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ABSTRACT

Archaeologists are in dire need of automated object recon-
struction methods. Fragments reassembly is close to puzzle
problems, which may be solved by computer vision algo-
rithms. As they are often beaten on most image related tasks
by deep learning algorithms, we study a classification method
that can solve jigsaw puzzles. In this paper, we focus on clas-
sifying the relative position: given a couple of fragments, we
compute their local relation (e.g. on top). We propose several
enhancements over the state of the art in this domain, which is
outperformed by our method by 25%. We propose an original
dataset composed of pictures from the Metropolitan Museum
of Art. We propose a greedy reconstruction method based on
the predicted relative positions.

Index Terms— Cultural heritage, fragment reassembly,
jigsaw puzzle, image classification, deep learning.

1. INTRODUCTION

The reconstruction of pieces of art from shards is a time-
consuming task for archaeologists. Close to puzzle solving
problems, it may be automated. On the one hand, the com-
puter vision algorithms struggle with those tasks. The dataset
has to be scrupulously annotated by experts to reach a plau-
sible solution, especially when the object fragments are lost,
degraded or mixed among non-relevant fragments. Even so,
the false-positive rate is still significant. On the other hand,
deep learning algorithms are seen as an promising alternative,
as they surpass other methods in most image-related tasks.

In this paper, we consider the image reassembly, which
can be seen as solving a jigsaw puzzle: given two image frag-
ments, we want to predict the relative position of the second
fragment with respect to the first one. To solve this task, we
investigate the setup proposed by Doersch et al. [1]. Given an
image, we extract same-size squared 2D-tiles in a randomized
grid pattern (see Figure 1). Visual features are then extracted
from both fragments using a Convolutional Neural Network
(CNN). These features are the combined and fed to a classifier
in order to predict the correct relative position.
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However, the authors of [1] are not interested in solving
the jigsaw puzzle problem per se, but merely in using it as a
pretraining of generic visual features.

In order to solve the jigsaw puzzle, we extend the work of
Doersch et al. [1]. Our contributions are the following: First,
we propose a simpler, yet more effective, CNN architecture
to extract visual features. Then, we propose a new combina-
tion scheme based on the Kronecker product that is able to
better take into account correlations between localized parts
of the fragments. We also propose a new dataset more closely
related to cultural heritage puzzle solving tasks, which con-
sists of 14,000 images from the Metropolitan Museum of Art
(MET) archives. With our contributions, we obtain state of
the art results on both the original ImageNet dataset proposed
in [1] and our new MET dataset.

The remaining of this paper is organized as follows: in the
next section, we present related work and contextual informa-
tion on puzzle solving and fragment reassembly. Then, we
detail our method in Section 3. Finally, we describe our new
dataset and we examine our experimental results in Section 4.

Fig. 1. Example of fragments extracted using the randomized
grid pattern on the MET dataset. Labels are the classes of the
relative position with respect to the central fragment.



Fig. 2. Examples of images from the MET dataset.

2. RELATED WORK

Whether it comes to precisely align fragments or approxi-
mate a relative position, archaeological object reconstruction
attracts numerous researchers, as shown by Rasheed and
Nordin in [2, 3]. When most reassembly work is based on
semi-automated methods, some stands out by the use of au-
tomated reconstruction, such as [4, 5, 6, 7]. These are mainly
inspired by the research on puzzle solving, especially on
jigsaw puzzles [8, 9, 10, 11]. Those methods study miss-
ing fragments or various-sized tiles, belonging to annotated
datasets. They perform well on small datasets but poorly
when the fragments are mixed from similar sources. More-
over, these methods are often very slow.

Since 2015, the deep learning community uses puzzle
solving as a pretext task, proposing a reasonable alternative
to data labeling. In [1], Doersch et al. introduce puzzle
solving as a pretraining task for objects classification and
detection. Their algorithm outperforms other unsupervised
methods, which illustrates that CNN are able to learn object
representations from the relative positions of the image part.
Based on [1], Noroozi and Favaro [12] propose a network that
observes all the nine tiles arranged in a grid pattern to obtain
a precise object representation. They claim that the ambigu-
ities may be wiped out more effectively when all fragments
are examined. However, this leads to a much more complex
classification due to the huge number of fragment orderings.

In our case, as we are not interested in building generic
image features, but in solving approximatively the jigsaw
puzzle itself. As such, the setup of [12] is impractical as it
requires all fragments in order to make a prediction. This is
unrealistic in cultural heritage where missing fragments are
very common. However, the correlations between localized
parts of the fragments (e.g., the correlation between the right
part of the central fragment and the left part of the right frag-
ment) are not taken into account in [1, 12], whereas we argue

this information is essential to successful classification. This
is what we investigate in our method.

3. PROPOSED METHOD

In this section, we detail our proposed method. We start by
presenting the Feature Extraction Network that is shared be-
tween the two fragments. Then, we describe our propositions
to combine the features of both fragments leading to the clas-
sification stage. Finally, we present a greedy algorithm to
solve the jigsaw puzzle given any number of fragments.

3.1. Feature Extraction Network architecture

We use a CNN to compute the features associated with the
fragments. Each fragment of size 96 x 96 pixel is pro-
cessed such that pixels values vary between —1 and 1. Our
architecture takes inspiration from VGG [13] and is com-
posed of a sequence of 3 x 3 convolutions followed by
batch-normalizations [14], ReLLU activations [15] and max-
poolings. The full architecture is shown on Table 1.

Our Feature Extraction Network ends with a fully con-
nected layer that allows preserving the spatial layout of the
input fragment. Although it is more costly than the worse
popular global pooling layers [16], we conjecture that keep-
ing the layout is essential to successfully predict the relative
position of fragments.

3.2. Combination Layer

To predict the relative position of a fragment with respect to
another one, we extract features for both fragments using the
same feature extraction network. These two features are then
combined using a combination layer and processed by a neu-
ral network as shown in Figure 3.

In [1], the authors propose to concatenate both features in
the combination layer. This leads the subsequent fully con-



Layer Shape # parameters
Input 96 x 96 x 3 0
Conv+BN+ReLU 96 x 96 x 32 1k
Maxpooling 48 x 48 x 32 -
Conv+BN+ReLU 48 x 48 x 64 19k
Maxpooling 24 x 24 x 64 -
Conv+BN+ReLU 24 x 24 x 128 74k
Maxpooling 12 x 12 x 128 -
Conv+BN+ReLU 12 x 12 x 256 296k
Maxpooling 6 x 6 x 256 -
Conv+BN+ReLU 6 x 6 x 512 1.2M
Maxpooling 3 x 3 x 512 -
Fully Connected+BN 512 24M

Table 1. Architecture of the Feature Extraction Network.
Conv: 3x3 convolution, BN: Batch-Normalization, ReLU:
ReLU activation.
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Fig. 3. Full network architecture. FEN: Feature Extractor
Network. CL Combination Layer. FC: Fully Connected. BN:
Batch-Normalization. R: ReLU activation. S: Softmax acti-
vation.

nected layer to perform a linear combination of the fragment
features:

Vi, y; = Zai,m(bm(fl) + Zﬁi,mQSm(fQ)

m m

where y; is the output of the neuron i in the fully connected
layer, ¢(f1) is the feature of the first fragment (respectively,
@(f2) for the second fragment) and cv; ,,,, 5; n, are the weights
of neuron 1.

Such a linear combination does not highlight co-occurrences

of features, although it can be argued that subsequent layers
with non-linearities may eventually be able to achieve similar
results.

To circumvent these problems, we propose to use the Kro-
necker product in the combination layer. The output of the
fully connected layer is then:

Vi, y; = Z ai,7n,7z¢m(f1)¢7z<f2)’

with ¢ ,, n, being the weights of neuron 7. The Kronecker
product enables to explicitly model the co-occurrences be-
tween features of both fragments. This comes however at the
cost of an increased number of parameters.

The output of the full network consists of a fully con-
nected layer with k neurons followed by a Softmax activation,

corresponding to the probabilities of the k possible relative lo-
cations. The full network (the Feature Extraction part and the
Classification part) is trained at once using stochastic gradient
descent on batches of fragments pairs.

3.3. Puzzle solving

In order to solve the puzzle problem, we consider the case
where given a central fragment, we want to assign each of the
remaining § fragments to its correct location. For each frag-
ment, we compute the probabilities of assignment using the
full network. This results in an 8 x 8 matrix where each row
is a fragment and each column is a possible location. Solving
the puzzle problem corresponds then to an assignment prob-
lem where we have to pick 8 values from the matrix (only one
per row/column) such that their sum is maximized. We pro-
pose a greedy algorithm where we iteratively pick the max-
imum value and remove its corresponding row and column.
Remark that this problem corresponds to a graph-cut problem
for which much more involved algorithms exist. However, we
found out that our greedy algorithm provides correct results
in our case.

4. EXPERIMENTS

In this section, we first describe our new dataset and exper-
imental setup. Then, we comment on the results comparing
our approach to [1]. Finally, we give some qualitative results
on puzzle solving using the greedy algorithm.

4.1. MET dataset and experimental setup

In order to be closer to our aimed application regarding cul-
tural heritage puzzle solving, we propose a new dataset con-
sisting of images from the Metropolitan Museum of Art. We
collect 14,000 open-source images of paintings and pieces of
art. Contrarily to ImageNet, the quality of the sensors taking
the pictures allows avoiding the unbalanced colors distribu-
tion. Images from the MET dataset are shown in Figure 2.

We use 10k images for training and evaluate the perfor-
mances on the remaining 4k. During training, each image
from the training set is resized and square-cropped so that its
size is 398 x 398 pixels. We divide it into 9 parts separated by
a 48-pixels gap, mimicking an erosion of the fragments. This
value was the one used by Doersch et al. in [1]. Then, we
extract the center fragment and one of its 8 neighbors. Each
fragment is of size 96 x 96 pixels, and we randomly move
the location of the fragment by +7pixels in each direction.
The learning rate is 0.1 For the validation, we only consider a
single pair of random fragments per image.

In the evaluation, we consider the following three setups:
1) we train the neural network on ImageNet and evaluate it on
ImageNet ; 2) we train the network on ImageNet, fine-tune
it on MET and evaluate it on MET (transfer setup) ; 3) we



Fig. 4. Examples of reconstructions using the greedy algorithm on images taken from the MET dataset. The red outlined
fragments are misplaced.

train the network from scratch on MET (MET setup). The
results are compared using the accuracy of correct location
prediction.

4.2. Results

On Figure 5, we show the evolution of the validation accuracy
on ImageNet for a network similar to that of [1], compared to
our proposed architecture using either the concatenation or
the Kronecker combination layer. Our implementation of the
network proposed in [1] has fewer parameters (we reduced the
fully connected layers from 4k to 512 neurons) but nonethe-
less outperforms what is reported in [1], achieving 57% ac-
curacy on ImageNet compared to the 40% reported in the pa-
per. Our proposed architecture significantly outperforms that
of [1] by a 25% margin. In accordance with our intuition, the
Kronecker combination consistently outperforms the concate-
nation combination, reaching a validation accuracy of 65%
after 100 epochs. All the results were obtained through a sin-
gle run.
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Fig. 5. Evolution of the validation accuracy on ImageNet.

We show on Table 2 the validation accuracy of the MET
dataset for both Combination Layers and comparing the MET
setup to the transfer setup (training on ImageNet, validation

on MET). As we can see, training on ImageNet followed by
a fine tuning on MET provides better results than training on
MET alone. In this setup, we also remark that the Kronecker
combination performs significantly better than the concatena-
tion layer, which confirms the soundness of the approach.

ImageNet —- MET MET setup
concat ‘ kron concat ‘ kron
Accuracy | 59.7% | 64.9% | 48.9% | 47.9%

Table 2. Comparison between the transfer setup (ImageNet
— MET) and the MET setup for various combination layers.

Finally, we show on Figure 4 examples of puzzle solv-
ing using the greedy algorithm on several images taken from
the MET dataset. As we can see, most of the predictions are
correct. In the case where the algorithm wrongly predicts the
position of the fragments, we can see that the corresponding
fragments are visually close to what is expected to be in that
location (e.g., sky and could pattern in the first example).

Using this greedy algorithm, we are able to solve the jig-
saw puzzle perfectly 28.8% of the time. The proportion of
correctly placed fragments is 68.8%, which means that on av-
erage only 2 fragments are swapped per image which is con-
sistent with the accuracy at predicting individual positions of
our neural network.

5. CONCLUSION

We proposed a robust deep learning method to classify the po-
sition of two neighboring fragments, which outperforms the
state of the art by 25%. We successfully apply it to solve
O-tiles puzzles, and we show promising results on a new pro-
posed dataset composed of images taken from the Metropoli-
tan Museum of Art.

In the future, we plan to add a ninth class describing the
not-neighbor relationship. Such class will allow us to solve
more challenging puzzles. We are extending our method to
non-squared fragments with irregularities.
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