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Abstract: In the context of epidemic spreading over a network the problem of allocating a
limited number of cure to curb the spreading is often discussed. While strategies exist for
heterogeneous networks as scale-free networks (networks with a power-law degree distribution),
we introduce here a new strategy for homogeneous networks as grid-like networks. To do so we
use a scale-free abstraction of the network allowing to identify the most interesting zones to
cure. Moreover we present a theoretical result linking the scale-free coefficient and the efficiency
of the strategy of allocation in scale-free networks.
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1. INTRODUCTION

The mathematical modelling of epidemic spreading aims
to evaluate the progression of an epidemic through a pop-
ulation and to design tools to control the propagation. A
large class of the approaches belongs to the compartmen-
tal models in which the population is divided in distinct
compartments describing the state of each individual. In
Kermack and McKendrick (1932), the initial work on this
subject, the individuals are divided in three categorises:
Susceptible, Infected, and Recovered, interacting between
them. Afterwards, to get closer to the reality, other models
proposed to consider several other compartments. While
it uses only two compartments, the SIS (Susceptible-
Infected-Susceptible) model is often used. It is this model
which is considered within this article. For the dynamical
system community the SIR and SIS model applied on
grid network are very close to cellular automaton models
called respectively forest-fire model (Bak et al. (1990)) and
contact process model (Harris (1974)). The mathematical
modelling of epidemic spreading has known a new interest
in recent years, as they are now used within the frame-
work of network theory, allowing to take into account the
connections between individuals among the population. A
new class of models emerged then.
Although we use in this article the terminology of epi-
demics, let us note that these models are also used in
other contexts such as: spreading of computer viruses over
web networks (e.g. Balthrop et al. (2004)) or information
spreading over social networks (e.g. Leskovec et al. (2007)).
Within the frame of network theory a common problem is
the allocation of a limited number of cure within a popu-
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lation. As cured individuals can not be infected or infect
other individuals they can be considered as removed from
the network. In Dezső and Barabási (2002), the problem
is treated in the context of scale-free networks. It is shown
that, for this type of networks, assigning cures to the
highest connected nodes curbs efficiently the spreading.
However, there is no result linking the scale-free coefficient
(i.e. the coefficient of the power-law) to the efficiency
of this strategy. Moreover, in homogeneous network such
as grid-like network, the absence of hubs prevents the
efficiency of this strategy. Although they used a slightly
different model, also Rhodes and Anderson (1997) poses
the question of assigning cure in a grid network. The
strategy proposed requires to know the location of the seed
of the epidemic, which is often impossible in real cases.
The main contributions of this paper are i) the link estab-
lished between the scale-free coefficient and the efficiency
of the hub-removal strategy in scale-free networks and ii)
the introduction of a strategy to allocate cures in a grid-
like network. The approach consists in finding zones-hubs
according to a scale-free abstraction of the homogeneous
network. These zones are then removed from the network
to avoid the epidemic to spread through them. We show
numerically that this strategy is better than other strate-
gies for a same number of cures and for a large range of
the parameters.
In section II, we introduce more precisely the model and
we describe the problem and previous results. Within this
section we show how the scale-free coefficient influences
the efficiency of the hub-removal strategy in scale-free
networks. In section III, we present an algorithm allowing
to find a scale-free abstraction out of an homogeneous
network. The main results are presented in section IV
in which we describe the cure allocation strategy and
experimental results.



2. PROBLEM INTRODUCTION

2.1 Preliminaries

In this section we give some graph-theoretical definitions
allowing to define properly scale-free graphs. Note that,
within this work, we talk about graph or network without
any distinction.
Consider a directed graph G, represented by the triple
(A,V, E) where A is the adjacency matrix, whose non-
zeros values indicate edges: Ai,j = 1 means that there
is an edge i −→ j. V is the set of vertices and E the
set of edges. In a graph G, we call degree of a node the
number of connection that it has. We denote ΠG the degree
distribution of G, i.e.

ΠG(k) =
|v ∈ V,deg(v) = k|

|V|
where deg(v) is the degree 1 of the node v and |S| gives the
cardinal of the set S. We give now a definition of scale-free
graph:
Definition (scale-free graph): A graph is scale-free if
its degree distribution is proportional to a power law:

ΠG(k) ∝ k−α, (1)

where α > 0 is called the scale-free coefficient. In practice
we call scale-free graph any graph whose degree distribu-
tion is relatively close to a power law.

2.2 The SIS model: original form and network form

Let now introduce the SIS (Susceptible-Infected-Susceptible)
model used to study epidemic spreading. In this model,
each individual within the population can be either suscep-
tible (sound) or infected. An infected individual recovers
at a rate γ, and a susceptible individual is infected at a rate
iν, where i is the proportion of infected individuals within
the population as illustrated in Fig. 1. In this model, the
evolution of the number of infected individuals I and the
number of susceptible individuals S is described by the
following differential equations :

dI

dt
= −γI + iνS (2)

dS

dt
= γI − iνS (3)

Fig. 1. Illustration of the exchanges between susceptible
and infected compartments in the SIS model.

As said in the introduction, this model does not take into
account the interconnections inside the population. Yet,
one can imagine that in a population where individuals are
highly-connected a disease will spread more quickly than
in a poorly-connected population. Thus the SIS model has
been adapted to networks.
1 as we consider directed graphs, the degree can be either in-degree
or out-degree. As the computations and the results remain the same
for both cases, the degree used is not precised

In its network version, the evolution is in discrete time
and at each time step an infected individual recovers with
a probability γ, and a susceptible individual is infected
with a probability ν, if and only if it is connected to at
least one infected individual. In the following we denote
x = (x1, · · · , xN ) the population and we have xi = 1 if the
i-th individual is infected and xi = 0 if it is susceptible,
we denote also Ni the set of neighbours of the node i . We
have then:{ P(xi(k + 1) = 1|xi(k) = 0) = ν if ∃j ∈ Ni, xj(k) = 1

P(xi(k + 1) = 1|xi(k) = 0) = 0 if ∀j ∈ Ni, xj(k) = 0
P(xi(k + 1) = 0|xi(k) = 1) = γ

(4)
Model (4) has been used for example in Dezső and
Barabási (2002) and Pastor-Satorras and Vespignani
(2001). After few steps, the system stabilises in a steady
state with a proportion of infected nodes fluctuating
around an average called the prevalence. Let’s note that
the prevalence, denoted ρ, only depends on the graph G
and the infection rate λ = ν

γ , but not on the initial subset

of infected nodes (as long as this one is non-empty). We
will then note ρ(G,λ).

2.3 Allocating cure as a minimisation problem

As presented in Nowzari et al. (2016), one of the main
challenges in the modelling of epidemic is to control it
in view to reduce the spread of the disease. One of the
tools which can be used to control an epidemic is curing
individuals. In this case, the cured individuals can be
considered as nodes removed from the network as they
can not be infected or infect other individuals. In this
perspective, the cure can also be viewed as a vaccination
or a quarantine. We consider that the cure is given before
the beginning of the epidemic.
If it is possible financially and logistically to cure all
individuals, then the epidemic will not spread at all.
However an interesting problem is posed when the number
of cures is limited: What is the most efficient allocation of
the cure to reduce the prevalence? Mathematically, this
problem can be posed as follow: Giving a graph G and
a number of cure m, find a subset of nodes Γ of size m
solution of:

min
|�|=m

ρ(G��, λ) (5)

where Γ̄ is the complementary set of Γ and G�� is the graph
obtained by considering only the nodes in Γ̄ and the edges
between them. Intuitively, the best choice is to remove
nodes such that the network becomes less connected and
so the epidemic can not spread easily.
However, the node removal problem is NP-complete as
shown in Van Mieghem et al. (2011). Thus several papers
propose heuristics to approximately solve this problem.
Essentially it is proposed to remove the most important
nodes. Holme et al. (2002) proposes to remove nodes
with the highest betweenness centrality, Miller and Hyman
(2007) the highest PageRank and Dezső and Barabási
(2002) the highest degree. This last approach is partic-
ularly efficient in scale-free networks as shown in the next
section.



2.4 Allocating cures in scale-free networks

We see now some results about the spreading of the epi-
demic and a cure allocation strategy in scale-free networks.
Anderson et al. (1992) shows that in a grid or a random
network it exists an epidemic threshold λc under which
the prevalence is always zero:

∀λ < λc, ρ(Ghom, λ) = 0 (6)

where Ghom is any homogeneous network (grid or ran-
dom). Moreover, the threshold λc is proportional to the
inverse of the variance of the degree distribution of the
graph as:

λc =
< k >

< k2 >
(7)

In a scale-free network with α < 3, when the number of
nodes goes to infinity the variance of the degree distri-
bution tends to infinity and then the epidemic threshold
becomes null. Thus, in scale-free networks, even with an
infection rate arbitrarily small, the epidemic will persist.
However, Dezső and Barabási (2002) shows that it is possi-
ble to restore such an epidemic threshold by removing the
biggest hubs, and this threshold can even be made larger
than in a homogeneous network by removing enough hubs.
Precisely, if we consider a scale-free network build with the
Barabasi-Albert model, we have:

λc =
k0 −m
k0m

ln−1

(
k0

m

)
(8)

where m is the number of edges added at each step in the
B.-A. model and k0 is the degree above witch every nodes
is removed. We present here a proposition on the influence
of the scale-free coefficient on the threshold in the frame
of the hub-removal strategy:

Theorem 1. Consider an infinite-size network with a per-
fect scale-free degree distribution with a coefficient α. Let
λc(α, τ) be the prevalence obtained when a proportion
τ ∈ [0; 1] of the highest connected nodes is removed from
the network. For every h > 0, we have:

λc(α+ h, τ) > λc(α, τ) (9)

Thus, the higher α, the higher is the threshold and so the
more efficient is the strategy.

Proof. Let us consider a scale-free network with an infi-
nite size and a coefficient α. Let us remove a proportion
τ ∈ [0; 1] of the highest connected nodes. Thanks to (8),
we have:

λc(α, τ) =
K(α, τ)−m
K(α, τ)m

ln−1

(
K(α, τ)

m

)
(10)

where K(α, τ) is the degree such that a proportion of τ
nodes has a degree larger than K(α, τ). We know that
K(α, τ) is linked with τ and α by the Riemann zeta
function ζ as:

HK(α,τ),α

ζ(α)
= 1− τ, (11)

where Hk,α is the generalised harmonic number Hk,α =∑k
i=1 i

−α. It is clear that Hk,α increases with k. By
computing the derivative, it is also possible to show that
Hk;�
ζ(α) increases with α. Thus, if τ is fixed, then K(α, τ)

decreases when α increases. Moreover λc decreases with
K(α, τ). Thus, λc increases with α. 2

To capture the prevalence of the epidemic in a scale-free
network, it is useful to decompose it as follows:

ρ =

+∞∑
k=1

Π(k)ρk (12)

Thanks to Pastor-Satorras and Vespignani (2001), with a
mean-field approximation, we have:

ρk =
kgλ

1 + kgλ
(13)

Where gλ is positive and depends only on the infection
rate. However, there is no result on the evolution of this
prevalence when hubs are removed. We present here a
proposition on the influence of the scale-free coefficient on
the prevalence of the epidemic:

Theorem 2. Consider an infinite-size network with a per-
fect scale-free degree distribution with a coefficient α.
Let ρ(α, τ) be the prevalence obtained when a proportion
τ ∈ [0; 1] of the highest connected nodes is removed from
the network. For every h > 0, we have:

ρ(α+ h, τ) < ρ(α, τ) (14)

Thus, the higher α, the lower is the threshold and so the
more efficient is the strategy.

Proof. Considering the same notations as before, we
have:

ρ =

+∞∑
k=1

Π(k)ρk (15)

Now if we denote ρ(α, τ) the prevalence after removing a
proportion τ of the highest connected nodes in an α-scale-
free graph, we have:

ρ(α, τ) =

K(α,τ)∑
k=1

Π(k)ρk (16)

Let us remark that in (16) we should replace ρk with ρk0

with k′ < k. Indeed, the removal of hubs makes the degree
of remaining nodes lower. However, in the limit of infinite-
size graph we consider this as negligible which is verified
numerically.
By developing (16) we find:

ρ(α, τ) =

K(α,τ)∑
k=1

k1−αgλ
1 + kgλ

(17)

and, reminding that K(α, τ) decreases with α, it follows
that, ∀h > 0:

ρ(α+ h, τ)− ρ(α, τ) =

K(α+h,τ)∑
k=1

k1−(α+h)gλ
1 + kgλ

−
K(α,τ)∑
k=1

k1−αgλ
1 + kgλ

Now as kx increases with x, the terms in the first sum are
smaller than the terms in the second sum. Moreover the
first sum has less terms. Thus, the first sum is smaller than
the second sum and so have proved (14). 2

With these two results we have shown that for the hub-
removal strategy in a scale-free network, the best results
are obtained with a large α. This result can be interpreted
as follow: with a large α the hubs are highly connected, and
so their removal cuts a lot of connections in the network.



However this strategy is efficient if the network has a
complex structure in which highly-connected nodes emerge
naturally. If the initial network is homogeneous this strat-
egy can not be applied. In the same way, the strategies
recommending to remove nodes with the highest PageR-
ank or the highest betweenness centrality lose their interest
in an homogeneous network.
Nevertheless, it appears interesting to find a scale-free
abstraction of an arbitrary network in view to highlight
some zone-hubs which are more interesting to cure. To
find this scale-free abstraction we use the algorithm Merge-
ToScaleFree described in the next section.

3. MERGE TO SCALE-FREE

Martin et al. (2018) presents an algorithm allowing to
find a scale-free abstraction out of an arbitrary network
in view to benefit of the scale-free properties 2 . The aim
of this algorithm is to find a partition of the original
network resulting in a scale-free network. Besides the scale-
freeness of the output network, this algorithm allows to
preserve some properties of the initial network, such as the
eigenvector centrality. In this paper, we will not focus on
the preservation of these properties but only on the scale-
free structure of the abstracting network. For our purpose
the algorithm can be described as follows:

(1) Consider an initial graph G0 = (A,V, E) ∈ Γ.

(2) A random small subset of edges Ẽ is generated.

(3) For each edge (v, w) ∈ Ẽ , a new graph G(v,w) is
computed. The graph G(v,w) is similar to the graph
G but with the nodes v and w merged into one single
node.

(4) Among all the graphs generated, the one whose degree
distribution is the closest to a power-law with a given
coefficient α is retained and the algorithm restarts in
(2).

(5) The algorithm is stopped when the scale-freeness of
the current graph can not be improved anymore.

Let’s remark that only a random subset of edges is tested
instead of the whole set of edges. This allows to reduce
considerably the complexity of the algorithm and it is
shown numerically that there is no major impact on the
scale-freeness of the outputting graph as soon as the subset
is larger to an empirical threshold.
Since nodes in the final graph originate from merging
nodes of the initial graph, the algorithm produces a
partition of the initial graph. In this partition, each region
corresponds to a node in the scale-free abstraction. In
order to curb the spreading of the epidemic, it seems
interesting to protect the regions corresponding to hubs.
The next section presents in detail this strategy.

4. THE STRATEGY MERGE TO CURE

4.1 Description of the strategy

The idea of the strategy is to emphasise zones which
play the role of hubs within the network, thanks to the

2 A detailed description of the algorithm and its motiva-
tion is available in Martin et al. (2018) and in video at
https://www.youtube.com/watch?v=UXc76Z5Ek3M

algorithm MergeToScaleFree, and to focus on curing these
zones. The strategy can be detailed as follows:

(1) Extract a scale-free abstraction out of the original
homogeneous network.

(2) Identify the hubs in the scale-free abstraction, corre-
sponding to zones-hubs in the initial network.

(3) Assign a cure to the nodes at the border of the zone-
hubs.

The interest of the removal of hub in a scale-free network
is to cut the communication between some nodes in the
network. Then, in the case of zones-hubs, it is sufficient to
only remove the border of these zones. Figure 4 provides
an illustration of the strategy.

Remark on the relation with meta-population models It
is possible to establish a parallel between this idea and
the meta-population models. In these models, introduced
in Bailey (1986), nodes does not represent individuals but
groups of individuals such as cities. In our case, if the
initial network is a network of individual at the scale of
a country for example. Our strategy consists in finding
how to regroup these individuals at a coarser scale, as
cities, and so find a meta-population abstraction of the
initial model. Then we focus on how to curb the epidemic
in the meta-population network. As the meta-population
network is designed to be scale-free then we identify which
cities are the most interesting to protect in view to reduce
the spreading of the epidemic.

4.2 Experimental results

In this section, we present the experimental set up to
validate our strategy. We first describe how the experiment
has been set, then we present the main results.

The grid-like networks Grid networks or lattice networks
are a family of networks consisting in simply a grid of size
N × N in which each of the N2 intersections is a node.
In our case, in view to get more realistic networks we add
some random irregularities: some nodes are removed, some
shortcuts are created and some edges are unidirectional.
This is what we call grid-like networks. Figure 3 presents
an example from this family of networks.

Experiments To test the efficiency of our method we will
proceed as follow: Considering an initial grid network G
we will numerically compute its prevalence, thanks to (4),
after removing nodes according to different strategies:

(1) MergeToCure: curing the nodes at the border of
the Nhub highest connected node in the scale-free
abstraction. We denote ncure the number of nodes
hence removed.

(2) By curing randomly ncure nodes
(3) By curing the ncure nodes with the highest degree.
(4) By curing the ncure nodes with the highest between-

ness centrality.
(5) By curing the ncure nodes with the highest PageRank.

All these strategies are compared with the null case where
no cure is assigned in the network. For each strategy σ we
compute the benefit Bσ as:

Bσ(ncure, λ) =
ρ(G��(σ,ncure), λ)− ρ(G,λ)

ρ(G,λ)
(18)



(a) The initial grid-like network. (b) The partition of the network obtained with the
algorithm MergeToScaleFree.

(c) The scale-free network abstracting the initial grid-
like network.

(d) Removal of the hubs

(e) Removal of the nodes at the border of the zone-hubs.

Fig. 2. Illustration of the strategy MergeToCure to find a subset of nodes to cure in a grid-like network. For simplicity,
we represent here an undirected network, but the same process can be applied to a directed network.

Fig. 3. Example of a grid-like network 25 × 25. Thicker
edges represents double-way edges.

which corresponds to the benefit brought by the cure
allocation strategy σ with respect to the case with no cure
allocated.

Results In the simulation presented in Fig. 4, a tenth
of the population is infected at the initial time. The
experiments are done with Nhub = {1; 2; 3; 4} and the
percentage of nodes hence removed is precised for each
result. The abstracting scale-free is generated with a scale-
free coefficient α = 2.8 which is rather large for a scale-
free network (usually α ∈ [2; 3]). The value of the infection
rate λ is varying between 0.4 and 4 with a step of 0.1. The
results are averaged over 50 realisations with a different
set of initially infected nodes. The network considered is a
60× 60 grid-like network which contains then 3287 nodes.

We observe that the MergeToCure strategy has a larger
benefit than all other strategies when λ & 1 and ncure .
25%. For a large proportion of nodes removed (larger than
30% of the population) the hub strategy becomes more
efficient than the MergeToCure strategy. We claim then,
that, in a grid network, the MergeToCure strategy is more
efficient to reduce the prevalence than other strategies for

parameters: (λ, ncure) ∈ ]1; +∞[ × ]0; 0.3N ], where N is
the number of nodes in the network. To have an idea of
the value of λ for real disease, Eames and Keeling (2002),
for example, estimates this value for sexually transmissible
disease between [0.76; 1.52]. Thus, MergeToCure is efficient
for rather infectious disease.

Influence of the scale-free coefficient Theorem 1 and
theorem 2 hold in the framework of the hub-removal
strategy in a perfectly scale-free network of infinite size.
To figure out how these results impact the MergeToCure
strategy on finite-size networks we made some simulations
similar to the simulations presented before. In this case we
only focus on the results about the prevalence and not on
the threshold. Thus, we consider the benefit B(ncure, λ, α)
with ncure = 25% and varying λ and α. Figure 5 shows
the results. As expected, the benefit tends to be higher for
high value of α.

5. CONCLUSION

In the context of epidemic spreading over a network,
the question of assigning a limited number of cure to
limit the epidemic spreading is often posed. A classical
result claims that in a scale-free network an efficient
strategy consists in curing the highly connected nodes.
We show theoretically that the higher is the scale-free
coefficient the more efficient is the strategy. Based on
these results, we propose a strategy of cure allocation
for homogeneous network. We show numerically that this
strategy is better than all other strategies for a large range
of parameters. While the numerical tests show satisfying
results, this article raise some other questions which seem
interesting to explore: Is our approach extensible to other
epidemic model as SIR? How this strategy would be
applicable to a practical case such as computer grid
network? Let us remark finally that the idea of using an



Fig. 4. Averaged benefit brought by each strategy for different value of λ and Nhub in a 60× 60 grid network.

Fig. 5. Benefit brought by the strategy MergeToCure in
function of the scale-free coefficient of the abstracting
network.

abstraction to identify zones to cure may also be applied
with betweenness centrality or PageRank centrality. In this
case, it would be necessary to have an algorithm to find an
abstracting network having nodes with a large centrality.
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