Mass functions of a compact manifold

Abstract : Let $M$ be a compact manifold of dimension $n$. In this paper, we introduce the {\em Mass Function} $a \geq 0 \mapsto \xp{M}{a}$ (resp. $a \geq 0 \mapsto \xm{M}{a}$) which is defined as the supremum (resp. infimum) of the masses of all metrics on $M$ whose Yamabe constant is larger than $a$ and which are flat on a ball of radius~$1$ and centered at a point $p \in M$. Here, the mass of a metric flat around~$p$ is the constant term in the expansion of the Green function of the conformal Laplacian at~$p$. We show that these functions are well defined and have many properties which allow to obtain applications to the Yamabe invariant (i.e. the supremum of Yamabe constants over the set of all metrics on $M$).
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01818684
Contributeur : Emmanuel Humbert <>
Soumis le : mardi 19 juin 2018 - 14:02:15
Dernière modification le : jeudi 21 juin 2018 - 01:19:49
Document(s) archivé(s) le : mardi 25 septembre 2018 - 12:15:08

Fichiers

mass_topological.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01818684, version 1
  • ARXIV : 1806.07676

Collections

Citation

Andreas Hermann, Emmanuel Humbert. Mass functions of a compact manifold. 2018. 〈hal-01818684〉

Partager

Métriques

Consultations de la notice

70

Téléchargements de fichiers

10