I. , ) start Is2

F. , KExsA, vol.1, issue.21 2

F. , KExsA, vol.1, issue.21 2

, Is2, vol.1, issue.11

, KExsA, issue.2

, Is2, vol.1, issue.10

, KExsA, issue.2

I. , KExsA, vol.1, issue.00 2

I. , KExsA, issue.00 2

, Fs3, issue.0

. Kexsa,

, Fs3, issue.0

. Kexsa,

, Is3, issue.10

. Kexsa,

, Is3, vol.1, issue.10

. Kexsa,

, Is3, vol.1, issue.00

. Kexsa,

, Is4, vol.1, issue.21

, ? Six arbres d'exécution symbolique (correspondant aux six 10 états possibles) peuvent être construits à partir du Produit ? 1a . Les figures 5 et 7, et la figure Nos perspectives de travail portent sur l'amélioration de notre prototype SPUTNIK, en terme de temps d'exécution et d'occupation mémoire. Nous envisageons plusieurs pistes : la parallélisation de l'exécution symbolique des SET (en découpant le Produit en plusieurs composantes fortement connexes), Figure 7. Coupures par implication de conditions de chemin acceptantes EXEMPLE 20

, Remerciements Les auteurs tiennent à remercier chaleureusement Janine Guespin-Michel pour les nombreuses discussions à propos de l'étude de cas P. aeruginosa. Ils ont particulièrement apprécié sa disponibilité

, Bibliographie

C. Baier and J. Katoen, Principles of Model Checking, 2008.

J. Barnat, L. Brim, A. Krejci, A. Streck, D. Safránek et al., On Parameter Synthesis by Parallel Model Checking, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.9, issue.3, pp.693-705, 2012.
DOI : 10.1109/TCBB.2011.110

URL : http://anna.fi.muni.cz/papers/src/public/f41b08eba71589f2872dc27f2960868c.pdf

G. Bernot, J. Comet, A. Richard, and J. Guespin, Application of formal methods to biological regulatory networks: extending Thomas??? asynchronous logical approach with temporal logic, Journal of Theoretical Biology, vol.229, issue.3, pp.339-347, 2004.
DOI : 10.1016/j.jtbi.2004.04.003

E. Bodden, LTL2BA4J software, 2011.

F. Corblin, E. Fanchon, and L. Trilling, Applications of a formal approach to decipher discrete genetic networks, BMC Bioinformatics, vol.11, issue.1, p.385, 2010.
DOI : 10.1186/1471-2105-11-385

F. Corblin, S. Tripodi, E. Fanchon, D. Ropers, and L. Trilling, A declarative constraint-based method for analyzing discrete genetic regulatory networks, Biosystems, vol.98, issue.2, pp.91-104, 2009.
DOI : 10.1016/j.biosystems.2009.07.007

URL : https://hal.archives-ouvertes.fr/hal-00793012

D. Moura, L. Bjørner, and N. , Z3: An efficient SMT solver. In Tools and algorithms for the construction and analysis of systems, pp.337-340, 2008.

D. Filopon, A. Mérieau, G. Bernot, J. Comet, R. Leberre et al., Epigenetic acquisition of inducibility of type III cytotoxicity in P. aeruginosa, BMC Bioinformatics, vol.7, issue.1, pp.272-282, 2006.
DOI : 10.1186/1471-2105-7-272

URL : https://hal.archives-ouvertes.fr/hal-00342073

E. Gallet, M. Manceny, L. Gall, P. Ballarini, and P. Mai-), Adapting LTL model checking for inferring biological parameters, Actes de la 13ème édition d'AFADL, atelier francophone sur les Approches Formelles dans l'Assistance au Développement de Logiciels, 2014.
DOI : 10.1007/978-3-319-11737-9_11

E. Gallet, M. Manceny, L. Gall, P. Ballarini, and P. , An LTL Model Checking Approach for Biological Parameter Inference, Formal methods and software engineering, pp.155-170, 2014.
DOI : 10.1007/978-3-319-11737-9_11

URL : https://hal.archives-ouvertes.fr/hal-01819841

P. Gastin and D. Oddoux, Fast LTL to Büchi automata translation, Proceedings of the 13th International Conference on Computer Aided Verification (CAV'01), pp.53-65, 2001.
DOI : 10.1007/3-540-44585-4_6

URL : https://link.springer.com/content/pdf/10.1007%2F3-540-44585-4_6.pdf

C. Gaston, L. Gall, P. Rapin, N. Touil, and A. , Symbolic Execution Techniques for Test Purpose Definition, 18th ifip int. conf. testcom, pp.1-18, 2006.
DOI : 10.1007/11754008_1

URL : https://hal.archives-ouvertes.fr/hal-00342082

S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, vol.22, issue.3, pp.437-467, 1969.
DOI : 10.1016/0022-5193(69)90015-0

Z. Khalis, J. Comet, A. Richard, and G. Bernot, The SMBioNet method for discovering models of gene regulatory networks, Genes, Genomes and Genomics, vol.3, pp.15-22, 2009.

J. King, A new approach to program testing, Proceedings of the international conference on Reliable software, pp.21-23, 1975.
DOI : 10.1007/3-540-07131-8_30

H. Klarner, A. Streck, D. ?afránek, J. Kol?ák, and H. Siebert, Parameter Identification and Model Ranking of Thomas Networks, Proceedings of the 10th international conference on computational methods in systems biology, pp.207-226, 2012.
DOI : 10.1007/978-3-642-33636-2_13

URL : http://www.fi.muni.cz/reports/files/2012/FIMU-RS-2012-03.pdf

D. Mateus, J. Gallois, J. Comet, L. Gall, and P. , SYMBOLIC MODELING OF GENETIC REGULATORY NETWORKS, Journal of Bioinformatics and Computational Biology, vol.60, issue.02b, pp.627-640, 2007.
DOI : 10.1007/1-4020-4223-X_5

URL : https://hal.archives-ouvertes.fr/hal-00293530

A. Richard, SMBioNet user manual, 2010.

E. Snoussi and R. Thomas, Logical identification of all steady states: The concept of feedback loop characteristic states, Bulletin of Mathematical Biology, vol.55, issue.5, pp.55-973, 1993.
DOI : 10.1016/S0092-8240(05)80199-5

A. Streck, Model building for Parsybone version 2, 2014.

D. Thieffry, M. Colet, and R. Thomas, Formalisation of regulatory networks : a logical method and its automation, Math. Modelling and Sci. Computing, vol.2, pp.144-151, 1993.

D. Thieffry and R. Thomas, Dynamical behaviour of biological regulatory networks -II. immunity control in bacteriophage lambda, Bull. Math. Biol, vol.57, issue.2, pp.277-97, 1995.

R. Thomas and R. Ari, Biological Feedback, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00087681