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Abstract. The spatial and temporal coverage of the Landsat satellite imagery make it an ideal resource for the
monitoring of water temperature over large territories at a moderate spatial and temporal scale at a low cost.
We used Landsat 5 and Landsat 7 archive images to create the Lake Skin Surface Temperature (LakeSST) data
set, which contains skin water surface temperature data for 442 French water bodies (natural lakes, reservoirs,
ponds, gravel pit lakes and quarry lakes) for the period 1999–2016. We assessed the quality of the satellite
temperature measurements by comparing them to in situ measurements and taking into account the cool skin and
warm layer effects. To estimate these effects and to investigate the theoretical differences between the freshwater
and seawater cases, we adapted the COARE 3.0 algorithm to the freshwater environment. We also estimated
the warm layer effect using in situ data. At the reservoir of Bimont, the estimated cool skin effect was about
−0.3 and −0.6 ◦C most of time, while the warm layer effect at 0.55 m was negligible on average, but could
occasionally attain several degrees, and a cool layer was often observed in the night. The overall RMSE of the
satellite-derived temperature measurements was about 1.2 ◦C, similar to other applications of satellite images to
estimate freshwater surface temperatures. The LakeSST data can be used for studies on the temporal evolution
of lake water temperature and for geographical studies of temperature patterns. The LakeSST data are available
at https://doi.org/10.5281/zenodo.1193745.

Copyright statement. The author’s copyright for this publication
is transferred to Irstea.

1 Introduction

Surface water temperature (SWT) is a key water quality pa-
rameter driving the ecological status of lakes (e.g. Shuter
and Post, 1990; O’Reilly et al., 2003). Monitoring SWT is
therefore an important issue, especially in the context of cli-
mate changes. Nevertheless the SWTs assessed over a na-
tional network of water quality monitoring are usually not
frequent enough or are limited to a restricted number of
lakes. For example, in France, the implementation of the

Water Framework European Directive implies the monitor-
ing of 475 lakes but just 4 times a year only 1 year ev-
ery 3 years, and such a frequency of observations is too
low to detect long-term trends. To improve the water qual-
ity monitoring and to survey climate change effects, net-
works dedicated to continuously monitor temperature at high
frequencies (e.g. hourly time step) in the water column (1–
4 m in vertical resolution) are used (Marcé et al., 2016), e.g.
the Networking Lake Observatories in Europe (NETLAKE,
https://www.dkit.ie/netlake) (Laas et al., 2016) or the Global
Lake Observatory Network (GLEON, gleon.org) (Hamilton
et al., 2015). However, such large-scale networks mainly fo-
cus on large lakes and reservoirs while medium and small
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water bodies are more abundant than large water bodies (Ver-
poorter et al., 2014). In France, 15 relatively small water bod-
ies (surface between 0.45 and 22 km2) are currently moni-
tored. Research projects may also provide useful data. But
in spite of the current efforts to make research data more ac-
cessible, it is still difficult to locate and access these data.
In addition, the use of different instrumentation, methodolo-
gies and formats may require lengthy tasks of homogenisa-
tion and data-wrangling prior to their use.

Satellite thermal infrared (TIR) imagery, such as Landsat,
can complete this monitoring effort by providing homoge-
nous information on surface water temperature over large ter-
ritories at a moderate spatial and temporal scale. Moreover,
remote sensing monitoring can collect information from in-
accessible and non-instrumented water bodies, and long-term
and climate change studies can benefit from historical in-
formation starting in the 1980s (e.g. Schneider and Hook,
2010; Politi et al., 2012; Torbick et al., 2016). Because of
its advantages, this technology has been increasingly applied
to freshwater ecology in recent years (Dörnhöfer and Op-
pelt, 2016): satellite images have been used to study the wa-
ter temperature of fluvial reaches (Lalot et al., 2015), reser-
voirs (Lamaro et al., 2013; Martí-Cardona et al., 2016), lakes
(Marti-Cardona et al., 2008; Crosman and Horel, 2009) and
crater lakes (Trunk and Bernard, 2008), as well as to monitor
the thermal plumes from power plants (Zoran, 2011).

However, satellite-derived measurements correspond to
the instant water temperature at the top of the surface (∼ 10–
20 µm deep), known as skin temperature (Donlon et al., 1999;
Kawai and Wada, 2007). Skin temperatures can differ from
SWT because the thermal structure of the first metres of
the water column is not uniform under all conditions. At-
sea measurements of the skin surface temperature are usu-
ally lower than the temperature of the underlying water (cool
skin effect), showing a dependence on wind speed (Fairall et
al., 1996a; Minnett et al., 2011), and similar differences have
been observed in freshwater environments (Cardenas et al.,
2008). A warm near-surface layer can also appear on calm
and sunny days, without necessarily excluding the presence
of a cool skin (Donlon et al., 1999). Under such conditions
the thermal gradient can attain several degrees in the upper
few metres of the water column (Ward, 2006).

Nevertheless, satellite-derived water temperature data
(skin temperatures) are relevant and sufficient to (i) demon-
strate spatial and temporal patterns of surface water temper-
ature for reservoirs and lakes (e.g. Schneider et al., 2009;
Schneider and Hook, 2010; Prats and Danis, 2015), (ii) com-
plement the data used for the calibration and validation of
hydrodynamic and water quality models of lakes (Andréas-
sian et al., 2012; Prats and Danis, 2017), and (iii) improve the
estimation of surface heat and gas fluxes (Lofgren and Zhu,
2000) that is important to understand the thermal behaviour
of lakes (Henderson-Sellers, 1986).

This data paper presents the data set LakeSST of skin
surface water temperature for 442 French lake water bod-

ies derived from Landsat thermal infrared imagery. LakeSST
was produced as part of a project funded by the French Na-
tional Office for Water and Aquatic Environments (ONEMA,
now part of the French Agency for Biodiversity, AFB) to as-
sess the advantages and limitations of satellite data to mon-
itor the water temperature of inland water bodies. After re-
calling what is meant by surface temperature in this pa-
per and the methodology used to derive skin temperatures
from Landsat thermal infrared bands fully described by Si-
mon et al. (2014), the precision and accuracy of the data set
LakeSST are reported in view of surface temperature assess-
ment. First, relations between skin temperature and surface
temperature are dealt with in detail. Second, the overall ac-
curacy of LakeSST is assessed (i) by using water bodies lo-
cated in overlapping areas of the images, and (ii) by compar-
ing them to in situ continuous temperature measurements in
five water bodies.

2 Study area and field data

2.1 Study area

The original objective of this data set was to obtain long-term
measurements of French lakes which are monitored under the
Water Framework Directive. Initially this comprised a total
of 475 lakes of surface area larger than 0.5 km2 in metropoli-
tan France, including 64 natural lakes, 328 reservoirs, 43
ponds, 34 gravel pit lakes and 6 quarry lakes. However, the
final data set contains data for 442 lakes, the rest having been
excluded because of insufficient availability of data (Fig. 1).
The complete list of water bodies with geographical coor-
dinates is included in the file 01_lake_data.txt of the data
set. The geographical and morphometric data were extracted
from the French lake database (PLAN_DEAU) maintained
by the AFB-Irstea consortium for R&D on Water Bodies Hy-
droecology at Aix-en-Provence (France).

2.2 In situ data for quality assessment

Satellite-based water temperature estimations were com-
pared to continuous in situ measurements of water temper-
ature at different depths at five French water bodies (Ta-
ble 1, Fig. 1). The in situ measurements were provided by the
ONEMA and are part of a French continuous monitoring net-
work of lake water temperature. Water temperature was mea-
sured through chains of HOBO Water Temp Pro V2/U22-001
thermistors installed on a buoy at the deepest part of the water
body. The thermistors have a precision of ±0.2 ◦C between
0 and 50 ◦C, and a resolution of 0.02 ◦C at 25 ◦C. Tempera-
tures were measured at depths between 0.5 m and the bottom
at intervals of 1 to 4 m, depending on the depth (measure-
ments were more spaced in the hypolimnion). Measurement
frequency varied from once every 15 min to once every hour,
depending on the water body and time period. In the analysis,
a common 1 h time step was used for all water bodies.
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Table 1. Comparison of satellite-based temperature estimations made using the algorithm by Jiménez-Muñoz et al. (2009) and corrected
for skin and warm layer effects (T ∗sml and T ∗0.50 m) to in situ measurements (temperature at 0.50 m, T0.50 m, and average temperature of the
surface mixed layer, Tsml). ME is the mean error (satellite – field data), ρ is the correlation coefficient and RMSE is the root mean square
error. ME statistically different from zero at α = 0.05 are indicated with an asterisk.

Water Water Period Number T ∗sml∼ Tsml T ∗0.50 m∼ T0.50 m

body body of meas. ME ρ RMSE ME ρ RMSE
code name (◦C) (◦C) (◦C) (◦C)

AUL13 Aulnes 29 Dec 2013–19 Mar 2014 2 −0.72 1.00 0.72 −0.72 1.00 0.73
BIM13 Bimont 24 Feb 2014–19 Nov 2016 28 0.40 0.97 1.19 0.18 0.98 1.04
LPC38 Pierre-Châtel 23 Aug 2013–19 Dec 2015 11 −0.81* 0.98 1.28 −0.97* 0.98 1.41
PAV63 Pavin 24 Oct 2013–28 Sep 2015 15 −0.10 0.98 1.05 −0.22 0.98 1.05
SCR04 Sainte-Croix 31 Jul 2013–30 Dec 2016 36 0.41 0.97 1.49 0.03 0.98 1.24
All lakes 31 Jul 2013–30 Dec 2016 92 0.16 0.97 1.30 −0.11 0.98 1.17

●

●

LakeSST sites

Validation sites

Figure 1. Location of the water bodies included in LakeSST and
validation sites.

In one of the water bodies, the reservoir of Bimont (south-
east of France, at 10 km from Aix-en-Provence), an addi-
tional thermistor chain was installed, with the same type of
thermistors dedicated to monitor in more detail the tempera-
ture gradient in the subsurface. The thermistors were placed
at depths between 0.01 and 0.55 m (at 0.01, 0.05, 0.10, 0.15,
0.20, 0.25, 0.35, 0.45, 0.55 m) between the 21 February 2014
and the 3 May 2016.

In addition to in situ data, meteorological data were gath-
ered for the five French water bodies from the SAFRAN re-
analysis data (Quintana-Seguí et al., 2008; Vidal et al., 2010),
available for the study period at the nearest grid point at
a daily resolution. The following variables were extracted:
air temperature, specific humidity, wind speed, liquid pre-
cipitation, solid precipitation, downwelling longwave radia-
tion and incoming solar radiation. An adiabatic correction
of −0.0065 ◦C m−1 was applied to air temperature data to

account for the difference in altitudes between the measure-
ment point and the reservoir of Bimont. Additionally, we cal-
culated solar elevation and extraterrestrial solar radiation fol-
lowing Lenoble (1993). We calculated the daily clearness in-
dex as

kt = Rs/Re, (1)

where Rs is the daily solar radiation at the Earth surface and
Re is the extraterrestrial daily solar radiation through a plane
parallel to the surface.

Finally, for the reservoir of Bimont, Météo-France kindly
provided hourly meteorological data (air temperature, rel-
ative humidity, wind speed, solar radiation) measured at
the meteorological station of Aix-en-Provence (43◦31′42′′ N,
5◦25′24′′ E).

3 Methods

3.1 Definitions of surface temperature

As mentioned in the Introduction, the thermal structure of
the first metres of the water column is not uniform. To avoid
confusion, several definitions of surface temperature have
been proposed for the marine environment, depending on the
depth of measurement (Donlon et al., 2007; Kawai and Wada,
2007). We adapt (and adopt) these definitions for the fresh-
water case:

– The interface surface temperature (Tint) is the theoreti-
cal temperature at the infinitesimally wide air–water in-
terface.

– The skin surface temperature (Tskin) is the temperature
of the first ∼ 10–20 µm below the interface and it is
dominated by heat conduction. It is measured with in-
frared radiometers.

– The sub-skin surface temperature (Tsubskin) is the tem-
perature of the first 1–1.5 mm of the water column. It is
measured with microwave radiometers.

www.earth-syst-sci-data.net/10/727/2018/ Earth Syst. Sci. Data, 10, 727–743, 2018
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– The temperature at depth z (Tz), also known as (bulk)
surface temperature, is the temperature measured at the
said depth. It is the temperature measured by in situ
sensors (thermistors, CTD, etc.). The French continu-
ous monitoring network proposes using T0.5 m to mon-
itor lake surface temperature (Rebière et al., 2014) and
in the freshwater literature different reference depths are
used for surface temperature, from 10–15 cm to several
metres (e.g. Kettle et al., 2004; Toffolon et al., 2014).

– Finally, we will define the temperature of the surface
mixed layer (SML) (Tsml) as the average temperature
between the surface and the top of the metalimnion. The
SML temperature Tsml is calculated by integrating tem-
perature measurements made with a thermistor chain
or water quality profiler at different depths between the
surface and the top of the metalimnion.

The bulk surface temperature can be related to the skin sur-
face temperature through

Tskin = Tz+1Tc+1Tw, (2)

where 1Tc is the cool skin effect and 1Tw is the warm layer
effect. Both effects are related to thermal heterogeneities
in the temperature distribution near the surface. The warm
layer forms during the day and is due to surface stratification
caused by the absorption of solar radiation in the first metres
of the water column (Fairall et al., 1996a). The magnitude
of the warm layer effect can attain several degrees (Fairall
et al., 1996a; Kawai and Wada, 2007; Gentemann and Min-
nett, 2008). The cool skin effect is almost always present and
arises from the cooling of the first millimetres of the water
column because of the joint action of longwave radiation,
sensible and latent heat fluxes (Fairall et al., 1996a). Its mag-
nitude is of −0.1 to −0.5 ◦C (Fairall et al., 1996a; Donlon et
al., 2002).

3.2 Deriving skin temperature from Landsat imagery

The thermal infrared band of both Landsat 5 TM (Thematic
Mapper) and Landsat 7 ETM+ (Enhanced Thematic Map-
per Plus) instruments were used for deriving skin tempera-
ture. Although Landsat 8 was already operative at the begin-
ning of this study, we did not process its thermal infrared
images at first, because of stray light artefacts in the thermal-
band measurements (Montanaro et al., 2014). An algorithm
has recently been implemented that largely solves this prob-
lem (Gerace and Montanaro, 2017) and we expect to include
Landsat 8 data in future versions of the data set.

The TIR band (band 6) of Landsat 5 TM and Land-
sat 7 ETM+ sensors measured emitted radiation at wave-
lengths of 10.40–12.50 µm. Both satellites have similar or-
bits, with a delay of 8 days, and they fly over France at 10:00–
10:30 UTC. Two consecutive scenes overlap at 5 % of their
surface and are taken with a delay of 23.92 s (NASA, 2011).

The TM instrument acquired Band 6 data at a 120 m reso-
lution and the ETM+ instrument acquired Band 6 data at a
60 m resolution. TIR Landsat data were extracted from Land-
sat Climate Data Records (CDR) data. Landsat CDR con-
sist of surface reflectance products from the Landsat archive
(Masek et al., 2006) which are freely available from the
United States Geological Survey (USGS). Thermal infrared
data are provided as top-of-atmosphere (TOA) brightness
temperature images resampled via cubic convolution to a
pixel size of 30 m. Useful mask layers for clouds, cloud shad-
ows, adjacent clouds, snow, land and water, and quality flags
are also provided. The noise-equivalent delta temperature of
Landsat measurements is 0.2–0.3 ◦C (Barsi et al., 2003).

TIR data must be corrected for emissivity and atmospheric
effects if it is to be quantitatively useful (see Li et al., 2013).
On the one hand, emissivity variations for water-only pix-
els of relatively small and calm inland waterbodies are in-
significant in most practical applications. Atmospheric cor-
rection, on the other hand, is required to compensate for at-
mospheric absorption and emission effects. Two possibilities
are available for correcting single-band TIR images. The first
is through the use of the radiative transfer equation (RTE)
(e.g. Hook et al., 2004), in which transmissivity of the atmo-
sphere, upwelling atmospheric radiance and downwelling at-
mospheric radiance are obtained through the use of radiative
transfer modelling codes. This method, however, requires in
situ radiosounding data obtained near the study area and near
the acquisition time of the image as input (Jiménez-Muñoz
and Sobrino, 2003). The second possibility is to apply single-
channel (SC) correction algorithms which are based on ap-
proximations of the RTE. Despite being less accurate, these
algorithms crucially avoid dependence on in situ radiosound-
ing data and are therefore better suited for satellite imagery
archive studies (Sobrino et al., 2004). Jiménez-Muñoz and
Sobrino (2003), in particular, have developed an operational
algorithm which relies solely on atmospheric water vapour
content as ancillary data. This algorithm has been applied to
several lakes and reservoirs (Lamaro et al., 2013; Simon et
al., 2014; Allan et al., 2016) and to the Guadalquivir River
estuary (Díaz-Delgado et al., 2010). The algorithm was orig-
inally implemented by Simon et al. (2014) and used to pro-
duce the LakeSST data set.

Total column water vapour data, required by the algo-
rithm, were extracted from the ERA-Interim reanalysis data
set (Dee et al., 2011) provided by the ECMWF (European
Centre for Medium-Range Weather Forecasts) at a resolution
of 0.25◦. The water vapour content at the time the image was
taken was interpolated from data at 06:00 and 12:00 UTC.
During the preprocessing phase, we extracted the valid pixels
for each water body and image. For each image the prepro-
cessing included the following steps:

– extraction of the TIR band, masks and metadata from
the original hdf files;

Earth Syst. Sci. Data, 10, 727–743, 2018 www.earth-syst-sci-data.net/10/727/2018/



J. Prats et al.: LakeSST 731

– selection of water pixels using land–water mask and
vector file containing the water body outline;

– suppression of unexploitable pixels by application of
mask products associated to the image.

For the image processing, brightness temperature in the re-
maining pixels was converted to surface temperature fol-
lowing the single-channel algorithm proposed by Jiménez-
Muñoz and Sobrino (2003), adapted to Landsat images
(Jiménez-Muñoz et al., 2009). For further details on the al-
gorithm or its calibration for Landsat thermal bands, please
refer to these articles.

The algorithm is sensitive to variations of emissivity: a
1 % decrease in emissivity produced an increase in estimated
temperature of 0.4–0.6 ◦C. In this work the emissivity of wa-
ter was assumed to be ε = 0.9885 (Lamaro et al., 2013).
However, emissivity can vary depending on factors such as
the view angle and the concentration of suspended sediments.
The emissivity of water varies with the zenith angle, mainly
for angles above 40◦ (Masuda et al., 1988). The satellite
Landsat 7 orbits the Earth at a height of 705 km, at a speed of
7.5 km s−1 (NASA, 2011). At this speed, the variation in the
viewing angle during the 23.92 s between two successive im-
ages is ∼ 14◦, so that there should not be a significant effect
on temperature linked to the variation of emissivity with the
zenith angle. The emissivity of water can also be affected by
the concentration of suspended sediments, resulting in esti-
mation errors of as much as 1 ◦C for a variation of emissivity
of 0.01 (Wen-Yao et al., 1987). However, for freshwater the
effect is only important for very high concentrations of sus-
pended sediments (≥ 10 g L−1) (Wen-Yao et al., 1987).

The algorithm is applicable for a range of atmospheric
water vapour content between 0.5 and 2 g cm−2; for vapour
contents outside this range, bias may be important (Jiménez-
Muñoz et al., 2009). However, the algorithm is not very sen-
sitive to variations in atmospheric water vapour content: a
50 % decrease in the value of w produced a decrease in the
estimated temperature of 0.2–0.3 ◦C.

A negative buffer was applied to the water bodies of each
image to filter out pixels close to the bank and thus avoid po-
tentially land–water mixed pixels. The width of the buffer
was 170 m for Landsat 5 and 85 m for Landsat 7, which
approximately corresponds to the length of the pixel diag-
onal. All images for a given water body were then repro-
jected to a common Reference Coordinate System (WGS84,
EPSG:4326) and resampled by cubic convolution to a com-
mon 30 m× 30 m grid. Images for which the water vapour
content did not belong to the range of applicability of the
algorithm (0.5–2 g cm−2) were discarded. Images with nega-
tive values were also discarded (due to undetected ice cover,
etc.). The presence of clouds caused important biases in the
temperature estimations. To avoid this bias, we discarded all
images for which the daily clearness index was less than 0.6.
Summary statistics were calculated for each image: number
of valid pixels, median temperature, mean temperature, stan-

dard deviation, minimum temperature, maximum tempera-
ture, 25 % percentile and 75 % percentile.

3.3 Assessment of the relation between skin
temperature and surface temperature

The applicability of surface temperatures measured by satel-
lite to study the temperature of the surface mixed layer of
lakes depends on the relation between surface temperature
and subsurface temperatures. The skin temperature differs
slightly from water temperature in the first metres of the
water column because of cool skin and warm layer effects.
Three methods were implemented to assess these effects.

3.3.1 Warm layer estimations based on field
measurements

We used data from the 0.55 m chain installed at the reservoir
of Bimont to assess the relation between surface temperature
and temperature at 0.55 m. The instrumentation used was not
adapted to measure the cool skin effect, since the surface
thermistor measured temperature at a depth of about 1 cm,
below the cool skin. However, the Bimont data could be used
to measure the warm layer effect. We calculated the warm
layer effect at 0.55 m as follows:

1Tw (0.55m)= T0.01 m− T0.55 m. (3)

3.3.2 Cool skin effect estimations depending on wind
speed

Several parameterisations have been proposed to estimate
1Tc as a function of wind speed measured at 10 m above
the ground surface U10. Using data for the reservoir of Bi-
mont, we applied the parameterisations obtained for the sea
by Donlon et al. (2002):

1Tc =−0.14− 0.30exp(−0.27U10) ; (4)

Horrocks et al. (2003):

1Tc =−0.11− 0.35exp(−0.28U10) ; (5)

Gentemann and Minnett (2008):

1Tc =−0.13− 0.22exp(−0.350U10) ; (6)

and Minnett et al. (2011):

1Tc =−0.130− 0.724exp(−0.350U10) . (7)

3.3.3 Application of the COARE algorithm adapted to
the freshwater environment

There are several models that take into account the cool
skin and the warm layer effect at the sea (Price et al., 1986;
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Figure 2. Validation of the implementation of bulk flux COARE algorithm and its modification: cool skin effect (1Tc), cool skin depth (Dc),
warm layer effect (1Tw) and warm layer depth (Dw). Data are 4 days of Moana Wave COARE test data.

Kantha and Clayson, 1994; Fairall et al., 1996a; Kawai
and Kawamura, 2000; Gentemann et al., 2009). To analyse
both the cool skin and the warm layer effects for the case
of the reservoir of Bimont, we used the model proposed
by Fairall et al. (1996a) and implemented in the COARE
bulk flux algorithm (Fairall et al., 1996b), that depends on
the surface heat (shortwave irradiance, longwave irradiance,
latent and sensible heat exchange) and moment fluxes (wind
shear). We implemented the model in R based on the code
of the COARE bulk flux algorithm version 3.0 (Fairall et
al., 2003). We validated the implementation of the algorithm
using 4 days of Moana Wave COARE test data (Fig. 2).
The FORTRAN code and test data were obtained from
ftp://ftp1.esrl.noaa.gov/psd3/cruises/NTAS_2009/RHB/
Scientific_analysis/programs/VOCALS2008_programs_
leg1/coare/bulkalg/cor3_0/. In the original parameterisation,
the physical properties of water (viscosity, density, thermal
expansivity, salinity expansivity and thermal conductivity)
are constant and adapted to the seawater case. We modified
the algorithm to calculate the physical properties of water
as a function of temperature and salinity using expressions
provided by Sharqawy et al. (2010). An R file (Coare_3_0.R)
with the implementation of the model is supplied in the
Supplement. The simulation of 1Tw for the test data was
almost equal for both algorithms. However, the algorithm
with physical properties of water depending on temperature
and salinity simulated a less intense cool skin effect (with
an average difference of 0.03 ◦C). The difference was due to
a too-high value of the kinematic viscosity of 10−6 m2 s−1

in the original COARE algorithm. According to the tables
published by Chen et al. (1973), the viscosity of seawater
is 0.84× 10−6 m2 s−1 at 30 ◦C and 1.0× 10−6 m2 s−1 at

20 ◦C. The average temperature of the test data at a depth
of 6 m was 29.4 ◦C, and the average value of kinematic
viscosity of water in the modified version of the algorithm
was 0.85× 10−6 m2 s−1.

We applied the modified COARE algorithm to the data of
the reservoir of Bimont, assuming a salinity of 0 g kg−1 and
a maximum depth of the warm layer of 5 m (approximately
the seasonal thermocline depth). We also calculated the cool
skin and warm layer effects for the seawater case, assum-
ing a salinity of 35 g kg−1, using the same data, since it is of
interest to know if other algorithms applied at sea are appli-
cable to the freshwater case and with which limitations. The
use of salinity-dependent functions for the physical proper-
ties of water, allowed us to test whether differences in the
behaviour in the surface temperature between freshwater and
seawater were theoretically expected because of the differ-
ence in salinity.

3.4 Assessment of the precision and accuracy of
satellite-based surface water temperature
measurements

Consecutive satellite scenes overlap by 5 %. As a conse-
quence, at these overlapping zones repeated temperature
measurements are available with just a few seconds of dif-
ference. We used the data from 45 water bodies located in
the overlapping zones between consecutive scenes to esti-
mate the precision of satellite-based surface water temper-
atures.

The assessment of the accuracy of satellite measurements
was made by comparing them to in situ SML temperature
and temperature at 0.5 m for 5 lakes with continuous moni-
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Figure 3. Measurements and LOWESS of the bias of T0.50 m as
a function of the distance between the measurement point and the
nearest valid pixel in the satellite image.

toring (Table 1). We calculated the bias for the five water bod-
ies with continuous measurements as the difference between
field measurements and satellite temperature measurements
at the nearest pixel (Tsat) as

b0.50 m = Tsat− T0.50 m, (8)
bsml = Tsat− Tsml, (9)

where b0.50 m is the bias in relation to temperature at 0.50 m
and bsml is bias in relation to the SML temperature. The bias
depended on the distance of the measurement location to the
centre of the nearest pixel, because of spatial variability of
the surface temperature (Fig. 3). Absolute bias increased for
distances greater than 500 m. Most of the satellite-field data
pairs separated by more than 500 m correspond to SCR04,
the largest water body. Satellite temperatures measured near
the field measurement point at this reservoir (near the dam)
were warmer than in the open waters. To exclude this dis-
tance effect, we kept for further analyses the data pairs sepa-
rated by less than 400 m.

A more robust validation method would be the comparison
of corrected satellite radiances to in situ measurements with a
thermal radiometer. We did not apply this method because we
did not have surface temperature data measured by radiome-
ter yet. This analysis will be considered in future works.

3.5 Software used

We analysed the data using Python 2.7 and R 3.2.0 (R Core
Team, 2015). We used the Python packages NumPy (van
der Walt et al., 2011), Matplotlib (Hunter, 2007) and Pan-
das (McKinney, 2010) and the R packages MASS (Venables
and Ripley, 2002) and rLakeAnalyzer (Winslow et al., 2016).

4 Cool skin and warm layer effects

4.1 Theoretical salinity effects

The application of the COARE model revealed differences
in the cool skin effect caused by the difference in salin-
ity between the freshwater and seawater cases (Fig. 4a, c).
For low wind speeds (approx. < 4 m s−1) the skin effect was

Figure 4. Cool skin (a) and warm layer (b) effect estimated by the
model proposed by Fairall et al. (1996a) using the data for Bimont,
and the difference in cool skin (c) and warm skin (d) effect between
freshwater (salinity= 0 g kg−1) and seawater (35 g kg−1) according
to the same model and meteorological conditions.

more important (by 0.03 ◦C on average) and the cool skin
was thicker (by 0.2 mm on average) in the freshwater simu-
lation. The difference could attain 0.2 ◦C for very low wind
speeds. Above 4 m s−1, the two cases show a very simi-
lar behaviour, with average differences in cool skin effect
and thickness of 0.002 ◦C and 0.02 mm, respectively. For the
higher wind speeds shear-induced turbulent heat exchange
dominates, while for the lower wind speeds molecular and
convective heat exchange dominate (Fairall et al., 1996a;
Donlon et al., 1999, 2002). The simulated warm layer effect
was more intense for the seawater case than for the freshwa-
ter case, especially for low wind speeds (Fig. 4b, d). For wind
speeds below 6 m s−1, the difference was 0.03 ◦C on average,
but could amount to almost 0.4 ◦C. These differences do not
take into account the effect of different solar absorption in
the water column. Also, differences in the wave field and the
atmospheric boundary layer in lakes could have an effect on
skin temperatures (Wilson et al., 2013).

4.2 Cool skin effect

For high wind speeds, the different wind-dependent cool
skin parameterisations converge to cool skin effect values
of about −0.2 ◦C (Fig. 5). The uncertainty is higher for low
wind speeds, where convective and molecular heat transfer
are more important than the effect of wind shear (Fairall et
al., 1996a; Donlon et al., 2002) and the use of more complex
parameterisations is advised (Donlon et al., 2002). This is es-
pecially relevant for inland water bodies, where wind speeds
are smaller than those found in the open sea (Wilson et al.,
2013).

www.earth-syst-sci-data.net/10/727/2018/ Earth Syst. Sci. Data, 10, 727–743, 2018
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Figure 5. Cool skin effect (1Tc) as a function of wind speed ac-
cording to several empirical parameterisations.
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Figure 6. Warm layer effect (1Tw) at 0.55 m at the reservoir of
Bimont as a function of the time of measurement, wind speed and
solar radiation, 21 February 2014 to 31 July 2016.

According to the results of the COARE algorithm, the
mean estimated 1Tc was −0.46 ◦C, the maximum 1Tc was
−1.08 ◦C and the first and third quartile were -0.31 and -
0.61 ◦C, respectively (Fig. 4a). The estimated cool skin depth
was mostly 2–3 mm (first quartile: 1.8 mm; third quartile:
2.8 mm), although occasionally the algorithm predicted skin
depths deeper than 1 cm (maximum skin depth of 1.65 cm).
During the day, the cool skin could disappear. These val-
ues are consistent with measurements at Lake Tahoe, with
median skin effects of −0.34 to −0.46 ◦C at night (Wilson
et al., 2013). Measurements taken in crater lakes (Oppen-
heimer, 1997) and cooling ponds (Wesely, 1979; Adams et
al., 1990) show that cool skin effects can attain −1 to −3 ◦C
in hot and heated inland water bodies.

4.3 Warm layer effect

The measured warm layer effect at 0.55 m was mostly pos-
itive during the day, with maximum values around midday
(Fig. 6). For wind speeds above 7 m s−1, the daily variability
in 1Tw(0.55 m) disappeared. This is consistent with a limit
between 6 and 10 m s−1 found by other authors (Gentemann
et al., 2003; Gentemann and Minnett, 2008). The more im-
portant surface warming (of almost 2 ◦C) occurred for low
winds and high solar radiation, in accordance with many
studies at the sea (Donlon et al., 1999, 2002; Kawai and
Wada, 2007; Gentemann and Minnett, 2008). The average
observed 1Tw(0.55 m) was 0.0 ◦C, the maximum observed
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Figure 7. Coefficient of determination and RMSE of the SML tem-
perature in relation to temperature at other depths.

1Tw(0.55 m) was 3.0 ◦C, and the minimum 1Tw(0.55 m)
was−0.7 ◦C. At night1Tw(0.55 m) was mostly negative, in-
dicating the presence of a cool layer caused by convective
cooling (Imberger, 1985).

Using the same data, as well as the data of the full-
length thermistor chain, we analysed the relation between
the surface temperature (below the cool skin) and Tsml, the
temperature of the surface mixed layer. The average differ-
ence between the surface and the surface mixed layer was
1Tw(sml)= 0.11 ◦C. The correlation between Tsml and the
temperature at different depths was almost constant and near
to 1 between the surface and a depth of 1.5 m (Fig. 7). The
RMSE we would incur was less than 0.3 ◦C if we used any of
these temperatures as an estimation of the SML temperature.
Below a depth of 2.5 m the RMSE sharply increased and the
correlation coefficient sharply decreased, with an inflection
point at a depth of about 5 m corresponding approximately
to the seasonal thermocline depth.

On average the warm layer effect predicted by the COARE
algorithm was small (mean of 0.25 ◦C; first quantile of
0.00 ◦C; third quantile of 0.26 ◦C), but it could attain max-
imum values of about 3 ◦C for wind speeds of 2–4.5 m s−1

(Fig. 4b). At 10:00 UTC, around the time of satellite over-
pass, the estimated average warm layer effect was 0.34 ◦C.
These results contrast with the warm layer observations. The
maximum values observed for this range of wind speeds
were less than 2 ◦C in general (Fig. 6) and the average ob-
served warm layer effect was 0.0 ◦C. Following Fairall et
al. (1996a), we estimated the warm layer effect at the depth
zr as

1Tw (zr)=1Tw
zr

DT
, (10)

where DT is the estimated depth of the warm layer, assum-
ing a linear profile, and compared them to the field mea-
surements. For zr = 0.55 m, the coefficient of correlation be-
tween measurements and estimations was 0.45 and the root
mean square error was 0.22 ◦C, with the model overestimat-
ing the surface thermal gradient. The highest correlation be-
tween estimated and measured warm layer effect was found
for zr = 2.50 m, with a correlation coefficient of 0.78 and
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RMSE= 0.32 ◦C. The discrepancies between the simulation
and the measurements can be attributed to several factors:

– The model proposed by Fairall et al. (1996a) does not
allow for negative warm layers (or cool layers). Some
of the effects of convective cooling are included in the
definition of the cool skin, but they are constrained to
the upper millimetres of the water column.

– The meteorological data used to force the COARE algo-
rithm were measured at about 10 km from the study site.
Although air temperature data were corrected for alti-
tude effects, local micrometeorological conditions at the
reservoir of Bimont are probably different to those mea-
sured at the meteorological station of Aix-en-Provence
(Prats et al., 2018b). For example, the wind field might
be affected by local orography and relative humidity
could be affected by the presence of the reservoir.

– The parameterisation of the solar radiation absorption
might be inadequate. Ohlmann and Siegel (2000) pro-
posed a parameterisation of the transmission of solar
radiation in the ocean which took into account the ef-
fect of the vertical distribution of chlorophyll in the wa-
ter column, the cloud amount and the solar zenith an-
gle. The implementation of this parameterisation into
the COARE bulk flux algorithm improved the quality of
the sea surface temperature simulations (Ohlmann and
Siegel, 2000; Wick et al., 2005). The COARE 3.0 so-
lar absorption parameterisation might be particularly ill-
adapted to the freshwater case, since freshwater is typi-
cally less transparent than open sea water.

– The distortion of the temperature field by the measuring
device and platforms may cause errors in surface tem-
perature measurements (Kawai and Kawamura, 2000).
Kawai et al. (2009) found differences exceeding 1.0 ◦C
between measurements taken at a depth of 0.20 m at dif-
ferent sides of a surface-moored buoy 2.4 m in diameter.
The differences were greater when diurnal warming was
important. Since the buoy used for the 0.55 m chain (a
polystyrene plate 0.75 m wide) was much less intrusive,
we expect the platform effect to be less important. In
addition, a comparison between the 0.55 m sensor of the
0.55 m chain and the 0.5 sensor of the nearby full-length
chain revealed only small differences.

5 Quality assessment of LakeSST

5.1 Effect of the time of measurement

In the previous sections we analysed the relation between
the surface temperature and T0.55 m during the day. However,
the pass-over time of Landsat above a given Earth zone is
quite constant. During the study period, the Landsat satellites
passed above the reservoir of Bimont between 09:54 UTC
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Figure 8. Histogram of 1Tw(0.55 m) at the reservoir of Bimont at
10:00 UTC, 21 February 2014 to 24 April 2016.

and 10:26 UTC. In this section we analyse 1Tw(0.55 m) at
10:00 UTC.

At 10:00 UTC,1Tw(0.55 m) was very small for most mea-
surements at the reservoir of Bimont (Fig. 8): the mean
1Tw(0.55 m) was 0.05 ◦C, the median 1Tw(0.55 m) was
0.00 ◦C and the standard error was 0.21 ◦C. The maximum
observed value of 1Tw(0.55 m) at 10:00 UTC was 1.6 ◦C,
but 1Tw(0.55 m) was higher than 0.5 ◦C only 5 % of the
time. Similarly, the mean1Tw(sml) was 0.11 ◦C, the median
1Tw(sml) was 0.06 ◦C and the standard error was 0.16 ◦C.

The previous values are valid for all-cloud situations; how-
ever, because of the way satellite images are taken there is a
selection bias: surface temperature measurements were only
selected here for clear skies (kt≥ 0.6). Under such condi-
tions, the average 1Tw(0.55 m) at 10:00 UTC was 0.07 ◦C,
the median was 0.00 ◦C and the standard error was 0.24 ◦C;
and for the surface mixed layer, the average 1Tw(sml) at
10:00 UTC was 0.12 ◦C, the median was 0.07 ◦C and the
standard error was 0.17 ◦C.

5.2 Precision of satellite-based surface water
temperature measurements

Figure 9 shows the differences in temperature between suc-
cessive scenes for individual pixels. The differences in tem-
perature for individual pixels in successive scenes is unbi-
ased with a median difference of 0.00 ◦C (mean: −0.08 ◦C;
first quartile: -0.0007 ◦C; third quartile: 0.0007 ◦C) and a root
mean square error of 0.20 ◦C. There is a feeble variation of
the RMSE between groups, whether the data are grouped by
month (0.28 to 0.49 ◦C, Fig. 9d), season (0.36 to 0.40 ◦C,
Fig. 9e) or year (0.25 to 0.52 ◦C, Fig. 9f). In contrast, oc-
casionally there can be important variations of temperature
differences within a given group (e.g. −2.5 to +7.3 ◦C for
the month of April, Fig. 9a). Temperature differences remain
within the range from −2 to +2 ◦C for most years. However,
in some notable cases (especially the years 2007 and 2011,
Fig. 9c) the maximum differences could exceed 5 ◦C. The
most important biases (more than 3 ◦C) were concentrated on
a few particular dates and water bodies (Table 2). In all cases,
these biases were localised near the water edge (Fig. 10), of-
ten on the west side of the water body, but sometimes also
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Figure 9. Above: box plots of the differences in temperature between consecutive scenes for individual pixels grouped by month of the
year (a), by season (b) and by year (c). Below: Root mean square error of the temperature differences grouped by month of the year (d), by
season (e) and by year (f).

on the east side. The problem is due to georeferencing errors
which may result in important errors in the temperatures re-
trieved from satellite images (Sentlinger et al., 2008). In fact,
the Lac de Carcans-Hourtin shown in Fig. 10 is located at
low altitude and near the sea and the image with path/row
201/029 shows a horizontal displacement of several hun-
dred metres. Geometric accuracy of Landsat images varies
with instrument and processing level. For example, Landsat
ETM+ nominal accuracy is at least 250 m 90 % of the time at
the sea level in areas of low relief, while Landsat 5 TM level
L1GS images have a geometric accuracy of at least 700 m
90 % of the time at the sea level in areas of low relief.

5.3 Satellite image artefacts

The Landsat website (https://landsat.usgs.gov/known-issues)
lists several types of artefacts that can be present in the Land-
sat data. The artefacts that can affect thermal readings in-
clude banding, impulsive noise, coherent noise and memory.

Banding consists of the apparition of bands in the images
that can be due to different types of error. Impulsive noise
can include both underestimations and overestimations of ra-
diance in individual pixels. It is often linked to problems of
transmission or treatment of transcription of the images, but
may be due to several reasons. Coherent noise appears in the
form of a repetitive noise pattern in the images, which can
be caused by different electric systems on board of the satel-
lite. Memory effects are due to the reduced response of the
sensor after scanning a bright (hot) target. As a result, if after
the bright (hot) target the sensor finds an uniform region like
the water surface, the measured values will be slightly lower
than in the next scan in the inverse sense, producing a band-
ing (Teillet et al., 2004; NASA, 2011). This artefact could af-
fect surface temperature measurements in water bodies, espe-
cially when there are great differences with the surrounding
terrain. The thermal band measurements of Landsat 7 ETM+
can be slightly affected by memory effects (Goward et al.,
2001). The banding in Landsat 7 images is corrected during
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Figure 10. Water temperature according to two overlapping images for the Étang de Carcans-Hourtin (ECH33) on 7 April 2011, and absolute
temperature difference between both images.

Table 2. List of pairs of overlapping satellite images with temperature differences higher than 3 ◦C.

Date Satellite Path/Row Water body

12 May 2002 Landsat 7 197/030, 197/031 Lac de Matemale (MAT66)
22 Sep 2004 Landsat 7 197/030, 197/031 Lac de Puyvalador (PUY66)
12 Apr 2007 Landsat 5 201/028, 201/029 Lac de Carcans-Hourtin (ECH33)
22 Mar 2011 Landsat 5 201/028, 201/029 Lac de Carcans-Hourtin (ECH33)
7 Apr 2011 Landsat 5 201/028, 201/029 Lac de Carcans-Hourtin (ECH33)
29 Aug 2011 Landsat 5 201/028, 201/029 Lac de Carcans-Hourtin (ECH33)

image production wherever it is detectable, i.e. in smooth,
homogeneous surfaces (ESA, 2003; NASA, 2011). Accord-
ing to Teillet et al. (2004), memory effects have not been
observed in the measurements of the thermal band of Land-
sat 5 TM.

We have no measure of the incidence of these artefacts in
the database, but we have observed banding in some images
(e.g. Fig. 10). Also, in Fig. 10 temperature varies spatially in
an east–west direction. Such spatial variability may be due to
upwellings caused by the wind (Marti-Cardona et al., 2008).
However, the presence of banding may indicate that memory
effects are also present. To decrease the impact of artefacts,
we recommend using the median temperature for each satel-
lite image. The advantage of using the median is that it is a
robust statistic resistant to the effect of extreme values. To
validate the spatial variability of temperature in satellite im-
ages, several spatially distributed measurements points in a
water body would be necessary.

In addition, on 31 May 2003 the Scan Line Corrector of the
Landsat 7 satellite failed. As a result, from that moment the
measurement scans could not be corrected for the forward
motion of the satellite and about 22 % of image data were
lost. The gaps are less important in the centre of the image

and increase towards the edge. This is known as the Land-
sat 7 SLC-off issue. Since this problem does not affect the
radiometric and geometric corrections (https://landsat.usgs.
gov/slc-products-background), SLC-off data could still be
used for the creation of the data set and no interpolation was
applied to fill the data gaps.

5.4 Comparison of satellite measurements to field data

To compare satellite measurements to field data, it is neces-
sary to correct them according to Eq. (2) to account for the
cool skin and warm layer effects. However, the performance
of the COARE algorithm in the estimation of 1Tw was not
very good (coefficient of correlation of 0.45, Sect. 4.3) and
we prefer not to use it to correct the warm layer effect. One-
dimensional hydrodynamic models used by the limnological
community do not offer a solution either, since their RMSE
is typically ∼ 1–2 ◦C (e.g. Read et al., 2014), of the same
order of magnitude as the RMSE of the satellite tempera-
ture estimations (see below). However, whatever the algo-
rithm the determination of site- and time-specific corrections
would still require the use of in situ (i.e. above the water)
rarely available meteorological data, because of the microm-
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Figure 11. Comparison of satellite-based temperature estimations
(T *) and in situ temperatures (T ): (a) temperature at 0.5 m, (b) tem-
perature of the surface mixed layer. The diagonal line represents the
1 : 1 relation.

eteorological conditions above inland water bodies. For these
reasons, we applied the same correction, derived from the re-
sults for the reservoir of Bimont, to the five validation sites
as a first approach. When more validation data become avail-
able, more complex corrections may be envisaged.

The average expected cool skin effect at the reservoir of
Bimont was 1Tc =−0.46 ◦C (Sect. 4.2) and the average
warm layer effect at the time of the satellite overpass was
1Tw(0.50 m)≈ 0.07 ◦C and 1Tw(sml)= 0.12 ◦C (Sect. 5.1).
So, we estimated surface temperature as

T ∗0.50 m = Tskin−1Tc−1Tw(0.50m)= Tskin+ 0.39◦C, (11)
T ∗sml = Tskin−1Tc−1Tw(sml)= Tskin+ 0.34◦C. (12)

The correlation between corrected satellite temperatures and
in situ temperatures was good (ρ = 0.97–0.98) and the over-
all RMSE was 1.30 ◦C for Tsml and 1.17 ◦C for T0.50 m (Ta-
ble 1, Fig. 11). For the overall set of water bodies, the bias
of corrected satellite temperatures was not statistically differ-
ent from zero (p value= 0.25 for Tsml and p value= 0.40 for
T0.50 m). However, one of the water bodies (LPC38) showed
a bias significantly different from zero at the α = 0.05 level,
probably indicating that the correction was not appropriate
for this lake.

These observations improve uncertainty estimations per-
formed in the former study (Simon et al., 2014), which re-
ports coefficients of determination above 0.9 and RMSE of
1–2 ◦C. The error statistics found for French water bodies
are comparable to those found in other studies using satel-
lite images to estimate surface water temperatures. Crosman
and Horel (2009) found a cool bias of −1.5 ◦C of MODIS-
derived surface temperatures of the Salt Lake relative to
T0.50 m. Lamaro et al. (2013) used Landsat 7 ETM+ thermal
images to obtain surface temperatures for the Río Tercero
reservoir in Argentina. They obtained an RMSE of 1.2 ◦C
when using the SC algorithm of Jiménez-Muñoz et al. (2009)
and an RMSE of 1.0 ◦C when using the Radiative Transfer
Method.

The bias showed a seasonal pattern, with underestimations
occurring in the months of September to February (Fig. 12).
Lamaro et al. (2013) observed that the SC algorithm tended
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Figure 12. Bias for the temperature at 0.50 m as a function of the
month of the year. Asterisks indicate statistically significant differ-
ences from zero at the 0.05 level.

to overestimate water temperatures except in July (winter in
the Southern Hemisphere) when they were underestimated.
They thought it might be caused by the greater difference be-
tween the colder air and the water. Allan et al. (2016) showed
that, depending on the sources of atmospheric data, the SC
algorithm tended to underestimate or overestimate water sur-
face temperatures.

To find the reason for the observed seasonal bias, we cal-
culated the correlation between b0.50 m and several variables:
water temperature, atmospheric water content, distance be-
tween the measuring station and the nearest valid pixel,
daily liquid precipitation, daily air temperature, daily spe-
cific humidity, daily wind speed, daily downwelling long-
wave radiation, daily incoming solar radiation, solar ele-
vation at 10:00 UTC and daily clearness index. To avoid
multiple testing issues when assessing the statistical signif-
icance of correlations, we used a Bonferroni correction of
the significance level using α = 0.05/13 where 13 is the
number of tests. The bias was correlated with air temper-
ature (ρ = 0.37, p value= 2.7× 10−4), daily solar radia-
tion (ρ = 0.47, p value= 2.3× 10−6) and solar elevation at
10:00 UTC (ρ = 0.45, p value= 7.3× 10−6). Similar results
could be found for bsml. Since some of these variables were
correlated among themselves, the number of variables to ex-
plain the variability in the bias could be reduced to just 1 by
using stepwise model selection by Akaike information crite-
rion:

b0.50 m =−1.51+ 7.129× 10−4Rs, (13)

bsml =−1.56+ 8.725× 10−4Rs, (14)

where Rs is the downwelling solar radiation (J cm−2). This
seasonal pattern might be due to the use of constant aver-
age cool skin and warm layer effects in Eqs. (11)–(12). Ac-
cording to the continuous measurements taken at the reser-
voir of Bimont, there is a positive correlation (ρ = 0.25,
p value= 6.1× 10−9) between the warm layer effect and so-
lar radiation at 10:00 UTC for clear-sky conditions. However,
in situ radiometric skin temperature measurements would be
necessary to prove this point. Also, given the high correla-
tion between Ta and Rs (ρ = 0.68, p value= 1.3× 10−13),
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the term Rs might partially account for air temperature ef-
fects. Although not correlated to emittance, air temperature
is well correlated to sky temperature (Aubinet, 1994), affect-
ing the longwave radiation balance. The dependence between
air temperature and longwave radiation balance is not taken
into account by the SC algorithm. In fact, the results of SC
algorithms, including the one used here, can be improved by
using Ta in addition to water vapour as input data (Qin et al.,
2001; Cristóbal et al., 2009).

6 Applications

Satellite data can be used to demonstrate inter-lake spa-
tial and temporal patterns of surface water temperature. A
first analysis of spatial patterns was carried by Prats and
Danis (2015) using a preliminary version of the database
and showing a good correlation between surface tempera-
ture and latitude and altitude. Since satellite water temper-
ature measurements are a continuous source of data, they
can be used for long-term studies, such as the monitoring of
climate change effects. This was demonstrated by Schnei-
der and Hook (2010) and Schneider et al. (2009) by cal-
culating surface temperature trends obtained from AVHRR
(Advanced Very High Resolution Radiometers) and ATSR
(Along-Track Scanning Radiometer) instruments. Such stud-
ies have demonstrated warming rates of 0.11 ◦C yr−1 for
lakes in California and Nevada over the period 1992–2008
(Schneider et al., 2009) and an average of 0.045 ◦C yr−1

over the period 1985–2009 for 167 large inland water bod-
ies worldwide (Schneider and Hook, 2010). Still, the utility
of the data set LakeSST for climate change studies is limited
by the magnitude of its RMSE (1.16 ◦C for T ∗0.50 m, 1.29 ◦C
for T ∗sml), which means that longer time series may be neces-
sary to detect long-term trends confidently, as well as more
complex corrections of the cool skin and warm layer effects
than those proposed here to reduce the level of noise.

Satellite measurements can also be used to complement
the data used for the calibration and validation of hydro-
dynamic and water quality models of lakes. Although these
models require profile data, long data series of profile data
are still rare and satellite measurements can be useful to pro-
vide long-term data for the study at hand. The value of the
calibration parameters depends on the available data (An-
dréassian et al., 2012; Prats and Danis, 2017) and it is in-
teresting to test the long-term performance of a model, es-
pecially if it will be used to predict the effects of climate
change or similar long-term effects. Satellite measurements
have been used to assess the long-term performance of a hy-
drodynamic model of the reservoir of Bimont (Prats et al.,
2018b). Satellite images are particularly useful for the appli-
cation of two-dimensional and three-dimensional models.

Satellite images can be used to estimate surface fluxes.
The knowledge of the surface fluxes of heat and gases is
important for research and management. The study of the

thermal surface fluxes is important to understand the thermal
behaviour of lakes (Henderson-Sellers, 1986). A good esti-
mation of evaporation is necessary to accurately estimate the
hydrologic budget of a lake (Sahoo et al., 2013) and allows
an estimation of a part of the water footprint of a nation due
to artificial water reservoirs (Hoekstra, 2017). These fluxes
depend on Tint (Saunders, 1967; Kawai and Wada, 2007);
Tint determines the emitted longwave radiation and the value
of the saturation vapour pressure at the surface, affecting la-
tent and sensible flux calculations (Webster et al., 1996). The
interface temperature Tint is a theoretical value and cannot
be known (Donlon et al., 2002). In the absence of such a
value, experimental studies often use some form of surface
bulk temperature to estimate the heat fluxes of inland water
bodies (e.g. Oswald and Rouse, 2004; Binyamin et al., 2006;
Ramos-Fuertes et al., 2016). However, sea models show that
the skin effect on surface heat flux calculations can be of
a few tens of watts per square metre (Fairall et al., 1996a;
Webster et al., 1996) and it can also affect the exchange of
gases (Kawai and Wada, 2007). Satellite images can be used
to improve the accuracy of the estimations (Lofgren and Zhu,
2000), assuming that Tskin is close enough to Tint (Kawai and
Wada, 2007).

7 Data availability

The LakeSST data set is distributed under a Creative Com-
mons Attribution 4.0 License. The data may be downloaded
from the data repository Zenodo at https://doi.org/10.5281/
zenodo.1193745 (Prats et al., 2018a). The original tempera-
ture ASCII rasters used to derive the data set may be obtained
by request from the authors.

8 Conclusions

The LakeSST data set contains skin surface water tempera-
ture data for 442 French water bodies for the period 1999–
2016 obtained from archives of Landsat 5 and Landsat 7
thermal infrared images. The overall RMSE of the satellite-
derived temperature measurements is about 1.2 ◦C, similar
to other applications of satellite images to estimate freshwa-
ter surface temperatures. The spatial and temporal coverage
of the database make it an ideal resource for studies on the
temporal evolution of lake surface temperature and for geo-
graphical studies of temperature patterns.

Since cool skin and warm layer algorithms have been de-
veloped mainly for the sea and have not been extensively
tested in a freshwater environment – except in extreme cases
such as cooling ponds (Wesely, 1979; Adams et al., 1990)
– and the warm layer correction estimated by the COARE
algorithm using SAFRAN meteorological data was not sat-
isfactory, we provide the satellite temperature data “as is”,
without applying any correction, leaving the user free to de-
cide which correction to apply, if necessary. In fact, in some
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cases (e.g. studies on surface fluxes) a correction may not be
necessary. If a cool skin correction is used (i.e. if the user
is interested in the temperature of the first 1–2 m), we rec-
ommend using one of those which can take into account the
differences in the physical characteristics between freshwa-
ter and seawater and an appropriate parameterisation of the
solar radiation absorption in the water column.

We suggest using the median temperature for each image
as an estimation of the average surface temperature of each
water body on the measurement date. The estimated temper-
atures show a seasonal bias that depends on incoming solar
radiation. This problem may be solved by applying Eqs. (13)
or (14).

The Supplement related to this article is available online
at https://doi.org/10.5194/essd-10-727-2018-supplement.
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