Jigsaw Puzzle Solving Using Local Feature Co-occurrences In Deep Neural Networks

Marie-Morgane Paumard 1 David Picard 2 Hedi Tabia 2
2 MIDI
ETIS - Equipes Traitement de l'Information et Systèmes
Abstract : Archaeologists are in dire need of automated object reconstruction methods. Fragments reassembly is close to puzzle problems, which may be solved by computer vision algorithms. As they are often beaten on most image related tasks by deep learning algorithms, we study a classification method that can solve jigsaw puzzles. In this paper, we focus on classifying the relative position: given a couple of fragments, we compute their local relation (e.g. on top). We propose several enhancements over the state of the art in this domain, which is outperformed by our method by 25%. We propose an original dataset composed of pictures from the Metropolitan Museum of Art. We propose a greedy reconstruction method based on the predicted relative positions.
Type de document :
Communication dans un congrès
International Conference on Image Processing, Oct 2018, Athens, Greece
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01820489
Contributeur : Marie-Morgane Paumard <>
Soumis le : jeudi 21 juin 2018 - 16:56:59
Dernière modification le : vendredi 6 juillet 2018 - 07:49:25

Fichier

icip-2018-paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01820489, version 1

Collections

Citation

Marie-Morgane Paumard, David Picard, Hedi Tabia. Jigsaw Puzzle Solving Using Local Feature Co-occurrences In Deep Neural Networks. International Conference on Image Processing, Oct 2018, Athens, Greece. 〈hal-01820489〉

Partager

Métriques

Consultations de la notice

58

Téléchargements de fichiers

15