E. Ahlstrand, Z. Schpector, J. Friedman, and R. , Computer simulations of alkali-acetate solutions: Accuracy of the forcefields in difference concentrations Albaugh A, Head-Gordon T. 2017. A New Method for Treating Drude Polarization in Classical Molecular Simulation, J Chem Phys Journal of Chemical Theory and Computation, vol.147, issue.13, pp.5207-5223, 2017.

A. Albaugh, A. Niklasson, and T. Head-gordon, Accurate Classical Polarization Solution with No Self-Consistent Field Iterations, The Journal of Physical Chemistry Letters, vol.8, issue.8, pp.1714-1737, 2017.
DOI : 10.1021/acs.jpclett.7b00450

F. Aviat, A. Levitt, B. Stamm, Y. Maday, and P. Ren, Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations, Journal of Chemical Theory and Computation, vol.13, issue.1, pp.180-90, 2017.
DOI : 10.1021/acs.jctc.6b00981

URL : https://hal.archives-ouvertes.fr/hal-01395833

D. Bell, R. Qi, Z. Jing, J. Xiang, and C. Mejias, Calculating binding free energies of host???guest systems using the AMOEBA polarizable force field, Physical Chemistry Chemical Physics, vol.100, issue.44, pp.30261-69, 2016.
DOI : 10.1103/PhysRevLett.100.020603

URL : http://europepmc.org/articles/pmc5102783?pdf=render

H. Boateng, Mesh-free hierarchical clustering methods for fast evaluation of electrostatic interactions of point multipoles, The Journal of Chemical Physics, vol.4, issue.16, p.164104, 2017.
DOI : 10.1002/jcc.20290

S. Busch, C. Lorenz, J. Taylor, L. Pardo, and S. Mclain, Short-Range Interactions of Concentrated Proline in Aqueous Solution, The Journal of Physical Chemistry B, vol.118, issue.49, pp.14267-77, 2014.
DOI : 10.1021/jp508779d

K. Carsten, P. Szilárd, F. Martin, E. Ansgar, L. Dgb et al., Best bang for your buck: GPU nodes for GROMACS biomolecular simulations, Journal of Computational Chemistry, vol.36, pp.1990-2008, 2015.

D. Cerutti, J. Rice, W. Swope, and D. Case, Derivation of Fixed Partial Charges for Amino Acids Accommodating a Specific Water Model and Implicit Polarization, The Journal of Physical Chemistry B, vol.117, issue.8, pp.2328-2366, 2013.
DOI : 10.1021/jp311851r

URL : http://europepmc.org/articles/pmc3622952?pdf=render

J. Chen and T. Martínez, QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics, Chemical Physics Letters, vol.438, issue.4-6, pp.315-335, 2007.
DOI : 10.1016/j.cplett.2007.02.065

J. Chodera, W. Swope, F. Noé, J. Prinz, M. Shirts et al., Dynamical reweighting: Improved estimates of dynamical properties from simulations at multiple temperatures, The Journal of Chemical Physics, vol.15, issue.4, p.244107, 2011.
DOI : 10.1103/PhysRev.165.201

URL : http://europepmc.org/articles/pmc3143679?pdf=render

P. Cieplak, J. Caldwell, and P. Kollman, Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases, Journal of Computational Chemistry, vol.20, issue.10, pp.1048-57, 2001.
DOI : 10.1021/bi00514a006

G. Cisneros, M. Karttunen, P. Ren, and C. Sagui, Classical Electrostatics for Biomolecular Simulations. Chemical Reviews, vol.114, pp.779-814, 2014.

J. Davis and S. Patel, Charge Equilibration Force Fields for Lipid Environments: Applications to Fully Hydrated DPPC Bilayers and DMPC-Embedded Gramicidin A, The Journal of Physical Chemistry B, vol.113, issue.27, pp.9183-96, 2009.
DOI : 10.1021/jp901088g

K. Debiec, D. Cerutti, L. Baker, A. Gronenborn, D. Case et al., Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model, Journal of Chemical Theory and Computation, vol.12, issue.8, pp.3926-3973, 2016.
DOI : 10.1021/acs.jctc.6b00567

O. Demerdash, Y. Mao, T. Liu, M. Head-gordon, and T. Head-gordon, Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations, The Journal of Chemical Physics, vol.84, issue.2, p.161721, 2017.
DOI : 10.1021/ct600180x

B. Dhakshnamoorthy, A. Rohaim, H. Rui, L. Blachowicz, B. Roux et al., Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola GEM*: A Molecular Electronic Density-Based Force Field for Molecular Dynamics Simulations, Nature Communications Journal of Chemical Theory and Computation, vol.7, issue.10, pp.12753-12771, 2014.

E. Dybeck, N. Schieber, and M. Shirts, Effects of a More Accurate Polarizable Hamiltonian on Polymorph Free Energies Computed Efficiently by Reweighting Point-Charge Potentials, Journal of Chemical Theory and Computation, vol.12, issue.8, pp.3491-505, 2016.
DOI : 10.1021/acs.jctc.6b00397

P. Eastman, J. Swails, J. Chodera, R. Mcgibbon, and Y. Zhao, OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics. bioRxiv 21 Could an anisotropic molecular mechanics/dynamics potential account for sigma hole effects in the complexes of halogenated compounds, Journal of Computational Chemistry, vol.34, pp.1125-1160, 2013.

R. Elber, Perspective: Computer simulations of long time dynamics, The Journal of Chemical Physics, vol.144, issue.6, p.60901, 2016.
DOI : 10.1103/PhysRevLett.35.789

A. Esser, S. Belsare, D. Marx, and T. Head-gordon, Mode specific THz spectra of solvated amino acids using the AMOEBA polarizable force field, Physical Chemistry Chemical Physics, vol.150, issue.7, pp.5579-90, 2017.
DOI : 10.1039/c1fd00004g

A. Faradjian and R. Elber, Computing time scales from reaction coordinates by milestoning, The Journal of Chemical Physics, vol.126, issue.23, pp.10880-89, 2004.
DOI : 10.1007/BF01016796

G. Ke, R. Wa, L. Louis, L. Filippo, P. Jean?philip et al., LICHEM: A QM/MM program for simulations with multipolar and polarizable force fields, Journal of Computational Chemistry, vol.37, pp.1019-1048, 2016.

X. Gao, Q. Hao, and C. Wang, Improved Polarizable Dipole???Dipole Interaction Model for Hydrogen Bonding, Stacking, T-Shaped, and X???H???????? Interactions, Journal of Chemical Theory and Computation, vol.13, issue.6, pp.2730-2771, 2017.
DOI : 10.1021/acs.jctc.6b00936

T. Giese, M. Panteva, H. Chen, and D. York, Multipolar Ewald Methods, 1: Theory, Accuracy, and Performance, Journal of Chemical Theory and Computation, vol.11, issue.2, pp.436-50, 2015.
DOI : 10.1021/ct5007983

URL : https://doi.org/10.1021/ct5007983

K. Gkionis, H. Kruse, J. Platts, A. Mladek, J. Koca et al., Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations, Journal of Chemical Theory and Computation, vol.10, issue.3, pp.1326-1366, 2014.
DOI : 10.1021/ct4009969

B. Goh, J. Hadden, R. Bernardi, A. Singharoy, and R. Mcgreevy, Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes, Annual Review of Biophysics, vol.45, issue.1, pp.253-78, 2016.
DOI : 10.1146/annurev-biophys-062215-011113

URL : http://europepmc.org/articles/pmc5526348?pdf=render

H. Gökcan, E. Kratz, T. Darden, J. Piquemal, and G. Cisneros, QM/MM Simulations with the Gaussian Electrostatic Model: A Density-based Polarizable Potential, The Journal of Physical Chemistry Letters, vol.9, issue.11, pp.3062-67, 2018.
DOI : 10.1021/acs.jpclett.8b01412

N. Gresh, G. Cisneros, T. Darden, and J. Piquemal, Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand???Macromolecule Complexes. A Bottom-Up Strategy, Journal of Chemical Theory and Computation, vol.3, issue.6, pp.1960-86, 2007.
DOI : 10.1021/ct700134r

URL : https://hal.archives-ouvertes.fr/hal-00494588

N. Gresh, D. Perahia, B. De-courcy, J. Foret, and C. Roux, Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown, Journal of Computational Chemistry, vol.37, issue.32, pp.2770-82, 2016.
DOI : 10.1002/jcc.24375

N. Gresh, J. Sponer, M. Devereux, K. Gkionis, and B. De-courcy, Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics., The Journal of Physical Chemistry B, vol.119, issue.30, pp.9477-95, 2015.
DOI : 10.1021/acs.jpcb.5b01695

URL : https://hal.archives-ouvertes.fr/hal-01287484

N. Gresh, J. Sponer, M. Devereux, K. Gkionis, and B. De-courcy, Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics., The Journal of Physical Chemistry B, vol.119, issue.30, pp.9477-95, 2015.
DOI : 10.1021/acs.jpcb.5b01695

URL : https://hal.archives-ouvertes.fr/hal-01287484

A. Grossfield, P. Ren, and J. Ponder, Ion Solvation Thermodynamics from Simulation with a Polarizable Force Field, Journal of the American Chemical Society, vol.125, issue.50, pp.15671-82, 2003.
DOI : 10.1021/ja037005r

T. Halgren and W. Damm, Polarizable force fields, Current Opinion in Structural Biology, vol.11, issue.2, pp.236-278, 2001.
DOI : 10.1016/S0959-440X(00)00196-2

M. Harger, D. Li, Z. Wang, K. Dalby, and L. Lagardère, Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs, Journal of Computational Chemistry, vol.71, issue.23, pp.2047-55, 2017.
DOI : 10.1016/S0006-3495(96)79267-6

URL : https://hal.archives-ouvertes.fr/hal-01571313

J. Huang, L. Justin, A. , E. Peter, K. et al., Molecular dynamics simulations using the drude polarizable force field on GPUs with OpenMM: Implementation, validation, and benchmarks, Journal of Computational Chemistry, vol.424, issue.2, 2018.
DOI : 10.1016/j.cplett.2006.04.035

J. Huang, A. Simmonett, F. Pickard, A. Mackerell, B. Brooks et al., Mapping the Drude polarizable force field onto a multipole and induced dipole model Markov State Models: From an Art to a Science, The Journal of Chemical Physics Journal of the American Chemical Society, vol.147, issue.140, pp.2386-96, 2017.

S. Jakobsen and F. Jensen, Systematic Improvement of Potential-Derived Atomic Multipoles and Redundancy of the Electrostatic Parameter Space, Journal of Chemical Theory and Computation, vol.10, issue.12, pp.5493-504, 2014.
DOI : 10.1021/ct500803r

S. Jakobsen and F. Jensen, Searching the Force Field Electrostatic Multipole Parameter Space, Journal of Chemical Theory and Computation, vol.12, issue.4, pp.1824-1856, 2016.
DOI : 10.1021/acs.jctc.5b01187

D. Jiao, P. Golubkov, T. Darden, and P. Ren, Calculation of protein-ligand binding free energy by using a polarizable potential, Proceedings of the National Academy of Sciences, vol.99, issue.7, pp.6290-95, 2008.
DOI : 10.1021/ja00449a051

URL : http://www.pnas.org/content/105/17/6290.full.pdf

J. Kaminsky and F. Jensen, Conformational Interconversions of Amino Acid Derivatives, Journal of Chemical Theory and Computation, vol.12, issue.2, pp.694-705, 2016.
DOI : 10.1021/acs.jctc.5b00911

Z. Kan, Q. Zhu, L. Yang, Z. Huang, J. B. Ma et al., Polarization Effects on the Cellulose Dissolution in Ionic Liquids: Molecular Dynamics Simulations with Polarization Model and Integrated Tempering Enhanced Sampling Method, The Journal of Physical Chemistry B, vol.121, issue.17, pp.4319-4351, 2017.
DOI : 10.1021/acs.jpcb.6b12647

M. Kolá? and P. Hobza, Computer Modeling of Halogen Bonds and Other ??-Hole Interactions, Chemical Reviews, vol.116, issue.9, pp.5155-87, 2016.
DOI : 10.1021/acs.chemrev.5b00560

C. Kramer, A. Spinn, and K. Liedl, Charge Anisotropy: Where Atomic Multipoles Matter Most, Journal of Chemical Theory and Computation, vol.10, issue.10, pp.4488-96, 2014.
DOI : 10.1021/ct5005565

H. Kruse, M. Havrila, and J. Sponer, QM Computations on Complete Nucleic Acids Building Blocks: Analysis of the Sarcin???Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H, and MM Approaches, Journal of Chemical Theory and Computation, vol.10, issue.6, pp.2615-2644, 2014.
DOI : 10.1021/ct500183w

I. Kurnikov and M. Kurnikova, Modeling Electronic Polarizability Changes in the Course of a Magnesium Ion Water Ligand Exchange Process, The Journal of Physical Chemistry B, vol.119, issue.32, pp.10275-86, 2015.
DOI : 10.1021/acs.jpcb.5b01295

L. Lagardere, L. Jolly, F. Lipparini, F. Aviat, and B. Stamm, Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields, Chemical Science, vol.10, issue.132, pp.956-72, 2018.
DOI : 10.1021/ct500050p

URL : https://hal.archives-ouvertes.fr/hal-01648245

M. Laury, L. Wang, V. Pande, T. Head-gordon, and J. Ponder, Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model, The Journal of Physical Chemistry B, vol.119, issue.29, pp.9423-9460, 2015.
DOI : 10.1021/jp510896n

URL : http://europepmc.org/articles/pmc4772747?pdf=render

J. Lemkul, J. Huang, and A. Mackerell, Induced Dipole???Dipole Interactions Influence the Unfolding Pathways of Wild-Type and Mutant Amyloid ??-Peptides, The Journal of Physical Chemistry B, vol.119, issue.51, pp.15574-82, 2015.
DOI : 10.1021/acs.jpcb.5b09978

URL : https://doi.org/10.1021/acs.jpcb.5b09978

J. Lemkul, J. Huang, B. Roux, and A. Mackerell, An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications, Chemical Reviews, vol.116, issue.9, pp.4983-5013, 2016.
DOI : 10.1021/acs.chemrev.5b00505

URL : https://doi.org/10.1021/acs.chemrev.5b00505

J. Lemkul and A. Mackerell, Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics, Journal of Chemical Theory and Computation, vol.13, issue.5, pp.2053-71, 2017.
DOI : 10.1021/acs.jctc.7b00067

URL : https://doi.org/10.1016/j.bpj.2014.11.875

J. Lemkul, A. Savelyev, and A. Mackerell, Induced Polarization Influences the Fundamental Forces in DNA Base Flipping, The Journal of Physical Chemistry Letters, vol.5, issue.12, pp.2077-83, 2014.
DOI : 10.1021/jz5009517

URL : https://doi.org/10.1021/jz5009517

I. Leontyev and A. Stuchebrukhov, Polarizable molecular interactions in condensed phase and their equivalent nonpolarizable models, The Journal of Chemical Physics, vol.141, issue.1, p.14103, 2014.
DOI : 10.1063/1.1669389

URL : http://europepmc.org/articles/pmc4106032?pdf=render

H. Li, J. Chowdhary, L. Huang, X. He, A. Mackerell et al., Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids, Journal of Chemical Theory and Computation, vol.13, issue.9, pp.4535-52, 2017.
DOI : 10.1021/acs.jctc.7b00262

URL : http://europepmc.org/articles/pmc5595662?pdf=render

Y. Li, H. Li, F. Pickard, B. Narayanan, and F. Sen, Machine Learning Force Field Parameters from Ab Initio Data, Journal of Chemical Theory and Computation, vol.13, issue.9, pp.4492-503, 2017.
DOI : 10.1021/acs.jctc.7b00521

URL : http://europepmc.org/articles/pmc5931379?pdf=render

E. Liberatore, R. Meli, and U. Rothlisberger, Molecular Dynamics Simulations, Journal of Chemical Theory and Computation, vol.14, issue.6, pp.2834-2876, 2018.
DOI : 10.1021/acs.jctc.7b01189

B. Lin, Y. Gao, Y. Li, J. Zhang, and Y. Mei, Implementing electrostatic polarization cannot fill the gap between experimental and theoretical measurements for the ultrafast fluorescence decay of myoglobin, Journal of Molecular Modeling, vol.114, issue.4, p.2189, 2014.
DOI : 10.1021/jp104425t

D. Lin, Generalized and efficient algorithm for computing multipole energies and gradients based on Cartesian tensors, The Journal of Chemical Physics, vol.46, issue.11, p.114115, 2015.
DOI : 10.1137/110830125

URL : http://europepmc.org/articles/pmc4583518?pdf=render

F. Lin and A. Mackerell, Polarizable Empirical Force Field for Halogen-Containing Compounds Based on the Classical Drude Oscillator, Journal of Chemical Theory and Computation, vol.14, issue.2, pp.1083-98, 2018.
DOI : 10.1021/acs.jctc.7b01086

Z. Lin and W. Van-gunsteren, Effects of Polarizable Solvent Models upon the Relative Stability of an ??-Helical and a ??-Hairpin Structure of an Alanine Decapeptide, Journal of Chemical Theory and Computation, vol.11, issue.5, pp.1983-86, 2015.
DOI : 10.1021/acs.jctc.5b00210

F. Lipparini, L. Lagardère, C. Raynaud, B. Stamm, and E. Cancès, Polarizable Molecular Dynamics in a Polarizable Continuum Solvent, Journal of Chemical Theory and Computation, vol.11, issue.2, pp.623-657, 2015.
DOI : 10.1021/ct500998q

URL : https://hal.archives-ouvertes.fr/hal-01114784

C. Liu, Y. Li, B. Han, L. Gong, and L. Lu, Polarization Force Field for Base Pairs with Amino Acid Residue Complexes, Journal of Chemical Theory and Computation, vol.13, issue.5, pp.2098-111, 2017.
DOI : 10.1021/acs.jctc.6b01206

C. Liu, R. Qi, Q. Wang, J. Piquemal, and P. Ren, Capturing Many-Body Interactions with Classical Dipole Induction Models, Journal of Chemical Theory and Computation, vol.13, issue.6, pp.2751-61, 2017.
DOI : 10.1021/acs.jctc.7b00225

URL : https://doi.org/10.1021/acs.jctc.7b00225

D. Loco, F. Buda, J. Lugtenburg, and B. Mennucci, The Dynamic Origin of Color Tuning in Proteins Revealed by a Carotenoid Pigment, The Journal of Physical Chemistry Letters, vol.9, issue.9, pp.2404-2414, 2018.
DOI : 10.1021/acs.jpclett.8b00763

D. Loco, L. Lagardère, S. Caprasecca, F. Lipparini, B. Mennucci et al., Hybrid QM/MM Molecular Dynamics with AMOEBA Polarizable Embedding, Journal of Chemical Theory and Computation, vol.13, issue.9, pp.4025-4058, 2017.
DOI : 10.1021/acs.jctc.7b00572

URL : https://hal.archives-ouvertes.fr/hal-01571619

D. Loco, É. Polack, S. Caprasecca, L. Lagardère, and F. Lipparini, A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations, Journal of Chemical Theory and Computation, vol.12, issue.8, pp.3654-61, 2016.
DOI : 10.1021/acs.jctc.6b00385

P. Lopes, J. Huang, J. Shim, Y. Luo, and H. Li, Polarizable Force Field for Peptides and Proteins Based on the Classical Drude Oscillator, Journal of Chemical Theory and Computation, vol.9, issue.12, pp.5430-5479, 2013.
DOI : 10.1021/ct400781b

URL : http://europepmc.org/articles/pmc3896220?pdf=render

C. Lv, X. Li, D. Wu, L. Zheng, and Y. W. , Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method, Journal of Chemical Theory and Computation, vol.12, pp.41-52, 2016.

M. B. , Polarizable force fields for molecular dynamics simulations of biomolecules, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.5, pp.241-54, 2015.

C. Macdermaid and G. Kaminski, Electrostatic Polarization Is Crucial for Reproducing pKa Shifts of Carboxylic Residues in Turkey Ovomucoid Third Domain, The Journal of Physical Chemistry B, vol.111, issue.30, pp.9036-9080, 2007.
DOI : 10.1021/jp071284d

A. Mackerell, D. Bashford, M. Bellott, R. Dunbrack, and J. Evanseck, The Journal of Physical Chemistry B, vol.102, issue.18, pp.3586-616, 1998.
DOI : 10.1021/jp973084f

N. Manin, M. Da-silva, I. Zdravkovic, O. Eliseeva, and A. Dyshin, binding to an amide plane, Physical Chemistry Chemical Physics, vol.54, issue.5, pp.4191-200, 2016.
DOI : 10.1021/acs.biochem.5b01000

K. Manjeet, S. Thomas, O. Gilles, and C. C. , Structure and Thermodynamics of Mg:Phosphate Interactions in Water: A Simulation Study, ChemPhysChem, vol.16, pp.658-65, 2015.

Y. Mao, O. Demerdash, M. Head-gordon, and T. Head-gordon, Assessing Ion???Water Interactions in the AMOEBA Force Field Using Energy Decomposition Analysis of Electronic Structure Calculations, Journal of Chemical Theory and Computation, vol.12, issue.11, pp.5422-5459, 2016.
DOI : 10.1021/acs.jctc.6b00764

D. Margul and M. Tuckerman, A Stochastic, Resonance-Free Multiple Time-Step Algorithm for Polarizable Models That Permits Very Large Time Steps, Journal of Chemical Theory and Computation, vol.12, issue.5, pp.2170-80, 2016.
DOI : 10.1021/acs.jctc.6b00188

G. Marshall, Limiting assumptions in molecular modeling: electrostatics, Journal of Computer-Aided Molecular Design, vol.133, issue.45, pp.107-121, 2013.
DOI : 10.1021/ja207470h

A. Mehandzhiyski, E. Riccardi, T. Van-erp, H. Koch, and P. Astrand, Density Functional Theory Study on the Interactions of Metal Ions with Long Chain Deprotonated Carboxylic Acids, The Journal of Physical Chemistry A, vol.119, issue.40, pp.10195-203, 2015.
DOI : 10.1021/acs.jpca.5b04136

Y. Mei, A. Simmonett, F. Pickard, R. Distasio, B. Brooks et al., Numerical Study on the Partitioning of the Molecular Polarizability into Fluctuating Charge and Induced Atomic Dipole Contributions, The Journal of Physical Chemistry A, vol.119, issue.22, pp.5865-82, 2015.
DOI : 10.1021/acs.jpca.5b03159

A. Misquitta, A. Stone, and F. Fazeli, Distributed Multipoles from a Robust Basis-Space Implementation of the Iterated Stockholder Atoms Procedure, Journal of Chemical Theory and Computation, vol.10, issue.12, pp.5405-5423, 2014.
DOI : 10.1021/ct5008444

J. Morrone, T. Markland, M. Ceriotti, and B. Berne, Efficient multiple time scale molecular dynamics: Using colored noise thermostats to stabilize resonances, The Journal of Chemical Physics, vol.134, issue.1, p.14103, 2011.
DOI : 10.1002/prot.340210403

J. Mortier, C. Rakers, M. Bermudez, M. Murgueitio, S. Riniker et al., The impact of molecular dynamics on drug design: applications for the characterization of ligand???macromolecule complexes, Drug Discovery Today, vol.20, issue.6, pp.686-702, 2015.
DOI : 10.1016/j.drudis.2015.01.003

X. Mu, Q. Wang, L. Wang, S. Fried, and J. Piquemal, Modeling Organochlorine Compounds and the ??-Hole Effect Using a Polarizable Multipole Force Field, The Journal of Physical Chemistry B, vol.118, issue.24, pp.6456-65, 2014.
DOI : 10.1021/jp411671a

URL : http://doi.org/10.1021/jp411671a

I. Nessler, J. Litman, and M. Schnieders, Toward polarizable AMOEBA thermodynamics at fixed charge efficiency using a dual force field approach: application to organic crystals, Physical Chemistry Chemical Physics, vol.338, issue.44, pp.30313-30335, 2016.
DOI : 10.1126/science.1219021

URL : http://europepmc.org/articles/pmc5102770?pdf=render

V. Ngo, M. Da-silva, M. Kubillus, H. Li, and B. Roux, Quantum Effects in Cation Interactions with First and Second Coordination Shell Ligands in Metalloproteins, Journal of Chemical Theory and Computation, vol.11, issue.10, pp.4992-5001, 2015.
DOI : 10.1021/acs.jctc.5b00524

URL : https://doi.org/10.1021/acs.jctc.5b00524

D. Nocito, G. Beran, D. Omar, W. Lee?ping, and H. Teresa, Massively Parallel Implementation of Divide-and-Conquer Jacobi Iterations Using Particle-Mesh Ewald for Force Field Polarization Advanced models for water simulations, e1355 90. Ouyang JF, Bettens RP. 2016. When are Many-Body Effects Significant, pp.5860-67, 2018.
DOI : 10.1021/acs.jctc.8b00328

X. Peng, Y. Zhang, H. Chu, Y. Li, and D. Zhang, Accurate Evaluation of Ion Conductivity of the Gramicidin A Channel Using a Polarizable Force Field without Any Corrections, Journal of Chemical Theory and Computation, vol.12, issue.6, pp.2973-82, 2016.
DOI : 10.1021/acs.jctc.6b00128

C. Piotr, D. François-yves, D. Yong, W. Junmei, J. Ponder et al., Polarization effects in molecular mechanical force fields Current Status of the AMOEBA Polarizable Force Field, Journal of Physics: Condensed Matter The Journal of Physical Chemistry B, vol.21, issue.114, pp.333102-93, 2009.

R. Qi, Z. Jing, C. Liu, J. Piquemal, K. Dalby et al., Elucidating the Phosphate Binding Mode of PBP: The Critical Effect of Buffer Solution, The Journal of Physical Chemistry B, vol.95, 2018.

R. Qi, L. Wang, Q. Wang, V. Pande, and P. Ren, United polarizable multipole water model for molecular mechanics simulation, The Journal of Chemical Physics, vol.143, issue.1, p.14504, 2015.
DOI : 10.1021/ct4003702

URL : http://europepmc.org/articles/pmc4499046?pdf=render

R. Qi, Q. Wang, and P. Ren, General van der Waals potential for common organic molecules, Bioorganic & Medicinal Chemistry, vol.24, issue.20, pp.4911-4930, 2016.
DOI : 10.1016/j.bmc.2016.07.062

URL : http://europepmc.org/articles/pmc5360186?pdf=render

F. Qiu, A. Chamberlin, B. Watkins, A. Ionescu, and M. Perez, Molecular mechanism of Zn<sup>2+</sup> inhibition of a voltage-gated proton channel An optimized charge penetration model for use with the AMOEBA force field, Proceedings of the National Academy of Sciences Physical Chemistry Chemical Physics, vol.113, issue.19, pp.5962-71, 2016.

A. Rappe, C. Casewit, K. Colwell, W. Goddard, and W. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical Society, vol.114, issue.25, pp.10024-10059, 1992.
DOI : 10.1021/ja00051a040

P. Ren, J. Chun, D. Thomas, M. Schnieders, and M. Marucho, Biomolecular electrostatics and solvation: a computational perspective, Quarterly Reviews of Biophysics, vol.27, issue.04, pp.427-91, 2012.
DOI : 10.1002/jcc.10120

URL : http://europepmc.org/articles/pmc3533255?pdf=render

P. Ren and J. Ponder, Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation, The Journal of Physical Chemistry B, vol.107, issue.24, pp.5933-5980, 2003.
DOI : 10.1021/jp027815+

URL : http://dasher.wustl.edu/ponder/papers/jpcb-107-5933-03.pdf

P. Ren, C. Wu, and J. Ponder, Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules, Journal of Chemical Theory and Computation, vol.7, issue.10, pp.3143-61, 2011.
DOI : 10.1021/ct200304d

URL : http://europepmc.org/articles/pmc3196664?pdf=render

R. Salomon-ferrer, A. Götz, D. Poole, L. Grand, S. Walker et al., Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.3878-88, 2013.
DOI : 10.1021/ct400314y

P. Sandeep and L. Bc, CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations, Journal of Computational Chemistry, vol.25, pp.1-16, 2004.

P. Satpati, C. Clavaguéra, G. Ohanessian, and T. Simonson, Free Energy Simulations of a GTPase: GTP and GDP Binding to Archaeal Initiation Factor 2, The Journal of Physical Chemistry B, vol.115, issue.20, pp.6749-63, 2011.
DOI : 10.1021/jp201934p

URL : https://hal.archives-ouvertes.fr/hal-00764855

A. Savelyev and A. Mackerell, All-atom polarizable force field for DNA based on the classical drude oscillator model, Journal of Computational Chemistry, vol.16, issue.16, pp.1219-1258, 2014.
DOI : 10.1007/s00894-009-0572-4

URL : http://europepmc.org/articles/pmc4075971?pdf=render

A. Savelyev and A. Mackerell, on DNA Conformational Properties, The Journal of Physical Chemistry Letters, vol.6, issue.1, pp.212-228, 2015.
DOI : 10.1021/jz5024543

M. Schnieders, J. Baltrusaitis, Y. Shi, G. Chattree, and L. Zheng, The Structure, Thermodynamics, and Solubility of Organic Crystals from Simulation with a Polarizable Force Field, Journal of Chemical Theory and Computation, vol.8, issue.5, pp.1721-1757, 2012.
DOI : 10.1021/ct300035u

D. Semrouni, W. Isley, C. Clavaguéra, J. Dognon, C. Cramer et al., Journal of Chemical Theory and Computation, vol.9, issue.7, pp.3062-71, 2013.
DOI : 10.1021/ct400237r

T. Senftle, S. Hong, M. Islam, S. Kylasa, and Y. Zheng, The ReaxFF reactive force-field: development, applications and future directions, npj Computational Materials, vol.134, issue.1, p.15011, 2016.
DOI : 10.1021/ja209152n

Y. Shi, Z. Xia, J. Zhang, R. Best, and C. Wu, Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.4046-63, 2013.
DOI : 10.1021/ct4003702

A. Simmonett, I. Fcp, I. Hfs, and B. Brooks, An efficient algorithm for multipole energies and derivatives based on spherical harmonics and extensions to particle mesh Ewald, The Journal of Chemical Physics, vol.4, issue.18, p.184101, 2014.
DOI : 10.1002/qua.560540202

A. Simmonett, I. Fcp, J. Ponder, and B. Brooks, An empirical extrapolation scheme for efficient treatment of induced dipoles, The Journal of Chemical Physics, vol.4, issue.16, p.164101, 2016.
DOI : 10.1021/acs.jctc.5b00171

J. Song, J. C. Zhang, and J. , The critical effect of polarization on the dynamical structure of guanine quadruplex DNA, Physical Chemistry Chemical Physics, vol.116, issue.11, pp.3846-54, 2013.
DOI : 10.1021/jp3019759

O. Starovoytov, H. Torabifard, and G. Cisneros, Development of AMOEBA Force Field for 1,3-Dimethylimidazolium Based Ionic Liquids, The Journal of Physical Chemistry B, vol.118, issue.25, pp.7156-66, 2014.
DOI : 10.1021/jp503347f

H. Stern, F. Rittner, B. Berne, and R. Friesner, Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function, The Journal of Chemical Physics, vol.247, issue.5, pp.2237-51, 2001.
DOI : 10.1063/1.443323

A. Stone, R. Sun, and H. Gong, The Theory of Intermolecular Forces Simulating the Activation of Voltage Sensing Domain for a Voltage-Gated Sodium Channel Using Polarizable Force Field, The Journal of Physical Chemistry Letters, vol.118, issue.8, pp.901-909, 2016.

W. Swope, H. Horn, and J. Rice, Accounting for Polarization Cost When Using Fixed Charge Force Fields. I. Method for Computing Energy, The Journal of Physical Chemistry B, vol.114, issue.26, pp.8621-8651, 2010.
DOI : 10.1021/jp911699p

S. Tazi, J. Molina, B. Rotenberg, P. Turq, R. Vuilleumier et al., based force field for aqueous ions, The Journal of Chemical Physics, vol.77, issue.11, p.114507, 2012.
DOI : 10.1038/nmat2422

URL : https://hal.archives-ouvertes.fr/hal-01897599

H. Torabifard and G. Cisneros, transport, Chemical Science, vol.5, issue.9, pp.6230-6268, 2017.
DOI : 10.1038/srep10657

O. Unke, M. Devereux, and M. Meuwly, Minimal distributed charges: Multipolar quality at the cost of point charge electrostatics, The Journal of Chemical Physics, vol.147, issue.16, p.161712, 2017.
DOI : 10.1063/1.1630791

V. Vleet, M. Misquitta, A. Schmidt, and J. , New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy, Journal of Chemical Theory and Computation, vol.14, issue.2, pp.739-58, 2018.
DOI : 10.1021/acs.jctc.7b00851

A. Vergara-jaque, P. Fong, and J. Comer, Iodide Binding in Sodium-Coupled Cotransporters, Journal of Chemical Information and Modeling, vol.57, issue.12, pp.3043-55, 2017.
DOI : 10.1021/acs.jcim.7b00521

T. Verstraelen, S. Vandenbrande, and P. Ayers, Direct computation of parameters for accurate polarizable force fields, The Journal of Chemical Physics, vol.4, issue.19, 2014.
DOI : 10.1007/BF02708340

C. Vosmeer, K. Kiewisch, K. Keijzer, L. Visscher, and D. Geerke, A comparison between QM/MM and QM/QM based fitting of condensed-phase atomic polarizabilities, Phys. Chem. Chem. Phys., vol.105, issue.33, pp.17857-62, 2014.
DOI : 10.1063/1.472823

C. Vosmeer, A. Rustenburg, J. Rice, H. Horn, W. Swope et al., QM/MM-Based Fitting of Atomic Polarizabilities for Use in Condensed-Phase Biomolecular Simulation, Journal of Chemical Theory and Computation, vol.8, issue.10, pp.3839-53, 2012.
DOI : 10.1021/ct300085z

T. Walsh and M. Knecht, Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials, Chemical Reviews, vol.117, issue.20, pp.12641-704, 2017.
DOI : 10.1021/acs.chemrev.7b00139

H. Wang and Y. W. , Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory, The Journal of Chemical Physics, vol.144, issue.22, p.224107, 2016.
DOI : 10.1021/ja00074a030

J. Wang, P. Cieplak, J. Li, Q. Cai, and M. Hsieh, Development of Polarizable Models for Molecular Mechanical Calculations. 4. van der Waals Parametrization, The Journal of Physical Chemistry B, vol.116, issue.24, pp.7088-101, 2012.
DOI : 10.1021/jp3019759

URL : http://europepmc.org/articles/pmc3391542?pdf=render

J. Wang, W. Romain, M. , C. James, W. et al., Development and testing of a general amber force field, Journal of Computational Chemistry, vol.17, issue.9, pp.1157-74, 2004.
DOI : 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

URL : http://amber.scripps.edu/antechamber/gaff.pdf

L. Wang, T. Head-gordon, J. Ponder, P. Ren, and J. Chodera, Systematic Improvement of a Classical Molecular Model of Water, The Journal of Physical Chemistry B, vol.117, issue.34, pp.9956-72, 2013.
DOI : 10.1021/jp403802c

URL : http://europepmc.org/articles/pmc3770532?pdf=render

L. Wang, K. Mckiernan, J. Gomes, K. Beauchamp, and T. Head-gordon, Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15, The Journal of Physical Chemistry B, vol.121, issue.16, pp.4023-4062, 2017.
DOI : 10.1021/acs.jpcb.7b02320

Q. Wang, J. Rackers, C. He, R. Qi, and C. Narth, General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field, Journal of Chemical Theory and Computation, vol.11, issue.6, pp.2609-2627, 2015.
DOI : 10.1021/acs.jctc.5b00267

URL : https://hal.archives-ouvertes.fr/hal-01287207

A. Warshel, M. Kato, and A. Pisliakov, Polarizable Force Fields:?? History, Test Cases, and Prospects, Journal of Chemical Theory and Computation, vol.3, issue.6, pp.2034-2079, 2007.
DOI : 10.1021/ct700127w

H. Wu, F. Paul, C. Wehmeyer, and F. Noé, Multiensemble Markov models of molecular thermodynamics and kinetics, Proceedings of the National Academy of Sciences, 2016.
DOI : 10.1214/aos/1176346585

URL : http://www.pnas.org/content/113/23/E3221.full.pdf

J. Wu, G. Chattree, and P. Ren, Automation of AMOEBA polarizable force field parameterization for small molecules, Theoretical Chemistry Accounts, vol.110, issue.32, p.1138, 2012.
DOI : 10.1021/jp063552y

URL : http://europepmc.org/articles/pmc3322661?pdf=render

X. Wu, C. Clavaguera, L. Lagardère, J. Piquemal, and A. De-la-lande, AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms, Journal of Chemical Theory and Computation, vol.14, issue.5, pp.2705-2725, 2018.
DOI : 10.1021/acs.jctc.7b01128

X. Wu, I. Fcp, and B. Brooks, Isotropic periodic sum for multipole interactions and a vector relation for calculation of the Cartesian multipole tensor, The Journal of Chemical Physics, vol.145, issue.16, p.164110, 2016.
DOI : 10.1021/ct4003702

M. Xia, Z. Chai, and D. Wang, Polarizable and Non-Polarizable Force Field Representations of Ferric Cation and Validations, The Journal of Physical Chemistry B, vol.121, issue.23, pp.5718-5747, 2017.
DOI : 10.1021/acs.jpcb.7b02010

J. Xiang and J. Ponder, A valence bond model for aqueous Cu(II) and Zn(II) ions in the AMOEBA polarizable force field, Journal of Computational Chemistry, vol.249, issue.9, pp.739-788, 2013.
DOI : 10.1016/j.ccr.2005.03.032

Z. Yang, J. Wang, and D. Zhao, Valence state parameters of all transition metal atoms in metalloproteins-development of ABEEM???? fluctuating charge force field, Journal of Computational Chemistry, vol.71, issue.23, 2014.
DOI : 10.6023/A13060606

J. Yin, A. Fenley, N. Henriksen, and M. Gilson, Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics, The Journal of Physical Chemistry B, vol.119, issue.32, pp.10145-55, 2015.
DOI : 10.1021/acs.jpcb.5b04262

URL : http://europepmc.org/articles/pmc4664157?pdf=render

Z. Yuqing and C. Qiang, Microscopic mechanisms that govern the titration response and pKa values of buried residues in staphylococcal nuclease mutants, Proteins: Structure, Function, and Bioinformatics, vol.85, pp.268-81, 2017.

Q. Zeng and W. Liang, Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation, The Journal of Chemical Physics, vol.143, issue.13, p.134104, 2015.
DOI : 10.1021/ct501087m

C. Zhang, C. Lu, Z. Jing, C. Wu, and J. Piquemal, AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids, Journal of Chemical Theory and Computation, vol.14, issue.4, pp.2084-108, 2018.
DOI : 10.1021/acs.jctc.7b01169

Q. Zhu, Y. Lu, X. He, T. Liu, and H. Chen, Entropy and Polarity Control the Partition and Transportation of Drug-like Molecules in Biological Membrane, Scientific Reports, vol.30, issue.1, p.17749, 2017.
DOI : 10.1021/jm00390a002