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HOLOMORPHIC FUNCTIONS WITH UNIVERSAL BOUNDARY
BEHAVIOUR

S. CHARPENTIER

Abstract. We are interested in functions analytic in the unit disc D of the complex plane
C with a wild behaviour near the boundary T of D. For instance, the main result implies
the existence of a residual subset of H(D) whose every element f satisfies the property that,
given any compact subset K of T, different from T, given any continuous functions ϕ on K,
and any compact set L of D, there exists an increasing sequence (rn)n ⊂ [0, 1) converging
to 1, such that f (rn(ζ − z) + z) converges to ϕ(ζ), uniformly for (ζ, z) ∈ K × L, as n goes
to ∞. Among other things radial growth of such functions and connections with universal
Taylor series are investigated. Functions in the disc algebra whose derivatives disjointly
satisfy a somewhat similar universal property, are also exhibited. In some sense, the results
are sharp.

1. Introduction

Let us denote by BN the unit ball of CN and H(BN ) the space of functions holomorphic
in BN , endowed with the locally uniform convergence topology. For a typical radial weight
v on BN (i.e. a continuous positive function on BN such that v(z) = v(|z|) for all z ∈ BN ,
and v(z) → 0 as |z| → 1), we define the growth space H∞

v (BN ) as

(1.1) H∞
v :=

{
f ∈ H (BN) , ‖f‖v := sup

z∈BN

|f(z)| v(z) < ∞

}
.

Let H0
v (BN ) denote the closure of the polynomials in H∞

v (BN ).
In [3], Bayart proved that, for any typical radial weight v on BN , generically every element

f of H0
v (BN) is universal in the sense that, given any measurable function ϕ on ∂BN , there

exists a sequence (rn)n≥0 ⊂ [0, 1), converging to 1 such that for any z ∈ D, f (rn(ζ − z) + z)
converges to ϕ(ζ) as n → ∞, for almost every ζ in the boundary ∂BN of BN . Here a property
is said to be generic if it is satisfied by every element of a residual subset of the ambient
space (namely a subset containing a dense Gδ-subset, that is a dense countable intersection
of open sets). This result improved classical results previously obtained by, e.g., Bagemihl
and Seidel [1] and Kahane and Katznelson [16] in the unit disc D, Iordan [15] and Dupain
[12] in BN , N ≥ 1.
A natural question is whether some functions holomorphic in BN may enjoy this kind

of universal property at every point of the boundary, and along every path in BN with an
endpoint in ∂BN . The answer is no for N > 1, as Globevnik and Stout proved in [14, Section
III] that for any function holomorphic in BN , N > 1, there exists p ∈ ∂BN and a path γ
with p as one endpoint such that f ◦ γ is constant. However it is a rather classical fact that
there exists a function analytic in D := B1 which is unbounded along any path to any point
in T := ∂D. Therefore, we can ask the following: does there exist a function f in H(D)
such that, given any (continuous) path γ : [0, 1] → D with γ([0, 1)) ⊂ D and γ(1) ∈ T,
f(γ([0, 1)) = C? We positively answer this question by proving the following stronger result,
itself consequence of the first part of our main result, Theorem 2.4. More precisely,
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Theorem 1. There exists a dense Gδ-subset Vu(D) of H(D) every element f of which sat-
isfies the following universal property: given any compact subset K of T, different from T,
any continuous functions ϕ on K and any compact subset L of D, there exists a sequence
(rn)n≥0 ⊂ [0, 1) converging to 1, such that

sup
ζ∈K

sup
z∈L

|f (rn(ζ − z) + z)− ϕ(ζ)| → 0, as n → ∞.

Back to Bayart’s result, we can now wonder whether some universal functions in Vu(D)
may grow as slow as possible to ∞ near the boundary. It turns out that no, as we will see
that any such function must grow rather fast to the boundary.

At this point we shall draw attention to some possible analogy between universal functions
in Vu(D) and the well-studied notion of universal Taylor series. In 1996, Nestoridis [21]
exhibited a dense Gδ-subset U(D) of H(D) consisting in functions f =

∑
k≥0 akz

k with the
property that given any compact subset K ⊂ C \ D, with connected complement, and any
function h continuous on K and holomorphic in the interior of K, there exists an increasing
sequence (λn)n ⊂ N, such that

sup
z∈K

∣∣∣∣∣

λn∑

k=0

akz
k − h(z)

∣∣∣∣∣→ 0, as n → ∞.

Universal Taylor series have been extensively studied during the last two decades. It appears
that the growth to the boundary of D of functions in Vu(D) seems to ressemble to that of
universal Taylor series. Nevertheless, while functions in Vu(D) are trivially Abel summable
at no point of T, there are functions in U(D) which are Abel summable at some points of
T [10]. We will see in Paragraph 2.4 another major difference between those two kinds of
universal functions, making the sets Vu(D) and U(D) uncomparable in terms of inclusion.

Back again to Bayart’s result, it is tempting to ask if functions in the disc algebra A(D)
(i.e. the functions in H(D) which extends continuously to the boundary) are far from having
wild universal boundary behaviour. Obviously no functions from A(D) can be universal in
the sense of Bayart. However we will see that, in some sense, they are as close as possible
to functions with a.e. universal boundary behaviour. It will be illustrated by the second
part of Theorem 2.4. Subsequently, we will also get the following, where m stands for the
Lebesgue measure on the boundary of D.

Theorem 2. There exists a residual subset Vs
m(D) of A(D) whose every element satisfies

the following property: Given any countable family (ϕl)l∈N∗ of measurable functions on T,
there exists an increasing sequence (rn)n ⊂ [0, 1) converging to 1 and a subset E ⊂ T with
m(E) = 1, such that for any 1 ≤ l < ∞, any ζ ∈ E and any z ∈ D,

f (l)(rn(ζ − z) + z) → ϕl(ζ) as n → ∞.

Here f (l) denotes the derivative of order l of f . An important feature in this result is that
the sequence (rn)n does not depend on l ∈ N∗. By the way, this implies that a.e. convergence
cannot be replaced with uniform convergence as in Theorem 1.

The proof of Theorem 2.4 use polynomial approximation based on Mergelyan’s theorem.
We shall mention that a similar - but weaker - version of Theorem 2 was proven in [9] using
only basic tools of linear algebra. By the Riemann mapping Theorem and its refinement,
the statement of Theorem 2.4 may be adapted to bounded simply connected domain with
regular enough boundary. For general bounded simply connected domains, it would be of
interest to search for a possible statement.

Section 2 is devoted to the statement of Theorem 2.4, its consequences, to some discussions
related to the sharpness of the results and possible connections with universal Taylor series.
The proof of Theorem 2.4 is detailed in Section 3.
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Notations. For a compact set K of C, we will denote by C(K) the space of continuous
functions on K endowed with the supremum norm, that we will sometimes denote by ‖ · ‖K .

2. The results

2.1. Definitions and statements of the main theorem. Before stating our results let
us introduce some terminology. Let I ⊂ N and (λl)l∈I be a countable family of sequences in
CN. For any l ∈ I we will denote by λl

i, i ∈ N, the i-th term of the l-th sequence λl.

Definition 2.1. We say that (λl)l∈I is admissible if the two following conditions hold:

(1) For any l ∈ I, λl
i is non-zero for any i large enough;

(2) For any l ∈ I, lim supi |λ
l
i|
1/i ≤ 1.

If I is reduced to a single element, we will simply say that the only sequence (λi)i∈N
contained in I is admissible whenever it satisfies (1) and (2) in the previous definition.
Given a single sequence λ := (λi)i∈N in CN, we define the linear map Tλ which takes

a formal power series
∑

i aiz
i to

∑
i λiaiz

i. If λ is admissible (here I contains only one
element), then the power series

∑
i λiz

i has radius of convergence greater than 1, and Tλ(f)
is the Hadamard product of f and

∑
i λiz

i. In particular, Tλ(f) is continuous from H(D)
into itself, and of course from X to H(D) for any X continuously embedded into H(D).
In the sequel, our sequences (λl)l∈I may be required to satisfy some additional condition.

Definition 2.2. We say that (λl)l∈I is well-scaled if there exists an increasing sequence of
positive integers (νi)i∈N such that, for any l, l′ ∈ I, l < l′ implies

|λl
νi
|

|λl′
νi
|
→ 0 or ∞ as i → ∞.

We will exhibit analytic functions in the disc enjoying two kinds of extreme behaviour at
the boundary.

Definition 2.3. Let ρ be a subset of ]0, 1[ with 1 as a limit point and let Λ := (λl)l∈I,
I ⊂ N, be an admissible countable family of sequences in CN. We denote by Vu(D,Λ, ρ)
and Vm(D,Λ, ρ) the subsets of H(D) consisting in those f satisfying, respectively, Properties
(P1) and (P2) below:
(P1) Given any compact subset K of T, different from T, any continuous function ϕ on K,
any compact subset L of D, and any l ∈ I, there exists an increasing sequence (rn)n ⊂ ρ
converging to 1, such that

sup
ζ∈K

sup
z∈L

|Tλl(f) (rn(ζ − z) + z)− ϕ(ζ)| → 0 as n → ∞.

(P2) Given any countable family (ϕl)l∈I of measurable functions on T, there exist an in-
creasing sequence (rn)n ⊂ ρ converging to 1 and a subset E ⊂ ∂D, with m(E) = 1, such that
for any l ∈ I, any z ∈ D and any ζ ∈ E,

Tλl(f) (rn(ζ − z) + z) → ϕl(ζ) as n → ∞.

The main theorem asserts that the sets Vu(D,Λ, ρ) and Vm(D,Λ, ρ) are rather large in
H(D). Also, being regular at the boundary does not even prevent from belonging to
Vm(D, ρ,Λ).

Theorem 2.4. Let ρ be a subset of ]0, 1[ with 1 as a limit point and let Λ := (λl)l∈I , I ⊂ N,
be an admissible countable family of sequences in CN.

(1) The set Vu(D,Λ, ρ) is non-empty if and only if

(2.1) lim sup
i→∞

|λl
i|
1/i = 1, l ∈ I.

If the latter conditiong holds, then Vu(D,Λ, ρ) is a dense Gδ-subset of H(D).
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(2) If Λ is well-scaled, then
(a) The set Vm(D,Λ, ρ) is residual in H(D).
(b) The set A(D) ∩ Vm(D,Λ, ρ) is residual in A(D).

We postpone the proof of this theorem to Section 3. The remaining of this section is
devoted to comments, corollaries and discussion about the optimality of Theorem 2.4.

2.2. Some direct consequences. First of all, it is easy to check that any functions sat-
isfying (P1) also have pointwise and, by Lusin’s theorem, a.e. universal behaviour at the
boundary of D, in the following sense:
(i) Given any continuous function ϕ on T, any compact subset L of D and any l ∈ I, there
exists an increasing sequence (rn)n ⊂ ρ converging to 1, such that for any ζ ∈ T,

sup
z∈L

|Tλl(f) (rn(ζ − z) + z)− ϕ(ζ)| → 0 as n → ∞.

(ii) Given any measurable function ϕ on T and any l ∈ I, there exist an increasing sequence
(rn)n ⊂ ρ converging to 1 such that for any z ∈ D and a.e. ζ ∈ T,

Tλl(f) (rn(ζ − z) + z) → ϕ(ζ) as n → ∞.

Note that functions satisfying (P2) satisfy a stronger property than (ii), since the sequence
(rn)n in (P2) is independent of l. This is the main reason why we assume the sequence Λ
to be well-scaled in Theorem 2.4 (2). As we will see, in general there is no function in H(D)
satisfying (P1) with a sequence (rn)n independent of l ∈ I, whenever I has at least two
elements (see Proposition 2.8 below).

It is not difficult to construct a function f holomorphic in D such that given any (contin-
uous) path γ : [0, 1] → D with γ([0, 1[) ⊂ D and γ(1) ∈ D, f(γ(t)) does not have a limit as
t → 1. We may observe that every function in Vu(D,Λ, ρ) satisfies a stronger property.

Proposition 2.5. Any function in Vu(D,Λ, ρ) has the property that given any (continuous)
path γ : [0, 1] → D with γ([0, 1[) ⊂ D and γ(1) ∈ T, Tλf(γ([0, 1])) is dense in C for any
λ ∈ Λ.

It is worth mentioning that the latter does not extend to the unit ball BN of CN , N ≥ 2.
Indeed, as proven in [14, Section III], for any function holomorphic in BN , there exists
p ∈ ∂BN and a path γ with p as one endpoint such that f ◦ γ is constant. Yet it would be
of interest to seek for a relevant weaker version of Theorem 2.4 (1) in BN , N ≥ 2.

Given two power series
∑

i aiz
i and

∑
i biz

i we denote by f ∗ g the Hadamard product of
f by g, that is

f ∗ g(z) =
∑

i

aibiz
i, z ∈ D.

We directly deduce from Theorem 2.4 the following corollary.

Corollary 2.6. Let ρ be a subset of ]0, 1[ with 1 as a limit point and let G := (gl)l∈I , I ⊂ N,
be countably many functions in H(D). There exists a Gδ-subset Vu(D,G, ρ) whose every
element f satisfies the following property: Given any proper compact subset K of T, any
continuous functions ϕ on K, any compact subset L of D, and any l ∈ I, there exists an
increasing sequence (rn)n ⊂ ρ converging to 1, such that

sup
ζ∈K

sup
z∈L

|f ∗ gl(rn(ζ − z) + z)− ϕ| → 0 as n → ∞.

We can also specify the sequences λl and deduce from Theorem 2.4 little bit more precise
versions of Theorems 1 and 2 of the introduction. We denote by f (l) the derivative of order
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l of f if l ∈ N, and its antiderivative of order l if l ∈ Z \ N. For us, the antiderivative of f
will be the primitive of f in D which vanishes at 0. More generally, for l ∈ Z,

f (l)(z) =

∫ z

0

f (l+1)(w)dw.

Corollary 2.7. Let ρ be a subset of ]0, 1[ with 1 as a limit point. There exist a Gδ-subset
Vs
u(D, ρ) of H(D), and a residual subset Vs

m(D, ρ) of H(D), such that Vs
m(D, ρ) ∩ A(D) is

residual in A(D) and :
(1) Any f in Vs

u(D, ρ) satisfies the following property (Q1): Given any compact subset K
of T, K 6= T, any continuous functions ϕ on K, any compact subset L of D, and any l ∈ Z,
there exists an increasing sequence (rn)n ⊂ ρ converging to 1 such that

sup
ζ∈K

sup
z∈L

∣∣f (l)(rn(ζ − z) + z)− ϕ(ζ)
∣∣→ 0 as n → ∞.

(2) Any f in Vs
m(D, ρ) satisfies the following property (Q2): Given any countable family

(ϕl)l∈N∗ of measurable functions on ∂D, there exists an increasing sequence (rn)n ⊂ ρ con-
verging to 1 and a subset E ⊂ T with m(E) = 1, such that for any 1 ≤ l < ∞, any ζ ∈ E
and any z ∈ D,

f (l)(rn(ζ − z) + z) → ϕl(ζ) as n → ∞.

Proof. We denote by Vs
u(D, ρ) (resp. V

s
m(D, ρ)) the subset of H(D) consisting in these func-

tions which satisfy Property (Q1) (resp. (Q2)). Then we define λ0
i = 1, i ∈ N. For

1 ≤ l < ∞, we set

λl
i =

{
0 if 0 ≤ i ≤ l − 1
i(i− 1) . . . (i− l + 1) if i ≥ l,

and for l < 0, we set λl
i = [(i+ 1)(i+ 2) · · · (i+ |l|)]−1.

Observe that if f =
∑

i aiz
i, then for l ∈ Z, f (l)(z) = z−lTλlf(z), z ∈ D \ {0}. Moreover,

Λ1 := (λl)l∈Z and Λ2 := (λl)l∈N∗ are admissible and lim supi |λ
l
i|
1/i ≥ 1, l ∈ Z. Also, Λ2 is

well-scaled. So Vu(D,Λ1, ρ) (respectively Vm(D,Λ2, ρ)∩A(D)) is a dense Gδ-subset of H(D)
(resp. a residual subset of A(D)), for any ρ ⊂]0, 1[ with 1 as a limit point.
By Theorem 2.4, in order to prove (2), we only have to check that Vs

m(D, ρ) ⊃ Vm(D,Λ2, ρ).
We fix (ϕl)l∈N a sequence of measurable functions on T and denote by ϕ̃l∈N the functions
given by ϕ̃l(ζ) = ζ lϕl(ζ), ζ ∈ T. Let us fix any f =

∑
i aiz

i ∈ Vm(D,Λ, ρ). There exist
E ⊂ T with m(E) = 1 and an increasing sequence (rn)n ⊂ ρ converging to 1, such that for
any 1 ≤ l < ∞, any ζ ∈ E and any z ∈ D,

∣∣∣∣∣
∑

i≥l

λl
iai(rn(ζ − z) + z)i − ϕ̃l(ζ)

∣∣∣∣∣→ 0 as n → 0.

Therefore, multiplying by |rn(ζ − z) + z|−l (note that (rn(ζ − z) + z)−l → ζ−l, n → 0), we
get ∣∣∣∣∣

∑

i≥l

λl
iai(rn(ζ − z) + z)i−l − ϕl(ζ)

∣∣∣∣∣→ 0 as n → 0.

We conclude by recalling that
∑

i≥l λ
l
iai(rn(ζ − z) + z)i−l = f (l)(rn(ζ − z) + z).

For (1), the equality Vs
u(D, ρ) = Vu(D,Λ1, ρ) is proven exactly as above, upon approximat-

ing ζ−lϕ(ζ) and multiplying by |rn(ζ − z) + z|l for the inclusion Vs
u(D, ρ) ⊂ Vu(D,Λ1, ρ). �

We conclude this paragraph by drawing attention to a simple instance of set of the type
Vu(DΛ, ρ), which may be of interest in itself. It is the class corresponding to Λ reduced to
the single sequence (1, 1, . . . , ) and ρ = [0, 1]; we simply denote it by Vu(D). Namely Vu(D)
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is the subset of H(D) consisting in those functions f which satisfies the following: For any
compact subset K of T different from T, any continuous function ϕ on K, and any compact
subset L of D, there exists an increasing sequence (rn)n converging to 1, such that

sup
ζ∈K

sup
z∈L

|f (rn(ζ − z) + z)− ϕ(ζ)| → 0, as n → ∞.

Theorem 2.4 and Proposition 2.17 (see below) ensure that Vu(D) is a spaceable and densely
lineable Gδ-dense subset of H(D). This set will also appear in Paragraph 2.4.

2.3. Optimality of Theorem 2.4. We may first wonder whether there exist functions in
Vu(D,Λ, ρ) satisfying (P1) along some sequence (rn)n independent of l ∈ I, that is like
in Property (P2). Actually the set Vs

u(D, ρ) introduced in Corollary 2.7 contains no such
element. More generally, we have the following:

Proposition 2.8. Let ρ be a subset of ]0, 1[ with 1 as a limit point. Let us denote by

Ṽ1,2
u (D, ρ) the subset of H(D) consisting in functions satisfying the following: Given any

compact subset K of T different from T and any continuous functions ϕ1, ϕ2 on K, there
exists an increasing sequence (rn)n ⊂ ρ converging to 1 such that

sup
ζ∈K

|f(rnζ)− ϕ1(ζ)| → 0 as n → ∞ and sup
ζ∈K

|f ′(rnζ)− ϕ2(ζ)| → 0 as n → ∞.

The set Ṽ1,2
u (D, ρ) is empty.

Proof. It is almost obvious. Assume by contradiction that some f belongs to Ṽ1,2
u (D, ρ).

Then for ε > 0 and any constant A > 0 large enough, there exists n ∈ N such that

(2.2) sup
ϑ∈[0,π]

∣∣f(rneiϑ)
∣∣ < ε and sup

ϑ∈[0,π]

∣∣f ′(rne
iϑ)−A

∣∣ < ε/π.

The second inequality implies |
∫ π

0
f ′(rne

iϑ)dϑ| > A − ε. Since f ∈ H(D), it is a primitive

of f ′ along the path ϑ 7→ rne
iϑ, and the previous inequality, together with the first one of

(2.2), imposes 2ε > A− ε, which is impossible, up to choose A large enough. �

The previous proof shows more generally that if f ∈ H(D) and f ′(rnζ) tends to ∞ as
n → ∞, uniformly for ζ in some compact subset K of T, then f(rnζ) cannot be bounded
uniformly for ζ in K. In particular, Theorem 2.4 cannot be improved by asking the sequence
(rn)n to be independent of l in (1), or by replacing a.e convergence in (2) by uniform
convergence on any compact subset of T different from T.

Yet since the intersection of two residual subsets is still residual, Vu(D,Λ, ρ)∩Vm(D,Λ, ρ)
is residual in H(D) whenever Λ is an admissible well-scaled family of sequences.

Further we can still ask the following: Are there some admissible Λ for which

Vu(D,Λ, ρ) ∩A(D) 6= ∅?

The following proposition is the first step toward a negative answer to this question. It
shows that, like for universal Taylor series, the Taylor coefficients of functions in Vu(D,Λ, ρ)
must grow rather fast to infinity.

Proposition 2.9. Let ρ be a subset of ]0, 1[ with 1 as a limit point, let (λn)n∈N be an
admissible sequence and let (γn)n∈N∗ be a decreasing sequence such that

∑
n γn/n < ∞. If∑

n anz
n ∈ Vu(D,Λ, ρ), then

lim sup
n

|an|

enγn
= +∞.
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Proof. Let (γn)n∈N∗ be as in the statement. We first prove that
∑

n(|an|/e
nγn) = +∞. For

some N0 ≥ 1 and any M > N ≥ N0 large enough, it is exhibited in [18, Lemma 2.1] a
positive 2π-periodic function fN,M with support in |ϑ| ≤ 1/2 (mod 2π), such that for any
N ≤ m ≤ M ,

|f̂N,M(−m)| ≤
eN0

emγm
.

Now let N ≥ 0 be fixed. Since
∑

n anz
n ∈ Vu(D,Λ, ρ), for some l ∈ I, there exists a sequence

(rn)n∈N ⊂ ρ such that for any n ∈ N,

‖
∑

i

λl
iair

i
nζ

i − (1 +
N−1∑

i=0

λl
iaiζ

i)‖K <
1

4
,

where K := {eiϑ; |ϑ| ≤ 1/2}. By uniform continuity, there exists n0 ∈ N such that

‖
∑N−1

i=0 λl
iaiζ

i −
∑N−1

i=0 λl
iair

i
n0
ζ i‖K < 1

4
. Thus we deduce from the triangle inequality that

Re

(
∑

i≥N

λl
iair

i
n0
ζ i

)
>

1

2
, ζ ∈ K.

It also follows from the compactness of K and the fact that Λ is admissible that there exists
M0 ≥ N such that for any M ≥ M0,

Re

(
M∑

i=N

λl
iair

i
n0
ζ i

)
>

1

2
, ζ ∈ K.

Therefore, multiplying the previous by the positive quantity
∫ 1/2

−1/2
f̂N,M(ϑ)dϑ, we get for

infinitely many M > N ,

π =
1

2

∫ 1/2

−1/2

f(ϑ)dϑ ≤ Re

(
M∑

k=N

λl
kakr

k
n0

∫ 1/2

−1/2

f̂N,M(ϑ)eikϑdϑ

)

≤ 2π

M∑

k=N

|λl
k|r

k
n0
|ak||f̂N,M(−k)|

≤ 2π

M∑

k=N

|λl
k|r

k
n0
|ak|e

N0

ekγk
.

Thus
∑

k∈N |λ
l
k|r

k
n0
|ak|e

−kγk = +∞ and, according to the proof of [18, Theorem 2.2], this
gives

lim sup
k

|λl
k|r

k
n0
|ak|

ekγk
= +∞.

Finally, using that lim supk |λ
l
k|

1/k ≤ 1, we obtain lim supk |ak|/e
kγk = +∞. �

Trivially, Vu(D,Λ, ρ) does not share any common element with the Nevanlinna class. By
[17, Theorem 3], Proposition 2.9 implies that, in contrast with universal functions considered
by Bayart in [3], any function in Vu(D,Λ, ρ) must have a fast radial growth to the boundary.
To be more precise, let us introduce some terminology. For a continuous increasing function
φ : [1,+∞) → [1,+∞), let vφ denote the radial weight defined by

(2.3) vφ(z) = exp

(
φ

(
1

1− |z|

))
.

In [17, Section 2], the author calls non universal a function in H(D) satisfying the following
definition.
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Definition 2.10. A function f in H(D) is said to be of non-universal type if f ∈ Hvφ(D)
for some φ such that

(2.4)

∫ ∞

1

log φ(t)
dt

t2
< +∞.

For example, functions smaller or comparable to φ(t) = et/ log
β(t+1) at +∞, where β > 1,

satisfy (2.4). The terminology non-universal comes from [17, Theorem 3] which asserts that
if f is of non-universal type, then f is not a universal Taylor series. In fact, the proof of this
result consists in showing that a Taylor series whose Taylor coefficients satisfy the conclusion
of Proposition 2.9 cannot be of non-universal type. Thus, by Proposition 2.9, we deduce:

Corollary 2.11. Let ρ be a subset of ]0, 1[ with 1 as a limit point and Λ an admissible
countable family of complex sequences. If f is of non-universal type, then f does not belong
to Vu(D,Λ, ρ).

We end this paragraph by explaining that, like for universal Taylor series, the rate of
growth imposed by Corollary 2.11 is not far from being optimal. The next proposition is the
boundary universality version of [17, Theorem 8].

Proposition 2.12. Let ρ be a subset of ]0, 1[ with 1 as a limit point and Λ an admissible
countable family of complex sequences satisfying (2.1). There exist a positive real number M
and a universal function f ∈ Vu(D,Λ, ρ) such that

|f(z)| ≤ C exp

(
exp

(
M

1− |z|
log log

4

1− |z|

))

for every z ∈ D, where C is a constant.

Let φ0(t) = exp(Mt log log 4t) and let H0
vφ0

(D) denote the closure of the polynomials in

Hvφ0
(D), where vφ0

is given by (2.3). The key-ingredient is the following highly non-trivial
approximation lemma.

Lemma 2.13 (Lemma 2 of [17]). Let K be a proper compact subset of T and let ε > 0.
Then there exists a polynomial P such that

sup
z∈K

|P (z)| < ε and sup
z∈D

∣∣∣∣
P

vφ0

(z)

∣∣∣∣ < ε.

The remaining of the proof, that we omit, consists in applying the Baire Category Theorem
in H0

vφ0
(D) and follows the same lines as in the proof of Theorem 2.4 (1), see Paragraph 3.1

for the details.

2.4. Boundary universal functions versus universal Taylor series. We recall that
U(D) denotes the set of universal Taylor series (see the Introduction for the definition). By
the Baire category theorem U(D) ∩ Vu(D,Λ, ρ) is a dense Gδ-subset of H(D), whenever Λ is
admissible and satisfies (2.1). As recalled in the introduction, there exist functions in U(D)
which are Abel summable at some points of T. Trivially this cannot hold for any function
in Vu(D), so that

U(D) 6⊂ Vu(D).

Nevertheless, the previous paragraph makes it appear that elements from U(D) and Vu(D,Λ, ρ)
share common properties. So we can now wonder whether there exist some Λ and ρ for which
Vu(D,Λ, ρ) is contained in U(D). We will see that this not the case. Our argument will be
based on the crucial fact that any universal Taylor series possess Ostrowski-gaps [13]. We
recall the definition of Ostrowski-gaps.
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Definition 2.14. Let
∑

i≥0 aiz
i be a power series with radius of convergence R ∈ (0,+∞).

We say that it has Ostrowski-gaps (pm, qm) if (pm) and (qm) are sequences of natural numbers
such that

(1) p1 < q1 ≤ p2 < q2 ≤ · · · ≤ pm < qm ≤ . . . and lim
m→+∞

qm
pm

= +∞,

(2) for I =
⋃

m≥1{pm + 1, . . . , qm}, we have limi∈I |ai|
1/i = 0.

Let us now show how to produce a function in Vu(D,Λ, ρ) without Ostrowski-gaps, Λ
being admissible. We start with

∑
k≥0 akz

k ∈ Vu(D,Λ, ρ). Next, for A > 1 we set bk =

A−kak/|ak| (with the convention ak/|ak| = 0 if ak = 0) and observe that
∑

k≥0 λkbkz
k clearly

belongs to A(D), for any λ in Λ admissible. Thus, as it is easily checked, the function
f =

∑
k≥0(ak + bk)z

k is an element of Vu(D,Λ, ρ). Moreover it does not possess Ostrowski-

gaps, for |ak + bk|
1/k ≥ 1/A, k > 0.

All in all, we have checked the following.

Proposition 2.15. For any ρ ⊂]0, 1[ with 1 as a limit point and any Λ admissible countable
family of complex sequences, we have

U(D) 6⊂ Vu(D) and Vu(D,Λ, ρ) 6⊂ U(D).

Actually a argument similar to that presented before the previous proposition was used
in [8, Section 4] to produce Taylor series without Ostrowski-gaps which are universal in the
following sense. We denote by C(R) the set {z ∈ C; 1 ≤ |z| ≤ R}.

Definition 2.16. We define U(D, R) as the subset of H(D) consisting in those Taylor se-
ries

∑
k≥0 akz

k with the property that, given any compact subset K ⊂ C(R) with connected
complement, and any function h continuous on K, analytic in the interior of K, there exists
an increasing sequence (λn)n ⊂ N such that

sup
z∈K

∣∣∣∣∣

λn∑

k=0

akz
k − h(z)

∣∣∣∣∣→ 0, as n → ∞.

We may ask the following:

Question. Do there exist Λ and ρ such that

∅ 6= Vu(D,Λ, ρ) ⊂ U(D, 1)?

2.5. A point of view in Operator Theory. We shall say that Theorem 2.4 has an
operator theoretic flavour. Let (Tn)n be a sequence of bounded linear operators between
topological vector spaces X and Y . We recall that (Tn)n is said to be universal if there
exists x ∈ X such that the set {Tnx; n ≥ 0} is dense in Y . Let now Tn,m : X → Y , n,m ∈ N

be bounded linear operators. The family {(Tn,m)n; m ∈ N} is said to be disjoint universal
if there exists x ∈ X such that the set

{(Tn,0x, Tn,1x, . . .) ;n ≥ 0}

is dense in Y ×Y × . . ., endowed with the product topology induced by that of Y . The recent
notion of disjoint universality was introduced in [5, 6] and recently studied in [7, 11, 20, 22].
Let now (rn)n be a sequence in [0, 1] converging to 1 and for (λ, z) ∈ CN × D with λ

admissible, define the continuous linear map

Tn(λ, z) :

{
H(D) → C(T) (resp. M(T))

f =
∑

i aiw
i 7→

∑
i λiai (rn(ζ − z) + z)k ,

where C(T) stands for the space of continuous functions on T, endowed with the supremum
norm, and where M(T) denotes the space of measurable functions on T, endowed with the
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metrizable topology of convergence in (Lebesgue) measure. Observe that f ∈ H(D) satisfies
(P2) or (ii) (at the beginning of Paragraph 2.2) if and only if f has the same universal
boundary behaviour with a.e. convergence replaced by the convergence in Lebesgue measure.
Thus if Λ := (λl)l∈I is countable and f belongs to Vu(D,Λ, ρ) (resp. Vm(D,Λ, ρ)) then, for
z ∈ D fixed, f is a common universal vector for the family of sequences of operators Tn(λ

l, z),
indexed by l ∈ N (resp. a disjoint universal vector for {(Tn(λ

l, z))n, l ∈ N}). In the study
of universal sequences of operators we are sometimes interested in exhibiting structures of
some subsets of universal objects. For instance, one says that the set of universal objects
is densely lineable if it contains a subspace which is dense in the ambient space, and one
says it is spaceable whenever it contains an infinite dimensional closed subspace. Under the
assumptions that there exists large sets of universal objects, there exist criteria to prove
dense lineability and spaceability. Without going into details, the following can be proven
upon applying existing criteria or modifying very standard proofs contained in [2, 4, 7, 19].

Proposition 2.17. Let ρ be a subset of ]0, 1[ with 1 as a limit point and let Λ := (λl)l∈I ,
I ⊂ N, be an admissible countable family of sequences in CN.

(1) If Vu(D,Λ, ρ) is non-empty, then it is densely lineable and spaceable in H(D);
(2) If Λ is well-scaled, then

(a) The set Vm(D,Λ, ρ) is densely lineable and spaceable in H(D).
(b) The set A(D) ∩ Vm(D,Λ, ρ) is densely lineable and spaceable in A(D).

3. Proof of Theorem 2.4

3.1. Proof of Part (1). The ”only if” part is obvious. Indeed, since Λ is admissible, we
need only check that if lim supi |λ

l
i|
1/i < 1 for some l ∈ I, then Vu(D,Λ, ρ) = ∅. Now, if

lim supi |λ
l
i|
1/i < 1 and f ∈ H(D), then the radius of convergence of Tλlf is greater than 1,

so that Tλlf is continuous on the closure of D and then cannot belong to Vu(D,Λ, ρ).

The ”if” part requires a bit more efforts. Let ρ and Λ = (λl)l∈I be as in the statement of
the theorem and let (P j)j∈N be the family of polynomials with coefficients in Q + iQ. We
denote by D(0, t), t ≥ 0, the closed disc centered at 0 with radius t. Let ϑ0 ∈ π(R \Q) and
for m,n ∈ N, let us denote by Cm,n the set

(3.1) Cm,n = T \ {eiϑ; |ϑ−mϑ0| < 1/n}.

For l ∈ I, j, k,m, n ∈ N and 0 < r < 1, we introduce the set U(j, k, l,m, n, r, s) defined by

U(j, k, l,m, n, r, s) :=

{
f ∈ H(D); sup

ζ∈Cm,n

sup
z∈D(0, s

s+1
)

|Tλlf(r(ζ − z) + z)− P j(ζ)| <
1

k

}
.

We claim that

Vu(D,Λ, ρ) =
⋂

l∈I

⋂

j,k,m,n,s

⋃

r∈ρ

U(j, k, l,m, n, r, s).

Indeed, let f belong to the right-hand side of the previous equation. We fix l ∈ I, ε > 0,
a compact set K in T, different from T, a continuous functions h on K, and a compact
subset L of D. First we choose s large enough so that L ⊂ D(0, s/(s+ 1)). By Mergelyan’s
theorem, there exists j ∈ N such that ‖h(ζ)− P j(ζ)‖K < ε/2. Since K is different from T

and ϑ0 ∈ π(R \ Q), there exists m,n ∈ N such that K ⊂ Cm,n. We finally set k ∈ N such
that 1/k < ε/2. By assumption, there exists r ∈ ρ such that

sup
ζ∈Cm,n

sup
z∈D(0, s

s+1
)

|Tλlf(r(ζ − z) + z)− P j(ζ)| < ε/2,
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which immediately gives

sup
ζ∈K

sup
z∈L

|Tλlf(r(ζ − z) + z)− h‖K < ε,

i.e. f ∈ Vu(D,Λ, ρ). The other inclusion is straightforward.
By the Baire Category Theorem, and since I is countable, we are then reduced to prove

the following.

Proposition 3.1. For any l ∈ I, any j, k,m, n, s ∈ N, the set ∪r∈ρU(j, k, l,m, n, r, s) is
open and dense in H(D).

We need the following known generalization of Cauchy formula. As it is very short, we
include its proof.

Lemma 3.2. Let f =
∑

i aiz
i and g =

∑
i biz

i be two functions in H(D). Then, for any
0 < r < 1 and any 0 ≤ |z| < r,

f ⋆ g(z) =
∑

i

aibiz
i =

1

2iπ

∫

∂D(0,r)

f(w)g
( z
w

) dw

w
.

Proof. Let 0 < r < 1 and 0 ≤ |z| < r. Since the convergence of
∑

i aiw
i and

∑
i f(w)bi

(
zi

wi+1

)

is uniform with respect to |w| = r, we have
∫

∂D(0,r)

f(w)g
( z
w

) dw

w
= i

∑

n

bnz
n
∑

k

ak

∫ 2π

0

rk−nei(k−n)ϑdϑ

= 2iπ
∑

n

anbnz
n,

hence the result. �

Proof of Proposition 3.1. We use the notation Cm,n, m,n ∈ N, as introduced in (3.1), and
we recall that D(0, t) stands for the closed disc centered at 0 with radius t. For 0 < r, t < 1,
we denote by Cm,n(r, t) the set

Cm,n(r, t) = {r(ζ − z) + z; ζ ∈ Cm,n, z ∈ D(0, t)} .

An easy computation shows that Cm,n(r, t) ⊂ Am,n(r, t) where

Am,n(r, t) =
{
z = |z|eiϑ ∈ D; (1 + t)r − t ≤ |z| ≤ (1− t)r + t, eiϑ ∈ Cm,n

}
.

Am,n(r, t) is a compact susbet of D, from what we deduce that each set U(j, k, l,m, n, r, s)
is open in H(D), using the continuity of Tλl from H(D) into itself (we recall that Λ is
admissible). For the density, we first prove that each set

⋃

r∈ρ

U(j, k, l,m, n, r, s),

intersects any neighborhood of 0. Let us fix ε > 0, and 0 < R < R′ < 1. By uniform
continuity of P j on compact sets, and since 1 is a limit point of ρ, there exists r ∈ ρ with
(1 + t)r − t > R′, such that

(3.2) sup
ζ∈Cm,n

sup
z∈D(0, s

s+1
)

|P j (r(ζ − z) + z)− P j(ζ)| <
1

2k
.

Let η > 1 such that ηR/R′ < 1. Since Λ is admissible, and since lim inf i |λ
l
i|
1/i ≥ 1 by

assumption, there exists i0 ∈ I such that for any i ≥ i0, λ
l
i 6= 0 and |λl

i|
1/i ≥ ηR/R′. By the

choice of r, the compact set D(0, R′) ∪ Am,n(r, s/(s + 1)) has connected complement, and
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[2, Lemma 5] - a refinement of Mergelyan’s theorem - ensures that there exists a polynomial
P̃ :=

∑
i aiz

i, with valuation greater than i0
1, such that

(3.3) ‖P̃‖D(0,R′) <
ε(η − 1)

η
and sup

w∈Am,n(r,
s

s+1
)

|P̃ (w)− P j(w)| <
1

2k
.

Since the valuation of P̃ is at least i0, we can define the polynomial P as

P (z) := T1/λlP̃ =
∑

i

ai
λl
i

zi.

By (3.2), the right part of (3.3), and the fact that Cm,n(r, s/(s + 1)) ⊂ Am,n(r, s/(s + 1)),
we have

sup
ζ∈Cm,n

sup
z∈D(0, s

s+1
)

|TλlP (r(ζ − z) + z)− P j(ζ)| < 1/k.

Let us now prove that ‖P‖D(0,R) < ε. We denote by d the degree of P and define the
polynomial Q by

Q(z) =

d∑

i=i0

zi

λl
i

,

so that P = P̃ ⋆ Q. By Lemma 3.2, we get for |z| ≤ R,

|P (z)| =
1

2π

∣∣∣∣
∫

∂D(0,R′)

P̃ (w)Q
( z
w

) dw

w

∣∣∣∣

≤
1

2π
‖P̃‖D(0,R′)

∣∣∣∣∣

∫ 2π

0

d∑

k=i0

1

λl
k

zk

(R′)keikϑ
dϑ

∣∣∣∣∣

≤
ε(η − 1)

η

d∑

k=i0

(
1

|λl
k|

1/k

R

R′

)k

≤ ε,

where we have used (3.3) and the choice of i0. Thus P belongs to
⋃

r∈ρ U(j, k, l,m, n, r), and
the latter set intersects any neighborhood of 0.

To finish, let us now fix ε >, 0 < R < 1 and g ∈ H(D). By Runge’s theorem, there exists
a polynomial Q such that ‖Q − g‖D(0,R) < ε/2. The previous then ensures the existence of
a polynomial P0 such that ‖P0‖D(0,R) < ε/2 and

sup
ζ∈Cm,n

sup
z∈D(0, s

s+1
)

|TλlP0 (r(ζ − z) + z)− (P j(ζ)− TλlQ(ζ))| <
1

k
.

It follows that P := P0+Q belongs to
⋃

r∈ρ U(j, k, l,m, n, r) and satisfies ‖P − g‖D(0,R) < ε,
as desired. �

3.2. Proof of Part (2). As the proofs of (2) (a) is very similar to that of (2) (b), but simpler,
we only deal with (2) (b). The key-ingredient is the following approximation lemma.

Lemma 3.3. Let (λ1
n)n and (λ2

n)n be two sequences of complex numbers such that

λ1
n

λ2
n

→ 0 as n → ∞.

We assume that λ1
k and λ2

k are non-zero for any k large enough. Then for any continuous
function ϕ on ∂D, any N ∈ N, and any ε > 0, there exists a compact subset E of ∂D and a
polynomial P =

∑
k αkz

k such that

1For a polynomial P (z) =
∑

i
aiz

i, the valuation of P is defined as the smallest integer i such that ai 6= 0.
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(1) m(E) > 1− ε;
(2) val(P ) ≥ N ;
(3)

∑
k |λ

1
kαk| < ε;

(4) |
∑

k

λ2
kαkζ

k − ϕ(ζ)| < ε for every ζ ∈ E.

Proof of Lemma 3.3. We fix ϕ and ε as in the statement. Set

M = 1 +max
ζ∈∂D

|ϕ(ζ)|.

Let also G be a compact arc in ∂D with m(G) > 1− ε/2. Using Mergelyan’s theorem (more
precisely [2, Lemma 5]), we define a polynomial Q such that Q(0) = 0 and |Q(ζ)−1| < ε/M
for any ζ ∈ G. Let also F be a compact arc in ∂D with connected complement, such that
m(F ) > 1− ε/2. By Mergelyan’s theorem, there exists a polynomial R such that

|R(ζ)− ϕ(ζ)| < ε, ζ ∈ F.

Let us denote by d and e the degrees of R and Q respectively, and write

R(z) =
d∑

k=0

akz
k, Q(z) =

e∑

k=1

bkz
k and R(z)Q(zµ) =

eµ+d∑

k=µ

ckz
k,

where µ ∈ N. Let us denote by γ and η the maximum of the moduli of the coefficients of
R and Q, respectively. Since λ1

k/λ
2
k → 0 as k → ∞, we can choose µ ≥ N large enough in

order to have, for any k ≥ µ:

(a) λi
k 6= 0, 1 ≤ i ≤ 2;

(b) ck = aibj if k = i+ jµ, 0 ≤ i ≤ d, 1 ≤ j ≤ e, and ck = 0 else;
(c) |λ1

k/λ
2
k| < (deγη)−1ε;

Note that (b) is possible because Q(0) = 0. Then we define αk = ck/λ
2
k and observe that,

since at most de coefficients ck are non-zero, the polynomial

P (z) :=

eµ+d∑

k=µ

αkz
k,

satisfies Property (3). (2) is obviously satisfied. Moreover
∑

k λ
2
kαkz

k = R(z)Q(zµ). Now,
let us consider the arc I := {z ∈ ∂D; zµ ∈ G}. Since z 7→ zµ preserves the Lebesgue measure
on ∂D, if we set E = I ∩ F , then we have m(E) > 1− ε, and for every ζ ∈ E,

|
∑

k

λ2
kαkζ

k − ϕ(ζ)| ≤ |R(ζ)− ϕ(ζ)||Q(ζµ)|+ |Q(ζµ)ϕ(ζ)− ϕ(ζ)| < 3ε.

Since ε is arbitrary, it shows that P also satisfies Property (4) for E satisfying Property (1).
�

We come back to the proof of Theorem 2.4 (2). Without loss of generality, we assume
that I = N∗. Up to re-order the family (λl, 1 ≤ l < N) and up to some minor changes in
the forthcoming proof, we may and shall assume that for any k and any 1 ≤ l < l′ < N ,
1 ≤ |λl

k| ≤ |λl′

k |.
Let Λ and ρ be as in the statement of the theorem, and fix an increasing sequence (rn)n ⊂ ρ,

converging to 1. Let (fj)j be a dense sequence in C(T) and (Lk)k an exhaustion of compact
subsets of D. Let also (φ(n))n be an enumeration of the countable subset of NN consisting
in all sequences with finitely many non-zero coordinates. We denote by φ(n)(l) the l-th
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coordinate of φ(n). Let us also define Ek as the set of those compact subsets E in ∂D such
that m(E) ≥ 1− 1/2k+1. Then for j, k, n, s ≥ 1, let us consider the set

U(j, k, n, s) =
⋃

m≥n

⋃

E∈Ek

{
f ∈ A(D); sup

1≤l≤k
sup
z∈Ls

sup
ζ∈E

|Tλlf(rm(ζ − z) + z)− fφ(j)(l)(ζ)| <
1

2k

}
.

The first step of the proof consists in showing that

Vm(D,Λ, ρ) ⊃
⋂

j,k,n,s

U(j, k, n, s).

Let us fix f ∈ ∩j,k,n,sU(j, k, n, s) and a sequence (ϕl)l of measurable functions on ∂D. We
first build by induction on k an increasing sequence (vk)k ⊂ N and a sequence Ek of subsets
of ∂D with m(Ek) ≥ 1− 1/2k, such that

(3.4) sup
1≤l≤k

sup
ζ∈Ek

sup
z∈Lk

|Tλlf(rvk(ζ − z) + z)− ϕl(ζ)| <
1

2k
.

We set v0 = 0 and E0 = ∅, and assume that the construction has been made until step k−1.
By Lusin’s theorem, there exists Gk,l ⊂ ∂D with m(Gk,l) ≥ 1− 1

k2k+1 , 1 ≤ l ≤ k, and jk ∈ N

such that

sup
ζ∈Gk,l

∣∣fφ(jk)(l)(ζ)− ϕl(ζ)
∣∣ < 1

2k+1
, 1 ≤ l ≤ k.

We set Gk = ∩1≤l≤kGk,l and observe that m(Gk) ≥ 1 − 1/2k+1. Now we use that f ∈
U(jk, k+1, rvk−1

+1, k) to get the existence of vk > vk−1 and Fk ∈ Ek, withm(Fk) ≥ 1−1/2k+1,
such that

sup
1≤l≤k

sup
ζ∈Fk

sup
z∈Lk

|Tλlf(rvk(ζ − z) + z)− fφ(jk)(l)(ζ)| <
1

2k+1
.

We finish the construction by setting Ek = Fk ∩Gk.
It remains to prove that there exists E ⊂ ∂D with m(E) = 1 such that for any l ∈ N∗,

any ζ ∈ E and any z ∈ D,

|Tλlf(rvk(ζ − z) + z)− ϕl(ζ)| → 0 as k → ∞.

For M ∈ N, we set HM := ∩k≥MEk and E := ∪M≥0HM . By construction, m(E) = 1. Let us
now fix l ∈ N∗, ζ ∈ E and z0 ∈ D. There exists M0 ∈ N such that, for any k ≥ M0, k ≥ l,
ζ ∈ Ek and z0 ∈ Lk. So, by Inequality (3.4), the inequality

|Tλlf(rvk(ζ − z) + z)− ϕl(ζ)| <
1

2k

holds for any k ≥ M0. Letting k → ∞, we get the desired conclusion.

In order to apply the Baire Category Theorem and get that Vm(D,Λ, ρ) is a dense Gδ-
subset of A(D), it suffices to show that U(j, k, n, s) is open and dense in A(D) for any
j, k, n, s ∈≥ 1. The fact that it is open follows directly from the continuity of the map Tλl

from A(D) to H(D) (we recall that Λ is admissible).
Let us now prove that U(j, k, n, s) is dense in A(D). As usual, it enough to prove that

U(j, k, n, s) intersects any neighborhood of 0. Let ε > 0 be fixed. We build by induction
k + 1 subsets E1, . . . , Ek of ∂D and k + 1 polynomials P0, . . . , Pk. We set E0 = ∂D, P0 = 0.
Then we choose the sets El and polynomials Pl =

∑
i α

l
iz

i, 1 ≤ l ≤ k, by applying k times
Lemma 3.3, in order to have

(1) For l = 1 and any ζ ∈ E1,
(i) m(E1) > 1− 1

k2k
;

(ii)
∑

i |α
1
i | < ε/k;

(iii) |
∑

i λ
1
iα

1
i ζ

i − fφ(j)(1)(ζ)| <
1

k2k
;

(2) and for any 2 ≤ l ≤ k and any ζ ∈ El,
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(a) m(El) > 1− 1
k2k

;
(b) val(Pl) > deg(Pl−1);
(c)

∑
i |λ

l−1
i αl

i| < ε/k;

(d) |
∑

i λ
l
iα

l
iζ

i − (fφ(j)(l)(ζ)− (
∑l−1

s=1

∑
i λ

l
iα

s
i ζ

i))| < 1
k2k

.

Then we set E = ∩lEl and R =
∑

l Pl. We observe that m(E) > 1− 1/2k, i.e. E ∈ Ek, and
that ‖R‖D < ε (by (ii) and (c)). Moreover, let us fix 1 ≤ l ≤ k. We have, for any ζ ∈ E,

|TλlR(ζ)− fφ(j)(l)(ζ)| = |
l−1∑

s=1

∑

i

λl
iα

s
i ζ

i +
∑

i

λl
iα

l
iζ

i +
k∑

s=l+1

∑

i

λl
iα

s
i ζ

i − fφ(j)(l)(ζ)|

<
1

k2k
+

k∑

s=l+1

∑

i

|λl
iα

s
i | (by (iii) or (d))

<
1

k2k
+

(k − 1)

k2k
(by (c))

=
1

2k
.

Now, by uniform continuity of R on the compact set {r(ζ − z) + z); ζ ∈ E, z ∈ Ls}, we get
the existence of some m ≥ n, independent of 1 ≤ l ≤ k, such that for any z ∈ Ls and any
ζ ∈ E,

|TλlR(rm(ζ − z) + z)− fφ(j)(l)(ζ)| <
1

2k
.

Thus U(j, k, n, s) meets any neighborhood of 0 in A(D) and the proof is complete.
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