L. Lagarde?-re, L. Jolly, F. Lipparini, F. Aviat, B. Stamm et al., Tinker-HP: A Massively Parallel Molecular Dynamics Package for Multiscale Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields, Chem. Sci, vol.8, pp.956-72, 2018.

M. Harger, D. Li, Z. Wang, K. Dalby, L. Larardere et al., Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs, Journal of Computational Chemistry, vol.71, issue.23, pp.2047-55, 2017.
DOI : 10.1016/S0006-3495(96)79267-6

URL : https://hal.archives-ouvertes.fr/hal-01571313

J. Ponder, Tinker Molecular Modeling Washington University in St. Louis; 2018 Available from: https://dasher.wustl

J. Piquemal, Piquemal Research & Software Sorbonne Universites; 2018 Available from: http://piquemalresearch.com/research-and-softwares

P. Ren, . Tinker, . Gpu-main, and . Page, Available from, 2018.

J. Ponder and . Tinker, Software Tools for Molecular Design. GitHub; 2018 Available from: https://github
URL : https://hal.archives-ouvertes.fr/hal-01820747

P. Ren, Tinker-OpenMM Toolkit for Molecular Simulation Using High Performance GPU Code. GitHub; 2018 Available from: https://github

N. Allinger, Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms, Journal of the American Chemical Society, vol.99, issue.25, pp.8127-8161, 1977.
DOI : 10.1021/ja00467a001

N. Allinger, Y. Yuh, and J. Lii, Molecular mechanics. The MM3 force field for hydrocarbons. 1, Journal of the American Chemical Society, vol.111, issue.23, pp.8551-66, 1989.
DOI : 10.1021/ja00205a001

E. Corey and J. Ponder, Stereochemistry of the hygrolidins, Tetrahedron Letters, vol.25, issue.39, pp.4325-4333, 1984.
DOI : 10.1016/S0040-4039(01)81429-5

, ChemOffice. CambridgeSoft.com, 2018.

J. Ponder and F. Richards, An efficient newton-like method for molecular mechanics energy minimization of large molecules, Journal of Computational Chemistry, vol.23, issue.7, pp.1016-1040, 1987.
DOI : 10.1107/S0567739476001289

J. Ponder and F. Richards, Tertiary templates for proteins, Journal of Molecular Biology, vol.193, issue.4, pp.775-91, 1987.
DOI : 10.1016/0022-2836(87)90358-5

V. Pande, I. Baker, J. Chapman, S. Elmer, S. Khaliq et al., Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing, Biopolymers, vol.22, issue.1, pp.91-109, 2003.
DOI : 10.1002/bip.360221211

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-41, 1996.
DOI : 10.1016/0263-7855(96)00018-5

W. Delano, PyMOL: An Open-Source Molecular Graphics Tool, CCP4 Newsletter on Protein Crystallography, vol.40, pp.82-92, 2002.

R. Hanson, ??? a paradigm shift in crystallographic visualization, Journal of Applied Crystallography, vol.619, issue.5, pp.1250-60, 2010.
DOI : 10.1107/S0021889810030256/kk5066sup24.zip

URL : http://journals.iucr.org/j/issues/2010/05/02/kk5066/kk5066.pdf

S. Lucore, J. Litman, K. Powers, S. Gao, A. Lynn et al., Dead-End Elimination with a Polarizable Force Field Repacks PCNA Structures, Biophysical Journal, vol.109, issue.4, pp.816-842, 2015.
DOI : 10.1016/j.bpj.2015.06.062

O. Boyle, N. Banck, M. James, C. Morley, C. Vendermeersch et al., Open Babel: An open chemical toolbox, Journal of Cheminformatics, vol.3, issue.1, p.33, 2011.
DOI : 10.1093/nar/gkp324

R. Mcgibbon, K. Beauchamp, M. Harrigan, C. Klein, J. Swails et al., MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories, Biophysical Journal, vol.109, issue.8, pp.1528-1560, 2015.
DOI : 10.1016/j.bpj.2015.08.015

M. Michaud-agrawal, E. Denning, T. Woolf, and O. Beckstein, MDAnalysis: A toolkit for the analysis of molecular dynamics simulations, Journal of Computational Chemistry, vol.4, issue.Suppl. 2, pp.2319-2346, 2011.
DOI : 10.1109/5992.998641

J. Swails, C. Hernandez, D. Mobley, H. Nguyen, L. Wang et al., ParmEd: Parameter/Topology Editor and Molecular Simulator. 2018 Available from: https://github

G. Schaftenaar, E. Vlieg, and G. Vriend, Molden 2.0: quantum chemistry meets proteins, Journal of Computer-Aided Molecular Design, vol.51, issue.6, pp.789-800, 2017.
DOI : 10.1021/ci200097m

A. Pedretti, L. Villa, and G. Vistoli, VEGA ??? An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming, Journal of Computer-Aided Molecular Design, vol.18, issue.3, pp.167-73, 2004.
DOI : 10.1023/B:JCAM.0000035186.90683.f2

L. Martinez, R. Andrade, E. Birgin, and J. Martinez, PACKMOL: A package for building initial configurations for molecular dynamics simulations, Journal of Computational Chemistry, vol.109, issue.13, pp.2157-64, 2009.
DOI : 10.1016/j.theochem.2005.11.027

L. Wang, T. Martinez, and V. Pande, Building Force Fields: An Automatic, Systematic, and Reproducible Approach, The Journal of Physical Chemistry Letters, vol.5, issue.11, pp.1885-91, 2014.
DOI : 10.1021/jz500737m

J. Schmidt and W. Polik, WebMO Enterprise, Version 13.0, WebMO LLC, 2013.

H. Woodcock, B. Miller, M. Hodoscek, A. Okru, J. Larkin et al., MSCALE: A General Utility for Multiscale Modeling, Journal of Chemical Theory and Computation, vol.7, issue.4, pp.1208-1227, 2011.
DOI : 10.1021/ct100738h

URL : http://europepmc.org/articles/pmc3117588?pdf=render

P. Eastman, M. Friedrichs, J. Chodera, R. Radmer, C. Bruns et al., OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation, Journal of Chemical Theory and Computation, vol.9, issue.1, pp.461-470, 2012.
DOI : 10.1021/ct300857j

URL : http://europepmc.org/articles/pmc3539733?pdf=render

P. Eastman, J. Swails, J. Chodera, R. Mcgibbon, Y. Zhao et al., OpenMM 7: Rapid development of high performance algorithms for molecular dynamics, PLOS Computational Biology, vol.12, issue.2, p.1005659, 2017.
DOI : 10.1371/journal.pcbi.1005659.s003

URL : http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005659&type=printable

J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig et al., CHARMM36m: an improved force field for folded and intrinsically disordered proteins, Nature Methods, vol.120, issue.1, pp.71-74, 2016.
DOI : 10.1021/acs.jpcb.6b01316

URL : http://europepmc.org/articles/pmc5199616?pdf=render

J. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. Hauser et al., ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, Journal of Chemical Theory and Computation, vol.11, issue.8, pp.3696-713, 2015.
DOI : 10.1021/acs.jctc.5b00255

URL : http://europepmc.org/articles/pmc4821407?pdf=render

M. Robertson, J. Tirado-rives, and W. Jorgensen, Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field, Journal of Chemical Theory and Computation, vol.11, issue.7, pp.3499-509, 2015.
DOI : 10.1021/acs.jctc.5b00356

URL : https://doi.org/10.1021/acs.jctc.5b00356

K. Palmo, B. Mannfors, N. Mirkin, and S. Krimm, Potential energy functions: From consistent force fields to spectroscopically determined polarizable force fields, Biopolymers, vol.242, issue.3, pp.383-94, 2003.
DOI : 10.1016/0022-2860(91)87133-3

W. Jr, E. Decius, J. Cross, P. Lagemann, and R. , Molecular Vibrations, Am. J. Phys, vol.23, p.550, 1955.

T. Liljefors, J. Tai, S. Li, and N. Allinger, On the out-of-plane deformation of aromatic rings, and its representation by molecular mechanics, Journal of Computational Chemistry, vol.26, issue.7, pp.1051-1057, 1987.
DOI : 10.1107/S0567740870002509

H. Urey, B. Jr, and C. , The Vibrations of Pentatonic Tetrahedral Molecules, Physical Review, vol.38, issue.11, pp.1969-78, 1931.
DOI : 10.1021/ja02261a002

J. Lennard-jones and . P. Cohesion, Cohesion, Proceedings of the Physical Society, vol.43, issue.5, pp.461-82, 1931.
DOI : 10.1088/0959-5309/43/5/301

T. Halgren, The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters, Journal of the American Chemical Society, vol.114, issue.20, pp.7827-7870, 1992.
DOI : 10.1021/ja00046a032

R. Buckingham, The Classical Equation of State of Gaseous Helium, Neon and Argon, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.168, issue.933, pp.264-83, 1938.
DOI : 10.1098/rspa.1938.0173

J. Lii and N. Allinger, Directional hydrogen bonding in the MM3 force field. I, Journal of Physical Organic Chemistry, vol.50, issue.11, pp.591-609, 1994.
DOI : 10.1016/0022-2860(82)80042-2

J. Lii and N. Allinger, Directional hydrogen bonding in the MM3 force field: II, Journal of Computational Chemistry, vol.47, issue.9, pp.1001-1017, 1998.
DOI : 10.3891/acta.chem.scand.47-0739

J. Ponder, C. Wu, P. Ren, V. Pande, J. Chodera et al., Current Status of the AMOEBA Polarizable Force Field, The Journal of Physical Chemistry B, vol.114, issue.8, pp.2549-64, 2010.
DOI : 10.1021/jp910674d

URL : http://europepmc.org/articles/pmc2918242?pdf=render

P. Ren and J. Ponder, Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation, The Journal of Physical Chemistry B, vol.107, issue.24, pp.5933-5980, 2003.
DOI : 10.1021/jp027815+

URL : http://dasher.wustl.edu/ponder/papers/jpcb-107-5933-03.pdf

P. Ren, C. Wu, and J. Ponder, Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules, Journal of Chemical Theory and Computation, vol.7, issue.10, pp.3143-61, 2011.
DOI : 10.1021/ct200304d

URL : http://europepmc.org/articles/pmc3196664?pdf=render

Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu et al., Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.4046-63, 2013.
DOI : 10.1021/ct4003702

URL : http://europepmc.org/articles/pmc3806652?pdf=render

C. Zhang, C. Lu, Z. Jing, C. Wu, J. Piquemal et al., AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids, Journal of Chemical Theory and Computation, vol.14, issue.4, pp.2084-108, 2018.
DOI : 10.1021/acs.jctc.7b01169

A. Onufriev, D. Case, and D. Bashford, Effective Born radii in the generalized Born approximation: The importance of being perfect, Journal of Computational Chemistry, vol.45, issue.14, pp.1297-304, 2002.
DOI : 10.1002/prot.1134

M. Schaefer, C. Bartels, F. Leclerc, and M. Karplus, Effective atom volumes for implicit solvent models: comparison between Voronoi volumes and minimum fluctuation volumes, Journal of Computational Chemistry, vol.51, issue.15, pp.1857-79, 2001.
DOI : 10.1016/S0065-3233(08)60650-6

URL : http://binf.gmu.edu/ttaylor/DELAUNAY_PAPERS/schaefer1.pdf

T. Grycuk, Deficiency of the Coulomb-field approximation in the generalized Born model: An improved formula for Born radii evaluation, The Journal of Chemical Physics, vol.14, issue.9, pp.4817-4843, 2003.
DOI : 10.1126/science.6879170

M. Schnieders and J. Ponder, Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum, Journal of Chemical Theory and Computation, vol.3, issue.6, pp.2083-97, 2007.
DOI : 10.1021/ct7001336

URL : http://europepmc.org/articles/pmc4767294?pdf=render

L. Wesson and D. Eisenberg, Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Science, vol.20, issue.4, pp.227-262, 1992.
DOI : 10.1016/0005-2795(80)90033-1

M. Lin, N. Fawzi, and T. Head-gordon, Hydrophobic Potential of Mean Force as a Solvation Function for Protein Structure Prediction, Structure, vol.15, issue.6, pp.727-767, 2007.
DOI : 10.1016/j.str.2007.05.004

URL : https://doi.org/10.1016/j.str.2007.05.004

Y. Kong and J. Ponder, Calculation of the reaction field due to off-center point multipoles, The Journal of Chemical Physics, vol.79, issue.2, pp.481-92, 1997.
DOI : 10.1063/1.448553

J. Warwicker and H. Watson, Calculation of the electric potential in the active site cleft due to ??-helix dipoles, Journal of Molecular Biology, vol.157, issue.4, pp.671-680, 1982.
DOI : 10.1016/0022-2836(82)90505-8

I. Klapper, R. Hagstrom, R. Fine, K. Sharp, and B. Honig, Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: Effects of ionic strength and amino-acid modification, Proteins: Structure, Function, and Genetics, vol.14, issue.1, pp.47-59, 1986.
DOI : 10.1002/prot.340010109

K. Sharp and B. Honig, Electrostatic Interactions in Macromolecules: Theory and Applications, Annual Review of Biophysics and Biophysical Chemistry, vol.19, issue.1, pp.301-333, 1990.
DOI : 10.1146/annurev.bb.19.060190.001505

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.377, issue.6547, pp.10037-10078, 2001.
DOI : 10.1038/377309a0

URL : http://www.pnas.org/content/98/18/10037.full.pdf

M. Schnieders, N. Baker, P. Ren, and J. Ponder, Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum, The Journal of Chemical Physics, vol.64, issue.12, p.124114, 2007.
DOI : 10.1016/j.sbi.2004.03.009

URL : http://europepmc.org/articles/pmc2430168?pdf=render

N. Allinger, F. Li, L. Yan, and J. Tai, Molecular mechanics (MM3) calculations on conjugated hydrocarbons, Journal of Computational Chemistry, vol.104, issue.7, pp.868-95, 1990.
DOI : 10.1107/S0567740871005399

J. Xiang and J. Ponder, A valence bond model for aqueous Cu(II) and Zn(II) ions in the AMOEBA polarizable force field, Journal of Computational Chemistry, vol.249, issue.9, pp.739-788, 2013.
DOI : 10.1016/j.ccr.2005.03.032

URL : http://europepmc.org/articles/pmc3584243?pdf=render

J. Xiang and J. Ponder, An Angular Overlap Model for Cu(II) Ion in the AMOEBA Polarizable Force Field, Journal of Chemical Theory and Computation, vol.10, issue.1, pp.298-311, 2014.
DOI : 10.1021/ct400778h

URL : http://europepmc.org/articles/pmc4102146?pdf=render

A. Carlsson and S. Zapata, The Functional Form of Angular Forces around Transition Metal Ions in Biomolecules, Biophysical Journal, vol.81, issue.1, pp.1-10, 2001.
DOI : 10.1016/S0006-3495(01)75675-5

URL : https://doi.org/10.1016/s0006-3495(01)75675-5

W. Cornell, P. Cieplak, C. Bayly, I. Gould, K. Merz et al., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, Journal of the American Chemical Society, vol.117, issue.19, pp.5179-97, 1995.
DOI : 10.1021/ja00124a002

URL : http://dasher.wustl.edu/bio5477/reading/jacs-117-5179-95.pdf

P. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot et al., The development/application of a ???minimalist??? organic/biochemical molecular mechanic force field using a combination of ab initio calculations and experimental data, Computer Simulation of Biomolecular Systems, vol.3, pp.83-96, 1997.
DOI : 10.1007/978-94-017-1120-3_2

I. Cheatham, . Te, P. Cieplak, and P. Kollman, Force Field with Improved Sugar Pucker Phases and Helical Repeat, Journal of Biomolecular Structure and Dynamics, vol.16, issue.4, pp.845-62, 1999.
DOI : 10.1080/07391102.1998.10508245

J. Wang, P. Cieplak, and P. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, Journal of Computational Chemistry, vol.18, issue.12, pp.1049-74, 2000.
DOI : 10.1080/07391102.1999.10508297

V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg et al., Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins: Structure, Function, and Bioinformatics, vol.43, issue.3, pp.712-737, 2006.
DOI : 10.1002/prot.21123

E. Neria, S. Fischer, and M. Karplus, Simulation of activation free energies in molecular systems, The Journal of Chemical Physics, vol.71, issue.5, pp.1902-1923, 1996.
DOI : 10.1016/0022-2836(76)90311-9

M. Jr, A. Bashford, D. Bellott, M. , D. Jr et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, J. Phys. Chem. B, vol.102, pp.3586-616, 1998.

N. Foloppe, M. Jr, and A. , All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data, Journal of Computational Chemistry, vol.7, issue.2, pp.86-104, 2000.
DOI : 10.1007/978-1-4684-8580-6_2

M. Jr, A. Feig, M. Brooks, and I. Cl, Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas?Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations, J. Comput. Chem, vol.25, pp.1400-1415, 2004.

W. Jorgensen, D. Maxwell, and J. Tirado-rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, Journal of the American Chemical Society, vol.118, issue.45, pp.11225-11261, 1996.
DOI : 10.1021/ja9621760

G. Kaminski, R. Friesner, J. Tirado-rives, and W. Jorgensen, The Journal of Physical Chemistry B, vol.105, issue.28, pp.6474-87, 2001.
DOI : 10.1021/jp003919d

S. Weiner, P. Kollman, D. Case, U. Singh, C. Ghio et al., A new force field for molecular mechanical simulation of nucleic acids and proteins, Journal of the American Chemical Society, vol.106, issue.3, pp.765-84, 1984.
DOI : 10.1021/ja00315a051

W. Jorgensen and D. Severance, Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene, Journal of the American Chemical Society, vol.112, issue.12, pp.4768-74, 1990.
DOI : 10.1021/ja00168a022

D. Maxwell, J. Tirado?rives, and W. Jorgensen, A comprehensive study of the rotational energy profiles of organic systems byab initio MO theory, forming a basis for peptide torsional parameters, Journal of Computational Chemistry, vol.10, issue.8, pp.984-1010, 1995.
DOI : 10.1007/978-1-4612-6137-7

W. Jorgensen and J. Tirado-rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin, Journal of the American Chemical Society, vol.110, issue.6, pp.1657-66, 1988.
DOI : 10.1021/ja00214a001

J. Sprague, J. Tai, Y. Yuh, and N. Allinger, The MMP2 calculational method, Journal of Computational Chemistry, vol.32, issue.5, pp.581-603, 1987.
DOI : 10.1107/S0567740874002913

N. Allinger, R. Kok, and M. Imam, Hydrogen bonding in MM2, Journal of Computational Chemistry, vol.20, issue.6, pp.591-596, 1988.
DOI : 10.1002/ijch.198000052

J. Lii and N. Allinger, Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons, Journal of the American Chemical Society, vol.111, issue.23, pp.8576-82, 1989.
DOI : 10.1021/ja00205a003

N. Allinger, F. Li, and L. Yan, Molecular mechanics. The MM3 force field for alkenes, Journal of Computational Chemistry, vol.9, issue.7, pp.848-67, 1990.
DOI : 10.1016/0022-2364(79)90056-8

J. Lii and N. Allinger, The MM3 force field for amides, polypeptides and proteins, Journal of Computational Chemistry, vol.41, issue.2, pp.186-99, 1991.
DOI : 10.1107/S0567740874007448

T. Halgren and R. Nachbar, Merck molecular force field. IV. conformational energies and geometries for MMFF94, Journal of Computational Chemistry, vol.2, issue.5-6, pp.587-615, 1996.
DOI : 10.1063/1.456966

P. Ren and J. Ponder, Consistent treatment of inter- and intramolecular polarization in molecular mechanics calculations, Journal of Computational Chemistry, vol.105, issue.16, pp.1497-506, 2002.
DOI : 10.1021/jp011511q

J. Wu, J. Piquemal, R. Chaudret, P. Reinhardt, and P. Ren, Polarizable Molecular Dynamics Simulation of Zn(II) in Water Using the AMOEBA Force Field, Journal of Chemical Theory and Computation, vol.6, issue.7, pp.2059-70, 2010.
DOI : 10.1021/ct100091j

A. Grossfield, P. Ren, and J. Ponder, Ion Solvation Thermodynamics from Simulation with a Polarizable Force Field, Journal of the American Chemical Society, vol.125, issue.50, pp.15671-82, 2003.
DOI : 10.1021/ja037005r

L. Dang, ions in polarizable water, The Journal of Chemical Physics, vol.98, issue.9, pp.6970-6977, 1992.
DOI : 10.1063/1.445737

D. Smith and L. Dang, Interionic potentials of mean force for SrCl2 in polarizable water, Chemical Physics Letters, vol.230, issue.1-2, pp.209-223, 1994.
DOI : 10.1016/0009-2614(94)01118-4

L. Dang and T. Chang, Molecular dynamics study of water clusters, liquid, and liquid???vapor interface of water with many-body potentials, The Journal of Chemical Physics, vol.106, issue.19, pp.8149-59, 1997.
DOI : 10.1063/1.1680328

T. Chang and L. Dang, Detailed Study of Potassium Solvation Using Molecular Dynamics Techniques, The Journal of Physical Chemistry B, vol.103, issue.22, pp.4714-4734, 1999.
DOI : 10.1021/jp982079o

L. Dang, Intermolecular interactions of liquid dichloromethane and equilibrium properties of liquid???vapor and liquid???liquid interfaces: A molecular dynamics study, The Journal of Chemical Physics, vol.23, issue.20, pp.10113-10135, 1999.
DOI : 10.1021/la00080a035

T. Chang and L. Dang, On rotational dynamics of an NH4+ ion in water, The Journal of Chemical Physics, vol.34, issue.19, pp.8813-8833, 2003.
DOI : 10.1021/ja01637a011

L. Dang, G. Schenter, V. Glezakou, and J. Fulton, Ions in Solution, The Journal of Physical Chemistry B, vol.110, issue.47, pp.23644-54, 2006.
DOI : 10.1021/jp064661f

C. Wick and L. Dang, Molecular Dynamics Study of Ion Transfer and Distribution at the Interface of Water and 1,2-Dichlorethane, The Journal of Physical Chemistry C, vol.112, issue.3, pp.647-656, 2008.
DOI : 10.1021/jp076608c

X. Sun, T. Chang, Y. Cao, S. Niwayama, W. Hase et al., Solvation of Dimethyl Succinate in a Sodium Hydroxide Aqueous Solution. A Computational Study, The Journal of Physical Chemistry B, vol.113, issue.18, pp.6473-6480, 2009.
DOI : 10.1021/jp901950g

L. Dang, T. Truong, and B. Ginovska-pangovska, in polarizable water, The Journal of Chemical Physics, vol.136, issue.12, p.126101, 2012.
DOI : 10.1063/1.2919161

S. Kearsley, On the orthogonal transformation used for structural comparisons, Acta Crystallographica Section A Foundations of Crystallography, vol.45, issue.2, pp.208-218, 1989.
DOI : 10.1107/S0108767388010128

URL : http://journals.iucr.org/a/issues/1989/02/00/gr0023/gr0023.pdf

D. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, vol.32, issue.2, pp.503-531, 1989.
DOI : 10.1007/BF01589116

URL : http://www.ece.northwestern.edu/~nocedal/PDFfiles/limited-memory.pdf

J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation, vol.35, issue.151, pp.773-82, 1980.
DOI : 10.1090/S0025-5718-1980-0572855-7

URL : http://www.ams.org/mcom/1980-35-151/S0025-5718-1980-0572855-7/S0025-5718-1980-0572855-7.pdf

S. Wright and J. Nocedal, Numerical Optimization, 1999.

D. Shanno and K. Phua, Numerical comparison of several variable-metric algorithms, Journal of Optimization Theory and Applications, vol.9, issue.4, pp.507-525, 1978.
DOI : 10.1007/BF00933517

W. Davidon, Optimally conditioned optimization algorithms without line searches, Mathematical Programming, vol.24, issue.1, pp.1-30, 1975.
DOI : 10.1007/BF01681328

R. Dembo and T. Steihaug, Truncated-newtono algorithms for large-scale unconstrained optimization, Mathematical Programming, vol.32, issue.2, pp.190-212, 1983.
DOI : 10.6028/jres.049.044

T. Halgren and W. Lipscomb, The synchronous-transit method for determining reaction pathways and locating molecular transition states, Chemical Physics Letters, vol.49, issue.2, pp.225-257, 1977.
DOI : 10.1016/0009-2614(77)80574-5

A. Behn, P. Zimmerman, and M. Head-gordon, Incorporating Linear Synchronous Transit Interpolation into the Growing String Method: Algorithm and Applications, Journal of Chemical Theory and Computation, vol.7, issue.12, pp.4019-4044, 2011.
DOI : 10.1021/ct200654u

S. Bell and J. Crighton, Locating transition states, The Journal of Chemical Physics, vol.13, issue.6, pp.2464-75, 1984.
DOI : 10.1002/jcc.540030212

R. Czerminski and R. Elber, Reaction path study of conformational transitions in flexible systems: Applications to peptides, The Journal of Chemical Physics, vol.53, issue.9, pp.5580-601, 1990.
DOI : 10.1021/bi00695a021

J. Moré, B. Garbow, and K. Hillstrom, User Guide for MINPACK-1, Argonne National Laboratory Report ANL-80-74, 1980.

S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by Simulated Annealing, Science, vol.220, issue.4598, pp.671-80, 1983.
DOI : 10.1126/science.220.4598.671

URL : http://www.cs.virginia.edu/cs432/documents/sa-1983.pdf

A. Griewank, Generalized descent for global optimization, Journal of Optimization Theory and Applications, vol.16, issue.1, pp.11-39, 1981.
DOI : 10.1007/BF00933356

R. Butler and E. Slaminka, An evaluation of the sniffer global optimization algorithm using standard test functions, Journal of Computational Physics, vol.99, issue.1, pp.28-32, 1992.
DOI : 10.1016/0021-9991(92)90271-Y

I. Kolossváry and W. Guida, Low-mode conformational search elucidated: Application to C39H80 and flexible docking of 9-deazaguanine inhibitors into PNP, Journal of Computational Chemistry, vol.265, issue.15, pp.1671-84, 1999.
DOI : 10.1007/978-1-4757-2272-7

Z. Li and H. Scheraga, Monte Carlo-minimization approach to the multiple-minima problem in protein folding., Proceedings of the National Academy of Sciences, vol.84, issue.19, pp.6611-6616, 1987.
DOI : 10.1073/pnas.84.19.6611

URL : http://www.pnas.org/content/84/19/6611.full.pdf

D. Wales and J. Doye, Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms, The Journal of Physical Chemistry A, vol.101, issue.28, pp.5111-5117, 1997.
DOI : 10.1021/jp970984n

URL : http://arxiv.org/pdf/cond-mat/9803344

J. Kostrowicki and H. Scheraga, Application of the diffusion equation method for global optimization to oligopeptides, The Journal of Physical Chemistry, vol.96, issue.18, pp.7442-7451, 1992.
DOI : 10.1021/j100197a057

S. Nakamura, H. Hirose, M. Ikeguchi, and J. Doi, Conformational Energy Minimization Using a Two-Stage Method, The Journal of Physical Chemistry, vol.99, issue.20, pp.8374-8382, 1995.
DOI : 10.1021/j100020a074

R. Pappu, R. Hart, and J. Ponder, Analysis and Application of Potential Energy Smoothing and Search Methods for Global Optimization, The Journal of Physical Chemistry B, vol.102, issue.48, pp.9725-9767, 1998.
DOI : 10.1021/jp982255t

URL : http://harts.net/reece/pubs/1998/pssgo-jpcb-102-9725.pdf

R. Pappu, G. Marshall, and J. Ponder, A Potential Smoothing Algorithm Accurately Predicts Transmembrane Helix Packing, Nat. Struct. Biol, vol.6, pp.50-55, 1999.

J. Ma and J. Straub, Simulated annealing using the classical density distribution, The Journal of Chemical Physics, vol.70, issue.1, pp.533-574, 1994.
DOI : 10.1021/j100303a014

J. Rogers, J. W. Donnelly, and R. , Potential Transformation Methods for Large-Scale Global Optimization, SIAM Journal on Optimization, vol.5, issue.4, pp.871-91, 1995.
DOI : 10.1137/0805042

D. Beeman, Some multistep methods for use in molecular dynamics calculations, Journal of Computational Physics, vol.20, issue.2, pp.130-139, 1976.
DOI : 10.1016/0021-9991(76)90059-0

B. Brooks, Algorithms for Molecular Dynamics at Constant Temperature and Pressure, DCRT Report, NIH, 1988.

T. Lelièvre, M. Rousset, and G. Stoltz, Langevin dynamics with constraints and computation of free energy differences, Mathematics of Computation, vol.81, issue.280, pp.2071-125, 2012.
DOI : 10.1090/S0025-5718-2012-02594-4

T. Lelièvre, G. Stoltz, and M. Rousset, Free Energy Computations: A Mathematical Perspective, 2010.
DOI : 10.1142/p579

G. Martyna, M. Tuckerman, D. Tobias, and M. Klein, Explicit reversible integrators for extended systems dynamics, Molecular Physics, vol.87, issue.5, pp.1117-57, 1996.
DOI : 10.1038/365330a0

G. Bussi, T. Zykova-timan, and M. Parrinello, Isothermal-isobaric molecular dynamics using stochastic velocity rescaling, The Journal of Chemical Physics, vol.130, issue.7, p.74101, 2009.
DOI : 10.1016/j.cplett.2006.01.087

URL : http://arxiv.org/pdf/0901.0779

X. Qian and T. Schlick, Efficient multiple-time-step integrators with distance-based force splitting for particle-mesh-Ewald molecular dynamics simulations, The Journal of Chemical Physics, vol.24, issue.14, pp.5971-83, 2002.
DOI : 10.1063/1.1352646

D. Humphreys, R. Friesner, and B. Berne, A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules, The Journal of Physical Chemistry, vol.98, issue.27, pp.6885-92, 1994.
DOI : 10.1021/j100078a035

W. Smith, Hail Euler and Farewell: Rotational Motion in the Laboratory Frame, CCP5 Newsletter, Feb, 2005.

H. Andersen, Rattle: A ???velocity??? version of the shake algorithm for molecular dynamics calculations, Journal of Computational Physics, vol.52, issue.1, pp.24-34, 1983.
DOI : 10.1016/0021-9991(83)90014-1

M. Allen, Brownian dynamics simulation of a chemical reaction in solution, Molecular Physics, vol.77, issue.5, pp.1073-87, 1980.
DOI : 10.1063/1.436761

F. Guarnieri and W. Still, A rapidly convergent simulation method: Mixed Monte Carlo/stochastic dynamics, Journal of Computational Chemistry, vol.116, issue.11, pp.1302-1312, 1994.
DOI : 10.1002/jcc.540151111

S. Yun-yi, W. Lu, and W. Van-gunsteren, On the Approximation of Solvent Effects on the Conformation and Dynamics of Cyclosporin A by Stochastic Dynamics Simulation Techniques, Molecular Simulation, vol.3, issue.6, pp.369-83, 1988.
DOI : 10.1002/hlca.19850680318

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics, vol.126, issue.1, p.14101, 2007.
DOI : 10.1007/978-3-642-61544-3

URL : http://arxiv.org/pdf/0803.4060

H. Berendsen, J. Van-postma, W. Van-gunsteren, A. Dinola, and J. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.15, issue.8, pp.3684-90, 1984.
DOI : 10.1039/fs9821700055

H. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of Chemical Physics, vol.72, issue.4, pp.2384-93, 1980.
DOI : 10.1063/1.1699114

D. Evans and B. Holian, The Nose???Hoover thermostat, The Journal of Chemical Physics, vol.83, issue.8, pp.4069-74, 1985.
DOI : 10.1146/annurev.fl.18.010186.001331

D. Frenkel and B. Smit, Physics Today, vol.50, issue.7, 2001.
DOI : 10.1063/1.881812

B. Leimkuhler, D. Margul, and M. Tuckerman, Stochastic, resonance-free multiple time-step algorithm for molecular dynamics with very large time steps, Molecular Physics, vol.2013, issue.22-23, pp.3579-94, 2013.
DOI : 10.1063/1.476326

P. Minary, G. Martyna, and M. Tuckerman, Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics, The Journal of Chemical Physics, vol.104, issue.6, pp.2510-2536, 2003.
DOI : 10.1063/1.471771

A. Kaledin, M. Kaledin, and J. Bowman, All-Atom Calculation of the Normal Modes of Bacteriorhodopsin Using a Sliding Block Iterative Diagonalization Method, Journal of Chemical Theory and Computation, vol.2, issue.1, pp.166-74, 2006.
DOI : 10.1021/ct050161z

R. Zwanzig, High???Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases, The Journal of Chemical Physics, vol.205, issue.8, pp.1420-1426, 1954.
DOI : 10.1016/S0031-8914(34)80245-5

C. Bennett, Efficient estimation of free energy differences from Monte Carlo data, Journal of Computational Physics, vol.22, issue.2, pp.245-68, 1976.
DOI : 10.1016/0021-9991(76)90078-4

K. Daly, J. Benziger, P. Debenedetti, and A. Panagiotopoulos, Massively parallel chemical potential calculation on graphics processing units, Computer Physics Communications, vol.183, issue.10, pp.2054-62, 2012.
DOI : 10.1016/j.cpc.2012.05.006

M. Wyczalkowski, A. Vitalis, and R. Pappu, New Estimators for Calculating Solvation Entropy and Enthalpy and Comparative Assessments of Their Accuracy and Precision, The Journal of Physical Chemistry B, vol.114, issue.24, pp.8166-80, 2010.
DOI : 10.1021/jp103050u

D. Bell, R. Qi, Z. Jing, J. Xiang, C. Meijas et al., Calculating binding free energies of host???guest systems using the AMOEBA polarizable force field, Physical Chemistry Chemical Physics, vol.100, issue.44, pp.30261-30270, 2016.
DOI : 10.1103/PhysRevLett.100.020603

A. Stone, Distributed Multipole Analysis:?? Stability for Large Basis Sets, Journal of Chemical Theory and Computation, vol.1, issue.6, pp.1128-1160, 2005.
DOI : 10.1021/ct050190+

J. Wu, G. Chattree, and P. Ren, Automation of AMOEBA polarizable force field parameterization for small molecules, Theoretical Chemistry Accounts, vol.110, issue.32, p.1138, 2012.
DOI : 10.1021/jp063552y

F. Sullivan, R. Mountain, O. Connellf, and J. , Molecular dynamics on vector computers, Journal of Computational Physics, vol.61, issue.1, pp.138-53, 1985.
DOI : 10.1016/0021-9991(85)90065-8

C. Sagui, L. Pedersen, and T. Darden, Towards an accurate representation of electrostatics in classical force fields: Efficient implementation of multipolar interactions in biomolecular simulations, The Journal of Chemical Physics, vol.34, issue.1, 2004.
DOI : 10.1103/PhysRev.52.191

M. Frigo and S. Johnson, The Design and Implementation of FFTW3, Proceedings of the IEEE, vol.93, issue.2, pp.216-247, 2005.
DOI : 10.1109/JPROC.2004.840301

W. Wang and R. Skeel, Fast evaluation of polarizable forces, The Journal of Chemical Physics, vol.26, issue.16, p.164107, 2005.
DOI : 10.1002/jcc.10385

A. Simmonett, I. Pickard, . Fc, Y. Shao, I. Cheatham et al., Efficient treatment of induced dipoles, The Journal of Chemical Physics, vol.4, issue.7, p.74115, 2015.
DOI : 10.1063/1.481393

A. Simmonett, I. Pickard, . Fc, J. Ponder, and B. Brooks, An empirical extrapolation scheme for efficient treatment of induced dipoles, The Journal of Chemical Physics, vol.4, issue.16, p.164101, 2016.
DOI : 10.1021/acs.jctc.5b00171

A. Albaugh, O. Demerdash, and T. Head-gordon, An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction, The Journal of Chemical Physics, vol.143, issue.17, p.174104, 2015.
DOI : 10.1063/1.463940

A. Albaugh, A. Niklasson, and T. Head-gordon, Accurate Classical Polarization Solution with No Self-Consistent Field Iterations, The Journal of Physical Chemistry Letters, vol.8, issue.8, pp.1714-1737, 2017.
DOI : 10.1021/acs.jpclett.7b00450

F. Aviat, L. Lagardère, and J. Piquemal, The truncated conjugate gradient (TCG), a non-iterative/fixed-cost strategy for computing polarization in molecular dynamics: Fast evaluation of analytical forces, The Journal of Chemical Physics, vol.147, issue.16, p.161724, 2017.
DOI : 10.1021/ct5010406

URL : https://hal.archives-ouvertes.fr/hal-01571663

L. Zheng, M. Chen, and Y. W. , Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems, Proceedings of the National Academy of Sciences, vol.109, issue.14, pp.20227-20259, 2008.
DOI : 10.1021/jp045424k

L. Zheng, M. Chen, and Y. W. , Simultaneous escaping of explicit and hidden free energy barriers: Application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling, The Journal of Chemical Physics, vol.130, issue.23, pp.6-618, 2009.
DOI : 10.1063/1.1755656

J. Abella, S. Cheng, Q. Wang, W. Yang, and P. Ren, Hydration Free Energy from Orthogonal Space Random Walk and Polarizable Force Field, Journal of Chemical Theory and Computation, vol.10, issue.7, pp.2792-801, 2014.
DOI : 10.1021/ct500202q

URL : http://doi.org/10.1021/ct500202q

M. Schnieders, J. Baltrusaitis, Y. Shi, G. Chattree, L. Zheng et al., The Structure, Thermodynamics, and Solubility of Organic Crystals from Simulation with a Polarizable Force Field, Journal of Chemical Theory and Computation, vol.8, issue.5, pp.1721-1757, 2012.
DOI : 10.1021/ct300035u

L. Zheng and Y. W. , Practically Efficient and Robust Free Energy Calculations: Double-Integration Orthogonal Space Tempering, Journal of Chemical Theory and Computation, vol.8, issue.3, pp.810-833, 2012.
DOI : 10.1021/ct200726v

G. Crippen and T. Havel, Distance Geometry and Molecular Conformation, 1988.

A. Mucherino, C. Lavor, L. Liberti, and N. Maculan, Distance Geometry: Theory, Methods and Applications, 2013.
DOI : 10.1007/978-1-4614-5128-0

URL : https://hal.archives-ouvertes.fr/hal-00912679

K. Wuthrich, NMR with Proteins and Nucleic Acids, Europhysics News, vol.17, issue.1, 1986.
DOI : 10.1051/epn/19861701011

J. Kuszewski, M. Nilges, and A. Brunger, Sampling and efficiency of metric matrix distance geometry: A novel partial metrization algorithm, Journal of Biomolecular NMR, vol.169, issue.1, pp.33-56, 1992.
DOI : 10.1137/1.9781611970265

R. Dionne, Étude et Extension d'un Algorithme de Murchland, INFOR, vol.16, pp.132-178, 1978.
DOI : 10.1080/03155986.1978.11731696

C. Oshiro, J. Thomason, and I. Kuntz, Effects of limited input distance constraints upon the distance geometry algorithm, Biopolymers, vol.182, issue.9, pp.1049-64, 1991.
DOI : 10.1007/978-1-4612-6137-7

M. Hodsdon, J. Ponder, and D. Cistola, The NMR Solution Structure of Intestinal Fatty Acid-binding Protein Complexed with Palmitate: Application of a Novel Distance Geometry Algorithm, Journal of Molecular Biology, vol.264, issue.3, pp.585-602, 1996.
DOI : 10.1006/jmbi.1996.0663

E. Huang, R. Samudrala, and J. Ponder, Distance geometry generates native-like folds for small helical proteins using the consensus distances of predicted protein structures, Protein Science, vol.5, issue.9, pp.1998-2003, 1998.
DOI : 10.1007/BF02460044

S. Kim, P. Thiessen, E. Bolton, J. Chen, G. Fu et al., PubChem Substance and Compound databases, PubChem Substance and Compound Databases, pp.1202-1215, 2016.
DOI : 10.1186/s13321-015-0070-x

URL : https://academic.oup.com/nar/article-pdf/44/D1/D1202/9484096/gkv951.pdf

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-277, 2000.
DOI : 10.1093/nar/28.1.235

J. Yin, N. Henriksen, D. Slochower, M. Shirts, M. Chiu et al., Overview of the SAMPL5 host???guest challenge: Are we doing better?, Journal of Computer-Aided Molecular Design, vol.10, issue.13, pp.1-19, 2017.
DOI : 10.1021/ct5004109

URL : http://europepmc.org/articles/pmc5241188?pdf=render

K. Feenstra, B. Hess, and H. Berendsen, Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems, Journal of Computational Chemistry, vol.22, issue.8, pp.786-96, 1999.
DOI : 10.1007/978-94-011-3546-7_7

N. Gresh and . Development, Development, Validation, and Applications of Anisotropic Polarizable Molecular Mechanics to Study Ligand and Drug-Receptor Interactions, Current Pharmaceutical Design, vol.12, issue.17, pp.2121-58, 2006.
DOI : 10.2174/138161206777585256

G. Cisneros, J. Piquemal, and T. Darden, Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods, The Journal of Chemical Physics, vol.125, issue.18, p.184101, 2006.
DOI : 10.1126/science.287.5455.1027

URL : http://europepmc.org/articles/pmc2080839?pdf=render

J. Rackers, Q. Wang, C. Liu, J. Piquemal, P. Ren et al., An optimized charge penetration model for use with the AMOEBA force field, Physical Chemistry Chemical Physics, vol.251, issue.1, pp.276-91, 2017.
DOI : 10.1006/jmbi.1995.0462

URL : https://hal.archives-ouvertes.fr/hal-01405847

C. Narth, L. Lagardère, E. Polack, N. Gresh, Q. Wang et al., Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles, Journal of Computational Chemistry, vol.20, issue.5, pp.494-506, 2016.
DOI : 10.1007/s00894-014-2471-6

URL : https://hal.archives-ouvertes.fr/hal-01223008

Q. Wang, J. Rackers, C. He, R. Qi, C. Narth et al., General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field, Journal of Chemical Theory and Computation, vol.11, issue.6, pp.2609-2627, 2015.
DOI : 10.1021/acs.jctc.5b00267

URL : https://hal.archives-ouvertes.fr/hal-01287207

F. Lipparini, L. Lagarde?-re, B. Stamm, E. Cance?-s, M. Schnieders et al., Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations, Journal of Chemical Theory and Computation, vol.10, issue.4, pp.1638-51, 2014.
DOI : 10.1021/ct401096t

URL : https://hal.archives-ouvertes.fr/hal-01090942

L. Lagarde?-re, F. Lipparini, E. Polack, B. Stamm, E. Cance?-s et al., Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively Parallel Computations Using Smooth Particle Mesh Ewald, Journal of Chemical Theory and Computation, vol.11, issue.6, pp.2589-99, 2015.
DOI : 10.1021/acs.jctc.5b00171

, Figure 3

, Experimental Predicted Binding Free Energy (kcal/mol) ?11