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Abstract Artificial intelligence recently had a great

advancements caused by the emergence of new process-

ing power and machine learning methods. Having said

that, the learning capability of artificial intelligence is

still at its infancy comparing to the learning capability

of human and many animals. Many of the current artifi-

cial intelligence applications can only operate in a very

orchestrated, specific environments with an extensive

training set that exactly describes the conditions that

will occur during execution time. Having that in mind,

and considering the several existing machine learning

methods this question rises that ’What are some of the

best ways for a machine to learn?’

Regarding the learning methods of human, Confucius’

point of view is that they are by experience, imitation

and reflection. This paper tries to explore and discuss
regarding these three ways of learning and their imple-

mentations in machines by having a look at how they

happen in minds.

Keywords Artificial Intelligence · Supervised Learn-

ing · Reinforcement Learning · Unsupervised Learning ·
Machine Imagination · Machine Learning · Cognitive

Development

1 Introduction

How minds work, or in another word how a human

brain thinks, with the goal of implementing it in ma-

chines, is a long-term question in artificial intelligence.

In the recent years, Artificial Intelligence algorithms
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have demonstrated outstanding progress and nowadays

can be found in a variety of applications such as au-

tonomous vehicles, computer games and health care au-

tomations. Having said that, the learning capability of

artificial intelligence is still in its infancy comparing to

the learning capability of humans. They can only oper-

ate in a very orchestrated, specific environments with

an extensive training set that exactly describes the con-

ditions that will occur during execution time. Systems

of this kind are limited to the expertise and educated

guesses of their human programmer; they lack the abil-

ity to learn in, or tune themselves to real-world envi-

ronments autonomously or to employ learning in novel

situations.

In order to create smarter machines, with an ab-

stract similarity to human minds, design and develop-
ment of complicated computational algorithms inspired

by natural intelligence has already started. Among bio-

inspired algorithms those which simulated cognitive ar-

chitectures are crucial where they are ”the computa-

tional implementation of a cognitive model, and as such,

constitute the substrate for all the cognitive functional-

ities in robots, like perception, attention, action selec-

tion, learning, reasoning, etc” [1].

As a result of these efforts, there are several success-

ful methods of machine learning such as reinforcement

learning, supervised learning and unsupervised learning

where each group has its own branches: temporal differ-

ence and actor-critic methods for reinforcement learn-

ing, artificial neural network and its deep architectures

for supervised learning and self-organizing and cluster-

ing methods for unsupervised learning. Saying that, this

question rises that ”What are some of the best ways for

a machine to learn?”

In this paper, I try to first address this question from

a philosophical point of view and then I try to find the
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machine learning counterpart algorithms or in another

word the way that a particular learning method is im-

plemented in machines. Further, I try to discuss about

the most important of learning method, considering this

paper point of view, and the techniques and methods

useful for its implementation in machines.

2 Learning Methodology

”By three methods we may learn wisdom: First, by

reflection, which is the noblest; Second, by imitation,

which is easiest; and third by experience, which is the

bitterest”; Confucius.

It is possible to find similar terminologies to each of the

third ways of learning wisdom according to Confucius in

machine learning field. ”Third by experience, which is

the bitterest”: this is similar to ’the trial and error part

of the reinforcement learning framework’. ”Second, by

imitation, which is easiest”, this is similar to ’learning

from demonstration or imitation learning in computer

science’. Finally, ”First, by reflection, which is the no-

blest”, this important way of learning wisdom ends up

creating new ideas and shaping new theories as a result

of serious thought or consideration considering a per-

son’s ideological framework and according to what that

he is learned through the Second and Thirds methods:

imitation and experience.

By looking at the background of machine learning

algorithms, one can see that supervised learning, unsu-

pervised learning and reinforcement learning are stud-

ied and used by researchers for long time and in several

cases, and they are still some of the important cate-

gories of learning in machines. Nonetheless, it is also

possible to categorize them as following:

– Learning by Experience

– Reinforcement Learning

– Unsupervised Learning

– Learning by Imitation

– Learning From Demonstration

• Pure Classification

• Inverse Reinforcement Learning

– Supervised Learning

– Learning by Reflection

– ?

In the rest of this paper, I first explain briefly about the

’learning by experience’ and ’learning by imitation’ in

machine learning field and later focus on the ’learning

by reflection’ and try to finds some references for it

among machine learning algorithms.

3 Learning by Experience

Learning by trial and error (that is experience) is one

of the foremost methods of learning specially for the

sensorimotor development stage of intelligent creatures

where they get master in moving their motors gradu-

ally by trying and fixing their errors. ”By observing the

development stages of an infant in terms of learning to

articulate words, one can see that he first discovers how

to control phonation, then focuses on vocal variations

of unarticulated sounds, and finally automatically dis-

covers and focuses on babbling with articulated proto-

syllables” [2]. In the following, it is explained how this

method is implemented in machine learning community

under different titles.

3.1 Reinforcement Learning

”RL algorithms address the problem of how a behaving

agent can learn to approximate an optimal behavioral

strategy, usually called a policy, while interacting di-

rectly with its environment”[3].

Reinforcement learning family of algorithm are impor-

tant in machine learning community for their high ca-

pability in decision making by learning from their own

experiences. For an agent to be able to learn in an un-

known environment, it should be able to autonomously

interact with the environment. The framework of re-

inforcement learning is able to give the agent such an

ability by letting it to take actions and measure the

value of each action based on the reward it receives.

More actions the agent takes, it gets more information

about what is the best move in each state of the envi-

ronment.

Fig. 1 Reinforcement Learning Framework

Reinforcement learning [4] algorithms can be divided

into several groups such as model-based and model-free,

temporal difference methods, policy gradient methods

and actor critic methods. Furthermore, they can be

based on one or multi-step prediction [5]. An interesting

trend in these algorithms is the idea of intrinsic moti-
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vation that makes the embodiment of qualities such as

curiosity in machines possible.

The idea of ’learning by experience’ in reinforcement

learning frame work can be considered as a Markov De-

cision Process case. Where an agent interacts with its

environment at discrete time steps and at each time

step agent is located in a unique state according to its

sensory input st ∈ S. In each st agent can take an ac-

tion, at ∈ A based on its current policy π(st). In the

next time step, the state of agent changes to s(t+1) ∈ S
based on its previous action and a reward R that it

receives from the environment. (Figure 1).

Temporal Difference Approaches; Model-based and Model-

less

Temporal difference algorithms are the reinforcement

learning algorithms that try to calculate the value of a

state or the values of each possible action in that state

with attention to the reward received in each state. Fur-

thermore, this information will be used by the agent to

use in its policy in which it helps the agent to choose

the best action in each state, and as a result the agent

finally would be able to maximize its accumulated re-

ward.

Q-Learning; Model-less Method

In many problems, there is no model of the environ-

ment. As a result, a model-free off-policy method such

as q-learning [5] can be best to suite the scenario where

it can be combined with experience replay method [6]

for designing more capable learning algorithms. A tem-
poral difference reinforcement learning method can work

for example based on an epsilon-greedy policy for action

selection. The goal of this kind of policies is to achieve

the maximum discounted reward over time and by using

an iterative method of selecting the action with maxi-

mum value in each state−and updating this value using

itself, the maximum action value in the next state and

the reward it receives from the environment [4].

Dynamic Programing, Monte-Carlo and SARSA; A Model-

based Method

As it can be noticed by looking at the title of a model-

based reinforcement learning algorithm, its difference

with model-less RL is in having a model of the environ-

ment. No matter, how the environment is, either 1D,

2D or 3D environment, or a mathematical formula of

the dynamics of the system, a model based algorithm is

able to calculate a future state of the environment with

attention to the current state and the desired action. A

very good example of a model-based algorithm is the

work in [7] where a machine is able to play Go game in

a human level and win over many human players.

Function Approximator

Many reinforcement learning algorithms use the men-

tioned formula in order to find the optimal action value.

However, there are two main problems, the lack of gen-

eralization and the problem of number of the states. In

order to tackle these problems a function approximator

an be used in order to find the optimal values of each

action or state. As a result of using function approx-

imators, Combination of supervised and unsupervised

learning with reinforcement learning can be seen in sev-

eral works. For example, combination of unsupervised

learning (self-organizing map) and reinforcement learn-

ing can be seen in several works such as [8] where the

input signals of the robot sensors are clustered using a

dynamic variation of Kohonen self-organizing map al-

gorithm [9], and each cluster is defined to be an state

for the reinforcement learning agent. As a result, the

RL agent is able to control the robot movement based

on pre-defined goals and rewards.

Further, combination of reinforcement learning algo-

rithm and supervised learning algorithms such as neural

network can ends up creating a robust class of algorithm

in terms of learning to achieve an optimal behavior sim-

ilar to a human [10] in playing Atari game by defining

a Deep Q-Network which is as a matter of fact combi-

nation q-learning and deep learning [11].

Actor Critic Approaches

Based on this view, reinforcement learning methods can

be grouped under two categories. Actor-only methods

and critic-only methods.

– ”Actor-only methods work with a parameterized fam-

ily of policies. The gradient of the performance, with

respect to the actor policies, is directly estimated by

simulation, and the parameters are updated in a di-

rection of improvement.” [12]

– ”Critic-only methods rely exclusively on value func-

tion approximation and aim at learning an approx-

imate solution to the bellman equation, which will

the hopefully prescribe a near-optimal policy.” [12]

Actor-critic methods [13], try to mix the important

properties of actor-only and critic-only methods. The

actor’s policy parameters will be updated with the goal

of improving the performance using the value function

learned by critic through approximation architecture.

”The word actor and critic are synonyms for the pol-

icy and action-value function, respectively” [14]. One
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of the fresh important works in this area is the deep

deterministic policy gradient [15] where it is an actor-

critic network that is consist of two multilayer or deep

artificial neural network based actor and critic. This

algorithm could successfully solve the problem of con-

tinuous action control in some games and classic control

problems.

Policy Gradient Methods

As mentioned in the previous section, actor-only meth-

ods are those in which the policy is parameterized and

can be optimized directly. ”The benefit of a parame-

terized policy is that a spectrum of continuous actions

can be generated, but the optimization methods used

(typically called policy gradient methods) suffer from

high variance in the estimate of the gradient, leading

to slow learning [12][16][17][18][19].” [14]

3.1.1 Hierarchical Reinforcement Learning Framework

Considering human behavior it ”has long been recog-

nized to display hierarchical structure: actions fit to-

gether into subtasks, which cohere into extended goal-

directed activities” [20].

”Hierarchical reinforcement learning (HRL) decom-

poses a reinforcement learning problem into a hierar-

chy of sub problems or subtasks such that higher-level

parent-task invoke lower-level child task as if they were

primitive actions. A decomposition may have multiple

levels of hierarchy” [21]. This ”decomposition into sub-

problems has many advantages. First, policies learned

in subproblems can be shared (reused) for multiple par-

ent tasks. Second, the value functions learned in sub-
problems can be shared, so when the subproblem is

reused in a new task, learning of the overall value func-

tion for the new task is accelerated. Third, if state ab-

stractions can be applied, then the overall value func-

tion can be represented compactly as the sum of sep-

arate terms that each depends on only a subset of the

state variables. This more compact representation of

the value function will require less data to learn, and

hence, learning will be faster.”[22]

3.2 Unsupervised Learning

Unsupervised learning method cannot be categorized

under learning that happens by imitation since there is

no output for the input to be imitated by machine, and

it is hard to categorize it under learning that happens

by experience perhaps because it does not have an at-

tached reward to classify that particular experience as

good or bad. However, this paper argues that receiving

Fig. 2 Learning from Demonstration framework, Adapted
from [23]

reward happens through many time steps where each

time step can be considered as a new experience for

our machine, that is each new sample has a subtle re-

ward (loss) that tries to move a particular input toward

a particular class. Thus it can be concluded that it is

under the category of ’learning by experience’.

4 Learning by Imitation

The learning capability of human kind develops through-

out his life by getting master in ’learning by imitation’

(e.g. learning how to write a word from the first grade

teacher), a wide spectrum of what we learn after our

early ages comes from this type of learning.

4.1 Learning From Demonstration (Apprenticeship

Learning)

Learning from Demonstration is a natural and intuitive

machine learning approach where an agent that called

apprentice tries to learn a behavior from demonstration

of another agent called the expert. ”We simply show the

robot how to achieve a task. This has the immediate ad-

vantage of requiring no (or very little) specialized skill

or training, and makes use of a human demonstrator’s

existing procedural knowledge useful to identify which

control program to acquire” [24]. A very good example

for learning from demonstration, is how to fly an air-

plane, considering all the different possibilities exist for

using the buttons and handles in the cabin of an air-

plane, the best way to learn how to fly is by observing

an expert. Perhaps it is just impossible to try to learn

to fly an airplane simply by random pushing of but-

tons. Looking at the literatures there are at least two

methods to deal with this problem of Apprenticeship
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Learning (AL); Pure Classification and Inverse Rein-

forcement Learning (IRL)

4.2 Pure Classification

Pure classification, for instance, the large margin method

[25] has several advantages and also some disadvantages

that is explained in the following; It is ”easy to imple-

ment, fast, no need to resolve MDPs, no need to do a

choice of features thanks to boosting techniques. How-

ever, they do not take into account the structure of

the MDP because the temporal structure of the ex-

pert trajectories is not used in a pure classification

method. To tackle this drawback, the authors of [26]

use a kernel-based approach to encapsulate the struc-

ture of the MDP into the classifier, which needs the cal-

culation of the MDP metrics and thus the knowledge

of the whole dynamics.” [27]

4.3 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL), introduced in

[28] and formalized in [29], is related to Apprentice-

ship Learning (AL) family of algorithm. However, IRL

searches to find a reward where this reward should be

able to explain the expert behavior and not the expert

policy. ”The key idea behind IRL is that the reward

may be the most succinct hypothesis explaining the ex-

pert behavior. Some algorithms [30][31][32] use IRL as

an intermediary step to find a policy but other algo-

rithms [33][34] are ”pure” IRL algorithms and output

a reward. This reward must then be optimized via a
direct reinforcement learning algorithm.” [27]

4.4 Supervised Learning

This famous method of machine learning helps the ma-

chine to learn to imitate that if a particular input re-

ceived what should be the particular output. As a re-

sult, in this paper it is considered to be under the cat-

egory of ’learning by imitation’.

5 Learning by Reflection

If we describe ’learning by reflection’ as the result of

serious thought and consideration which can cause for

example the creation of a scientific discovery or theory,

then it can be explained as a logical outcome of the

following cognitive activities:

5.1 Reasoning (Deduction and Induction)

Many of the scientific (e.g computation, biological, so-

cial) theories are as a result of a chain of reasonings.

Where one can interpret reasoning as an unsupervised

or supervised pattern recognition, where for instance

by seeing a view a person can recognize it or catego-

rize it as a special event or group, and as a result it

can be categorized under the ’learning by experience’

or ’learning by imitation’.

Reasonings help us to understand and being able to ex-

plain where an incident is coming from or where it will

ends up or what is the meaning of a particular percep-

tion (e.g. a view, a sound, an smell or a combination

of several senses (biological sensors)). Furthermore, fol-

lowing the trajectory of incidents (started by incident

’a’) using chain of reasonings one can end up to a par-

ticular incident ’b’ and form a social or scientific theory,

where it begins by incident ’a’ and ends up to incident

’b’. For example, a person look is faint, we can reason

that its because he is hungry or sick, let say the person

is hungry thus he does not have money or is very lazy

to buy food, or let say the person is sick so he does not

have money to buy food or he got a virus, perhaps his

immune system is weak or the virus is new, and this

chain of reasoning can continue to reach a particular

theory based on the look of a person.

5.2 Imagination

When a person imagines, he creates or shapes a per-

ception in his mind, which has been obtained accord-

ing to what he has perceived previously (either through

experience or imitation) with attention to his current

thoughts and ideas; this imagination can be altered or

enhanced with-in the framework of his believes (e.g. a

scientific belief or a religious belief).

Here, I emphasize that even though machine imagina-

tion concept that is discussed in [35] and similar works

are interesting but they are not the topic that this pa-

per intends to discuss about. In those works imagina-

tion for machine is discussed and explained as a process

that convert an input, for example a text, to an image

where the process and type of learning can be catego-

rized more under the category of ’learning by imitation’

(learning to produce a particular image when input is a

particular text or sentence). Nonetheless, what this pa-

per means by ”imagination” in a machine is as a matter

of fact a process that uses machine memory and knowl-

edge in order to create new perceptions that did not

shown to machine before and in order to learn from

this new perception.
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This paper categorizes imagination into the follow-

ing categories:

– The first category is a synthesization of world model,

based on the past experiences, for example, imagine

a person that seen a place before, he is able to imag-

ine this place, or world model, again in his mind

and take new actions and calculates new results ac-

cordingly. In computer science there are instances

of this kind of imagination, for instance SLAM [36],

where a machine learn a model of the world and

as a result imagines this model and particular out-

comes with-in this imaginary model of the world

according to particular actions. Model-based rein-

forcement learning algorithms are among those in

which a model of the world can be built, and then

refined and completed using experiences and obser-

vations. Model-based RL aims to endow an agent

”with a model of the world, synthesized from past

experience. By using an internal model to reason

about the future, here also referred to as imagining,

the agent can seek positive outcomes while avoid-

ing the adverse consequences of trial-and-error in

the real environment including making irreversible,

poor decisions” [37].

One important consideration in this type of imagi-

nation is that it is limited by the model of the world,

made by observation, that is, this kind of imagina-

tion cannot go beyond the observation of person or

machine. In another world, this imagination is lim-

ited to experience and observation and it is kind of

learning by experience. Thus, perhaps it is possible

to think that model-based thinking (method) is a

reasoning process which of course can reach to very

important discoveries and outcomes.

– In order to explain the second category, first, let’s

imagine Einstein thinking about time being relative,

he is considering that his bus can move faster than a

beam of light coming from the clock tower, this idea

perhaps is not based on experience or observation

(it is more than a model-based method). He was

imagining something out of the world-model he ex-

perienced by creating at the first point an exception

beyond or contradictory to the experiences and ob-

servations he had because nobody can move faster

than light so it can not be experienced nor it can

not be imitated, however, this way of thinking (ex-

ceptional or contradictory) paved the way to create

a great theory.

Furthermore, following the chain of reasonings it is

possible to reach a point that the person does not

have any experience or imitation information about

it, for example considering biological advancements

and discovery of a method that makes human im-

mortal, the fact of immortal human perhaps is not

experienced before, it can be imitated from the movies,

but for the first time there was no movie about it,

this example is also an imagination that is based

on pure imagination contradictory or beyond expe-

riences and imitations.

Is it possible to implement the ’learning by reflection’ in

machines? As explained in this section, a reflection can

be explained as an imagination that is not limited to ex-

perience or imitation. Chain of reasonings and limited

imagination both can be explained by ’learning by expe-

rience’ or ’learning by imitation’, however, a reflection,

needs an elaboration, enhancement, or exception be-

yond the experienced world-model. This enhancement

would happen according to the believe frame-work of

the machine or person where this belief frame work

can be scientific, religious or spiritual. Further, this en-

hancement can happen using what learned by imitation

or by mixing different experiences into each other and

judge the possibility of the result according to the be-

lieve framework of the person or machine.

6 Conclusion

In this paper, several ways of learning for a machine

−learning by experience, learning by imitation and learn-

ing by reflection− inspired by human ways of learn-

ing wisdom explained by Confucius, introduced and dis-

cussed. Further, it explained that two of these methods,

’learning by experience’ and ’learning by imitation’ are

widely researched and implemented in machine learning

community under other titles. For example, reinforce-

ment learning and unsupervised learning are based on
’learning by experience’ and learning from demonstra-

tion and supervised learning are based on ’learning by

imitation’. Nevertheless, the third way of learning wis-

dom, ’learning by reflection’, is focused less and less im-

plemented as well in machine learning community and

algorithms. As a result, this paper discussed about this

method of learning and the ways it can be explained

through them in minds and machines.
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