blue lines. Depending on the Q2

coupling parameters for internal and external feedback,

the oscillators can have a phasic adaptation to the robot

motion –, which can serve to accelerate it or to damper

it concerning the oscillator’s own pace,– or an abrupt

change to a non-rhythmic behavior.

Each oscillator ϑ has its own intrinsic frequency ω,

and each one receives a linear combination from internal

and external dynamics. The internal coupling is done by

computing the phase di�erence between the oscillators.

The external coupling is done similarly by computing

the phase di�erence between the sensory feedback from

the IMU unit, θIMU and the current phase of the oscilla-

tor ϑi. We de�ne the three coupling coe�cients, KI, KE

and JE corresponding, respectively, to the internal cou-

pling among the oscillators, the external coupling of the

external signal to the units and the amplitude level of

the output signal to the motors. The internal couplingKI

synchronizes the oscillators from each other and reduces

their variability. The external coupling KE in�uences the

coupling to external perturbations. Besides, the control of

the amplitude signal to the motors JE is used to perturb
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Figure 4. Hierarchical control based on top-down PD controllers
and bottom-up oscillators. The whole control of the motor syn-
ergies is based on the coupling parameters set {KE,KI, JE}. The
Kuramoto oscillators are coupled internally to each other based
on the parameter KI. The external coupling is done by the param-
eter KE, which sets the influence of the IMU sensor on the inter-
nal dynamics. The parameter JE acts on the amplitude of the
Kuramoto units. The rhythmical patterns produced by the oscil-
lators can be controlled by a higher center of decision that selects
the global parameters for a desired postural control. This hierar-
chical control corresponds to a dimensionality reduction of the
controller on the robot dynamics to generate a feedback-based
closed loop control on oscillatory movements.
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and entrain the column. That is, the variable JE changes

the amplitude level of sin(ϑi) on the motor ui and by

doing so modulates the strength of the synchronization

level between the oscillators and the multi-articulated

structure. The variable JE a�ects then the generated res-

onant modes observed at the body level. Furthermore,

in order to take into account the symmetry of the struc-

ture, the intrinsic frequency of each co-contracting pair

{i, j} are phase-shifted by π so that we have three units

controlling themotor activity of sixmotors: ϑi = ϑj + π .

We make the note that this e�ect is not shown in the

equations.

dϑi

dt
= ωi + KE sin(θIMU − ϑi) +

KI

N

N∑

j=1

sin(ϑj − ϑi),

(1)

ui = JE sin(ϑi). (2)

PD control on the Kuramoto oscillators. The parame-

ters {KI,KE, JE} set the oscillators to certain rhythmical

regimes, which can be viewed as imposed motor syner-

gies [5]. Therefore, one way to combine the rhythmically

based control with the re�exive-based control presented

before is to put atop of the oscillators a PD controller to

modulate the values of the parameters set {KI,KE, JE}.

In comparison, the PD controllers atop of the Kuramoto

network can modulate its parameters to tune the motor

synergies or to repel them from discrete patterns. There-

fore, the control of this parameter set {KI,KE, JE}may be

seen similar to the descending neuromodulators in the

spinal cord that control the activity level of the alpha-

motor neurons.

This compound controller will drive directly the oscil-

lators toward desired regimes by changing the coupling

parameters based on error feedback; the new circuit is

plotted in red links in Figure 4. We use for that the dis- Q3

tance to the vertical Yerr as a measure of the error e to

synchronize the oscillators to the amplitude level of the

perturbing force by updating the parameter JE with the

PD equations such that JE = KPYerr + KDẎerr. Such a

strategy may be similar to the task-level commands per-

formed by the neuromodulators in the higher centers of

decisions to bypass or to activate the synergistic control

at the spinal cord level [4,5,15,35].

4. Results

We present in this section the results that character-

ize our soft robot with perturbations in passive mode

in order to retrieve ack its fundamental resonant fre- Q4

quencies (Sections 4.1 and 4.2) and in active mode to

control the multi-segments structure for balance and

standing upward based on error feedback and oscilla-

tions nearby its intrinsic frequencies (Sections 4.3, 4.4

and 4.5).

4.1. Dynamic behavior analysis in passive

conditions

Wemake �rst a perturbation analysis of the whole struc-

ture andpresent its dynamic behaviorwhenpushed in the

frontal plane and when pushed on the transverse plane,

respectively (Figure 5(a,b)). Speci�cally, we are interested

in the passive response under external stresses and the

response of the controllers.
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Figure 5. Perturbation analysis on the vertical and axial plans of rotation, resp. top chart and bottom chart in (a) and (b). The Fourier
transforms in (c) show the resonant frequencies of the structure. Two different fundamental resonant frequencies are found for the two
axis, respectively 0.5Hz and 2Hz.
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We display the Fourier diagrams for the two types of

perturbations. In Figure 5(a), the horizontal perturbation

on the structure produces a pseudo-periodic oscillation

with a fundamental mode around 0.5Hz, whereas in

Figure 5(b) a perturbation around its axis of rotation gen-

erates an oscillation around 2Hz. The structure can store

and release energy, which is important to develop reso-

nant modes and the motor synergies. The more elements

are linked together in the structure; the more resonant

modes can be generated.

As the structure is light with spherical joints, it has

few frictions except at its �xation point and behaves

like a pendulum. The number of oscillations till stabi-

lization is very large and above 10 oscillations for 30

seconds momentum for perturbations in the horizon-

tal direction, see Figure 5(b). Therefore, it is reason-

able to tune the intrinsic frequencies ω of the oscilla-

tors nearby the ones of the structure to ease its motion

coordination.

4.2. Resonantmode analysis in controlled

conditions

We propose to study in this section the control of the dif-

ferent resonant modes and phase delays of the structure

with open-loop controllers using PWM controllers. To

facilitate the analysis, we group the motors aligned sym-

metrically in the longitudinal plane forming two clusters

of three motors each. We control the phase delay and

duration of the PWM between the two motor groups

around the fundamental frequency.

If we modulate the duration of the PWM controllers

for all the motors as in Figure 6(a–d), respectively, from

50, 100 , 25 and 500ms, we can observe sensitivity on

the oscillatory patterns of the tensegrity structure. As

we might expect, large PWM produces large amplitude

oscillations whereas small periods of the PWM gener-

ate weak perturbations. The resonant mode occurs for

250ms period square signal with amplitude variation 3

times larger than for PWM of 50ms. Above this value,
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a) b)

c) d)

Figure 6. Phase duration characterization in controlled conditionwith PWM. A PWM signal controls the tensegrity structure in the vertical
axiswithmotors alignedalong the vertical axis.Modulating thephasedurationof themotors, fromsmall durations 50ms (resp (a), 100ms
(resp (b), 250ms (resp (c) up to 500ms (resp. (d), affects the level of global synchrony and the apparition of complexmodes of resonance.
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in the case of Figure 6(d), new harmonic modes are

super-imposed on the speed signal, which corresponds to

complex modes of coordination with the apparition also

of harmonic waves.

4.3. PD control

We perform �rst the error-based PD control of the

upward structure relative to the Y axis with directly

e = Yerr, the relative displacement. The PD controller

can be written as u = KPYerr + KDẎerr. We present a
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Figure 7. PDcontrolwith respect to external perturbations. The top
chart presents the displacement of the structure on the Y axis, the
middle chart displays the PD error and the bottom chart corre-
sponds to themotor output taken from two units in opposite side.
The perturbations are represented as strong deviations of the PD
error in the middle chart. In this graph, we show that the PD con-
trol is capable of stabilizing the Y axis with a short recovery period
with respect to external perturbations.

graph in Figure 7 showing the structure Y displacement

to the vertical axis, the PD error computed and themotor

control on it. It shows that the PD controller rapidly

stabilizes its dynamics to the upward posture concern-

ing perturbations, which corresponds more to a re�exive

bang-bang controller when the KD coe�cient is tuned

with a small value relative to KP. Although the structure

presents a rhythmical pattern, the transitions are abrupt

as we do not observe any resonant modes in this con-

�guration (top chart). In this control mode, the motors

contribute mostly to shock absorptions, which is less

energy-e�cient and less compliant. We will study and

compare thereinafter other controllers based on oscilla-

tors to overcome this problem of smooth control.

4.4. Kuramoto oscillators control

Our �rst experiment with the Kuramoto oscillators con-

sists in studying the interval range of the external cou-

pling parameter KE and see the impact feedback on

the internal dynamics of the oscillators when they are

coupled to it. We study �rst the Fourier coe�cients of

Kuramoto’s units when the control is done in a closed-

loop manner when we make to vary KE within the inter-

val range [0; 1]; the motor signal is normalized within

the interval range [0, 255] and translated into PWM to

the motors. We display the result of the Fourier trans-

form in Figure 8(a) and of the dynamics of one motor in

Figure 8(b) within the interval range KE ∈ [0.15; 0.41].

In our experiments, the internal coupling, KI = 0 and

the amplitude level of the oscillators, JE = 1 are not

changed.

When KE = 0.0, the oscillators drive the tenseg-

rity structure in a completely open-loop fashion to the
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Figure 8. Influence of the external coupling parameter KE on the resonant modes of the tensegrity structure. In (a), we plot the Fourier
coefficients with respect to the quantity of feeded back signal injected into the oscillators within the interval range KE ∈ [0.0, 1.0] from
open-loop control to stable closed-loop entrainment. In (b), we plot the details of the dynamics of one oscillator with respect toKE in the
interval range [0.15, 0.40] when the systembifurcates fromanunder-damped state to a rhythmical regimewith the resonant frequencies
of the tensile structure.
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Figure 9. Phase plots for external coupling KE corresponding to
three different behavioral patterns and for different amplitudes JE.
(a) KE = 0.0, the oscillators control in open-loop vertebral col-
umn to their intrinsic regime different from the one of the struc-
ture. (b) KE = 0.2, The oscillators go to a stable point attractor
that return back when perturbed. This corresponds to a stable
and passive pre-reflexive stage. (c) KE > 0.2, the general regime
of synchronization is stabilized to generate rhythmical patterns
around the center, which vary also depending on the motor
force JE.

intrinsic frequency ω of the oscillators. In this stage, the

tensegrity structure performs a strong rhythmic motion.

AtKE = 0.2, an interesting behavior occurs in which the

oscillators bifurcate to an attractor point, which is an

under-damped postural con�guration due to the friction

of the ball joints. The friction poises the structure to the

vertical position. The structure is slowly entrained by a

slight feedback control till its immobilization. This pos-

ture is in this plot the upward posture with Y =0. In this

situation, themotors remain in this static posturewithout

any feedback and react to small perturbations: when the

structure is slightly pushed, the oscillators act re�exively

to return back to the static posture.

Above this value, say forKE ≥ 0.4, the oscillators start

to be entrained actively by the external dynamics with

a signal per noise ratio that depends on KE values. In

this stage, the feeded back signal generates stable cyclic

motion around the upward position in which, the higher

the coupling coe�cient, the higher the instabilities of the

rhythmical pattern.

To understand in more details what is going on

between the two regimes found, we plot the dynamics

of the oscillator in the interval range KE ∈ [0.15; 0.4],

see Figure 8(b). In coherence with the results found in

Figure 8(a), we observe a point transition only at KE =

0.25, which corresponds to a bifurcation diagram of the

oscillators dynamics when they start to synchronize to

the external dynamics of the body structure and start to

mutually in�uence each other to this particular rhythm.

This state corresponds to what is called feedback reso-

nance, a mechanism that drives one system to its res-

onant frequencies by feedback and for certain coupling

strength. This approach is similar to synergistic control

[6,8], nonetheless, we characterized this phenomenon in

robotics as a way to control postural coordination in

di�erent robotic systems [29,37–39].

We analyze in the next paragraph the three cases found

depending on the coupling parameters {KE,KI, JE}.

We display three di�erent phase plots for the three

behaviors presented earlierwith respect toKE ∈ {0.0; 0.2;

0.4}, see Figure 9 resp. (a–c). But to de�ne more pre-

cisely the behavior of the system, we add two new condi-

tions to compare with when JE = 0.6 and when JE = 1.0

that modulate more or less strongly each motor output.

The two left columns of top charts indicate the oscilla-

tor’s phase over time ϑ(t) given to the motors between

[0;+255] and the two left column of bottom charts indi-

cate the vertical displacement over time Y(t) or Yerr

relative to the vertical axis and normalized between

[−100;+100], which corresponds to [−30;+30cm].

The third column in Figure 9(a–c) corresponds to the

phase plot of the two variablesY andϑ , respectively in the



991

996

1001

1006

1011

1016

1021

1026

1031

1036

1041

1046

1051

1056

1061

1066

1071

1076

1081

1086

1091

1096

10 A. MELNYK AND A. PITTI

x and y axis, which describes the temporal dependence

of the two variables. These graphs show the plots during

10 s of the internal CPGs dynamics and of the position at

the tip of the structure oscillating around the Y axis for

JE ∈ [0.6; 1.0].

In Figure 9(a), the tensegrity structure is totally

open-loop driven and forced to follow the oscillators

cycle without any feedback. In contrast, the situation in

Figure 9(b) corresponds to an under-damped case for

KE = 0.2where the oscillators go to a point attractor cen-

tered on the neutral position of the structure. Besides,

when the coupling term KE augments above 0.2 as it is

the case in Figure 9(c), the Kuramoto oscillators start to

be entrained to the phasic regime of the structure. In line

with the Fourier analysis in Figure 8, Figure 9 describes

how the coe�cient JE a�ects synchronization and the

system behavior as it is for KE. We will present there-

inafter in the next section the top-down control done

on the global parameters {KI,KE, JE} for updating the

oscillators to the desired regime.

4.5. PD control on Kuramoto oscillators

The two methods presented in the previous Sections 4.3

and 4.4 have di�erent advantages regarding controllabil-

ity concerning the desired state (resp. the PD controller)

and regarding compliance control concerning the desired

rhythm (resp. the oscillators). The association of the two

controllers type may permit to combine the advantages

of the two worlds for generating one controlled entrain-

ment to resonant modes and robust to perturbations. We

propose to study this combined controller for the balance

control of the tensegrity column in the upward posture by

the amplitude modulation of JE on the oscillators based

on error feedback e. We remind the reader that JE is gov-

erned by the equation JE = KPYerr + KDẎerr where Yerr

is the horizontal displacement relative to the vertical axis.

We plot in Figure 10 four time series of the structure’s

stabilization for di�erent pushes of gradual strength with

the plot of theY axis deviation in the top chart, and of the

PD error over time in the middle chart and of the motor

activity in the bottom chart for two motors in the oppo-

site side. In order to better understand the dynamics, a

motion sequence is presented in Figure 11 of a recov-

ery after a stroke and a movie are provided at the address

https://sites.google.com/site/embodiedai/current-

research/tensegrityrobots.

The top-down control strategy used to stabilize the

structure is based on the modulation of JE concerning

the displacement on the Y axis employed as error feed-

back. Depending on the perturbation force applied on

the structure –, that we characterize in percent from

5% to 20% of relative displacement,– various transi-

tory regimes can be observed till stabilization. This

‘resynchronization’ process has an impact on the tempo-

ral period, the phase and the frequency adaptation.

When a small stroke is applied as in Figure 10 (a ,b),

the PD controller generates small amplitude variations

till convergence of the oscillatory regime of theKuramoto

units with the damping of the structure between 10 and

15 s to its upward posture. The oscillatory regime of

the CPGs is similar to an under-damped regime for a

spring–mass system with a long lasting transitory regime

of a dizain of cycles. For instance, when the perturbation

reaches 10% displacement, the PD controller desynchro-

nize several times and takes several trials to re-stabilize

the oscillators and the structure.

In the case of a strong perturbation as it is in Figure 10

(c ,d) for 15% and 20% perturbations, the PD controller

generates at reverse higher amplitude adaptations of the

Kuramoto units till absorption of the shock and damp-

ing of the structure. The temporal employed is slightly

higher in this forced regime with a longer synchroniza-

tion stage diminution of the oscillators amplitude and

phase di�erence. This behavior of the CPGs is similar to

an over-damped regime for a spring–mass system with

a faster transitory state of several seconds but after the

stabilization of the oscillatory, which takes longer times

(around 20 cycles).

In all the situations, the oscillatory system �nished

with a small vibratory mode around the vertical axis due

to the tuning of the PD coe�cients, till its return back to

a static posture with the release of the motors from co-

contraction. Our strategy was e�cient in all the studied

cases, irrespective of the shock level but with some sen-

sitivity of the PD controller to small perturbations due

to its coe�cients. These small perturbations made the

system to slightly reactivate the oscillations as it is dis-

played in Figure 10(b) at time 48 s. We can understand

from this �gure that the external dynamics of the verte-

bral column excites the oscillators and reactivates their

dynamics.

The top-down controller performed on the oscillators

permits to modulate more adaptively the strength of the

motor synergies relative to the task than the PD con-

troller. To compare the two strategies, we plot the error

relative to the upward posture for the PD controller and

the PD-controlled oscillators, respectively in Figure 12

(a,b). The �gure shows that the second strategy (PD con-

trol + Kuramoto oscillators) exploits more smoothly the

motors with less strength applied on them (with a PWM

below 150), which is at the price of a larger error vari-

ance. This complementary strategy exploits better the

body structure and themotor synergies with unrestricted
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Figure 10. Feedback control of the global parameter JE on the Kuramoto oscillators for various external perturbations. When a strong per-
turbation is imposed on the structure, an oscillatory regime is established by the top-down controller on the vertebral column to absorb
the shock with a high amplitude till their attenuation. This transitory regime depends on the amplitude of the shock and of the velocity
of the JE to steer the oscillators and themotors till their release when the column is stable enough to return back and stand at its upward
posture. The more JE decays slowly, the longer the transition to a stable regime (under-damped oscillations). The more JE decays fastly,
the quicker the transition to a stable regime (over-damped oscillations).
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Figure 11. Motion sequence of postural balance after a stroke. A completemovie is provided at the address https://sites.google.com/site/
embodiedai/current-research/tensegrityrobots.
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Figure 12. Motor contributionwith respect to the control strategy and perturbation. Comparison of motor dynamics between the PD con-
troller in (a) and the PD controller on the Kuramoto oscillators in (b). In (a), the motors are strongly solicited to minimize error drastically
from any perturbation. In (b), the motors are less strongly exploited; which has in consequence the loose error. The second strategy per-
mits to exploit better the body structure and its passivity in order to have a more compliant and energy-efficient control on the body
structure.

dynamics and loose error, which makes it better suited to

absorb any external shocks.

5. Discussion

Wepresented a tensegrity-basedmodel of a vertebral col-

umn robot controlled actively with nonlinear oscillators

and feedback for rhythmical balance and upward posture.

Froma control viewpoint, the physics of this complex sys-

tem requires to adopt a more bio-inspired type of control

with loosely and parallely distributed units for adaptation

to the body dynamics [28]. In the end, the elastic proper-

ties of the tensegrity-based articulated trunk may ease its

control [49]; i.e. its morphological control [50–52]. The

CPGs in the spinal cord are local neural units that can

generate a rhythmical pattern even without any feedback.

Their activity, however, is always under the local feedback

control of muscle spindle signals and the global feedback

control of neuromodulators at the spinal circuits level or

at the higher level. These feedback loopsmake these units

embodied in the physics of the structure and contingent

to a global coordination at the task level.

We use Kuramoto oscillators to entrain the verte-

bral column to its own rhythms and to synchronize

them dynamically to the structure’s resonant frequencies

thanks to the IMU unit. This phenomenon is known as

feedback resonance [29,37,53,54] and is used as a strat-

egy to control the vertebral column to its resonant fre-

quencies for shock absorption and postural balance. The

tensile robot presents interesting damping properties that

makes it easy to stabilize at the upward con�guration,

either passively or actively [55,56]. This is in line with

observations found on biological systems and humans on

the importance of an actuated head and �exible trunk to

body balance [18,31,45] and passive walkers [49,57]. We

extended then the oscillator network to adaptive control

with the use of feedback error for dynamical synchro-

nization of the structure to the upward posture. This

model is in line with other biological models of neurons

for robotics that includes reciprocal, inhibitory and oscil-

latory modes [39,40,58,59]. However, our neural con-

troller is combining PD control+oscillators in order to

produce controlled rhythmical patterns, which is original

and appears not used by other teams. Our feedback-

driven oscillatory network controls global parameters for

the dynamical entrainment of the resonant frequencies so

that it can serve for discrete phase resetting [47] or mod-

ulated attenuation/ampli�cation; this approach is in line

with the proposal by Bizzi of motor synergies [34].

Ourmodel presents also similar properties with [8,18]

and provides realistic predictions of postural sway move-

ments during erected head tracking. In our system, bifur-

cation and nonlinearities emerge from online optimiza-

tion due to the combination of phase synchronized oscil-

lators and PD control, which is di�cult to achieve with

o�ine models. Adaptation and recovery are possible

only when synchronization is done around the frequen-

cies of the body dynamics and found during the test

phase. Further versions may examine the online discov-

ery and learning of the structural parameters of the sys-

tem and of the task, such asω and the coupling parameter

{KE,KI, JE} and Yerr, by a top-down neural network or

by a pseudo-inversematrix that store and anticipate these

information.



1321

1326

1331

1336

1341

1346

1351

1356

1361

1366

1371

1376

1381

1386

1391

1396

1401

1406

1411

1416

1421

1426

ADVANCED ROBOTICS 13

We show that tensile structures present interesting

properties for the design of soft and bio-inspired robots

with the use of replicative elements to insure a redun-

dancy of the global behavior at the macroscale level and

�exibility with the many degrees of freedom of each ele-

ment. These structures are lightweights and pre-tensed,

which make them physically robust to shocks even pas-

sively as they distribute their tension on all their elements.

Furthermore, their sti�ness can be linearly controlled

with the co-contraction of the motors to switch from a

�exible behavior to a rigid one. The dimensionality of

the system makes it a complex system and the way to

control it requires to exploit its passive dynamics and

to entrain the controllers to its resonant frequencies for

upward balance or rhythmical motion.

Starting from this tensegrity-based vertebral column

robot, it is natural then to think to design other body

parts based on tensegrity [13,60]. We will attempt to

go further in that direction with a more complex body

and behaviors such as postural coordination and walking

[38]. At now, we have employed only one IMU unit in the

top vertebral column to allow head-centered coordinated

movements [18] as it is known that the vestibular system,

perceiving rotational velocities and linear accelerations,

uses this information to generate a uni�ed inertial refer-

ence frame, centered in the head that allows whole-body

coordinated movements and head-oriented locomotion

[61,62]. In future works, we will employ more IMU units

for each segment to have proprioception at the body level.

Finally, as an educational tool, the scalability of tenseg-

rity structures ful�lls the requirements for testing ideas

with low-cost and multi-disciplinary platforms at the

community level for exploration and experimentation in

robotics for Research, as well as in Art and Education.

For instance, tensile structures can be 3D printed and can

be highly replicable, which can be interesting for the Do-

It-Yourself community. In the complement of this paper,

we provide a website of the project with links for down-

loading freely the tensegrity modules for building it and

to inspire and iterate on the project to one’s own. Their

overall robustness and lightweight can be put forward in

comparison to most robots, which are still fragile and

expensive products to design and repair. The ecology of

the body morphology changes also the way control in

force and precision is done and requires to understand

biological control and to rethink it for robots.
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