P. Erdos and A. Rényi, On the evolution of random graphs, Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol.5, pp.17-61, 1960.

M. E. Newman, The structure and function of complex networks, SIAM Review, vol.45, pp.167-256, 2003.

B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander, Configuring random graph models with fixed degree sequences, SIAM Review, vol.60, pp.315-355, 2018.

A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical Processes on Complex Networks, 2008.

J. P. Gleeson, High-accuracy approximation of binarystate dynamics on networks, Phys. Rev. Lett, vol.107, p.68701, 2011.

R. Pastor-satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett, vol.86, p.3200, 2001.

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabási, The large-scale organization of metabolic networks, Nature, vol.407, pp.651-654, 2000.

R. V. Solé and J. M. Montoya, Complexity and fragility in ecological networks, Proc. R. Soc. Lond. B, vol.268, pp.2039-2045, 2001.

P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, Attack vulnerability of complex networks, Phys. Rev. E, vol.65, p.56109, 2002.

B. Bollobás and O. Riordan, Robustness and vulnerability of scale-free random graphs, Internet Mathematics, vol.1, pp.1-35, 2004.

R. Albert, H. Jeong, and A. Barabási, Error and attack tolerance of complex networks, Nature, vol.406, p.378, 2000.

R. Cohen, K. Erez, D. Ben-avraham, and S. Havlin, Resilience of the internet to random breakdowns, Phys. Rev. Lett, vol.85, p.4626, 2000.

M. E. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E, vol.69, p.26113, 2004.

B. Karrer and M. E. Newman, Stochastic blockmodels and community structure in networks, Phys. Rev. E, vol.83, p.16107, 2011.

S. Maslov and K. Sneppen, Specificity and Stability in Topology of Protein Networks, Science, vol.296, pp.910-913, 2002.

R. Milo, Network motifs: simple building blocks of complex networks, Science, vol.298, pp.824-827, 2002.

D. J. Watts and S. H. Strogatz, Collective dynamics of "small-world" networks, Nature, vol.393, pp.440-442, 1998.

J. Onnela, Structure and tie strengths in mobile communication networks, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.7332-7336, 2007.

P. Holme and J. Saramäki, Temporal networks, Phys. Rep, vol.519, pp.97-125, 2012.

P. Holme, Modern temporal network theory: a colloquium, Eur. Phys. J. B, vol.88, pp.1-30, 2015.

L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki, Temporal motifs in time-dependent networks, J. Stat. Mech. Theory Exp, p.11005, 2011.

M. Karsai, K. Kaski, A. Barabási, and J. Kertész, Universal features of correlated bursty behaviour, Sci. Rep, vol.2, p.397, 2012.

M. Karsai, K. Kaski, and J. Kertész, Correlated dynamics in egocentric communication networks, PLoS One, vol.7, p.40612, 2012.

L. Kovanen, K. Kaski, J. Kertész, and J. Saramäki, Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.18070-18075, 2013.

C. Orsini, Quantifying randomness in real networks, Nat. Commun, vol.6, p.8627, 2015.

M. Karsai, Small but slow world: How network topology and burstiness slow down spreading, Phys. Rev. E, vol.83, p.25102, 2011.

L. E. Rocha, F. Liljeros, and P. Holme, Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts, PLoS Comp. Biol, vol.7, p.1001109, 2011.

G. Miritello, E. Moro, and R. Lara, Dynamical strength of social ties in information spreading, Phys. Rev. E, vol.83, p.45102, 2011.

M. Starnini, A. Baronchelli, A. Barrat, and R. Pastorsatorras, Random walks on temporal networks, Phys. Rev. E, vol.85, p.56115, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678579

M. Kivelä, Multiscale analysis of spreading in a large communication network, J. Stat. Mech. Theory Exp, vol.2012, p.3005, 2012.

L. Gauvin, A. Panisson, C. Cattuto, and A. Barrat, Activity clocks: spreading dynamics on temporal networks of human contact, Sci. Rep, vol.3, p.3099, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00836266

F. Karimi and P. Holme, Threshold model of cascades in empirical temporal networks, Physica A, vol.392, pp.3476-3483, 2013.

T. Takaguchi, N. Masuda, and P. Holme, Bursty Communication Patterns Facilitate Spreading in a ThresholdBased Epidemic Dynamics, PLoS One, vol.8, 2013.

P. Holme and F. Liljeros, Birth and death of links control disease spreading in empirical contact networks, Sci. Rep, vol.4, p.4999, 2014.

M. Karsai, N. Perra, and A. Vespignani, Time varying networks and the weakness of strong ties, Sci. Rep, vol.4, p.4001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00960361

V. Backlund, J. Saramäki, and R. K. Pan, Effects of temporal correlations on cascades: Threshold models on temporal networks, Phys. Rev. E, vol.89, p.62815, 2014.

A. Cardillo, Evolutionary dynamics of timeresolved social interactions, Phys. Rev. E, vol.90, p.52825, 2014.

B. Thomas, R. Jurdak, K. Zhao, and I. Atkinson, Diffusion in colocation contact networks: the impact of nodal spatiotemporal dynamics, PLoS One, vol.11, p.152624, 2015.

J. Delvenne, R. Lambiotte, and L. E. Rocha, Diffusion on networked systems is a question of time or structure, Nat. Commun, vol.6, p.7366, 2015.

J. Saramäki and P. Holme, Exploring temporal networks with greedy walks, Eur. Phys. J. B, vol.88, pp.1-8, 2015.

M. Génois, C. L. Vestergaard, C. Cattuto, and A. Barrat, Compensating for population sampling in simulations of epidemic spread on temporal contact networks, Nat. Commun, vol.6, p.8860, 2015.

E. Valdano, C. Poletto, and V. Colizza, Infection propagator approach to compute epidemic thresholds on temporal networks: impact of immunity and of limited temporal resolution, Eur. Phys. J. B, vol.88, p.341, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01251387

P. Holme, Temporal network structures controlling disease spreading, Phys. Rev. E, vol.94, p.22305, 2016.

M. Pósfai and P. Hövel, Structural controllability of temporal networks, New J. Phys, vol.16, p.123055, 2014.

A. Li, S. P. Cornelius, Y. Liu, L. Wang, and A. Barabási, The fundamental advantages of temporal networks, Science, vol.358, pp.1042-1046, 2017.

T. Takaguchi, N. Sato, K. Yano, and N. Masuda, Importance of individual events in temporal networks, New J. Phys, vol.14, p.93003, 2012.

T. Takaguchi, N. Sato, K. Yano, and N. Masuda, Inferring directed static networks of influence from undirected temporal networks, Proceedings of IEEE 37th

, Annual Computer Software and Applications Conference, pp.155-156, 2013.

T. Takaguchi, Y. Yano, and Y. Yoshida, Coverage centralities for temporal networks, Eur. Phys. J. B, vol.89, p.35, 2016.

J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora, Small-world behavior in time-varying graphs, Phys. Rev. E, vol.81, p.55101, 2010.

L. Alessandretti, P. Sapiezynski, S. Lehmann, and A. Baronchelli, Evidence for a conserved quantity in human mobility, Nat. Hum. Behav, vol.2, pp.485-491, 2018.

P. Bajardi, A. Barrat, F. Natale, L. Savini, and V. Colizza, Dynamical patterns of cattle trade movements, PLoS One, vol.6, p.19869, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594746

P. Holme, Network reachability of real-world contact sequences, Phys. Rev. E, vol.71, p.46119, 2005.

U. Redmond and P. Cunningham, Identifying overrepresented temporal processes in complex networks, Proceedings of the 2nd Workshop on Dynamic Networks and Knowledge Discovery co-located with ECML PKDD, vol.1229, pp.61-72, 2014.

K. Sun, A. Baronchelli, and N. Perra, Contrasting effects of strong ties on SIR and SIS processes in temporal networks, Eur. Phys. J. B, vol.88, p.326, 2015.

D. Jurgens and T. Lu, Temporal Motifs Reveal the Dynamics of Editor Interactions in Wikipedia, Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media, vol.1, pp.162-169, 2012.

T. Squartini, G. Fagiolo, and D. Garlaschelli, Randomizing world trade. i. a binary network analysis, Phys. Rev. E, vol.84, p.46117, 2011.

T. Squartini, G. Fagiolo, and D. Garlaschelli, Randomizing world trade. ii. a weighted network analysis, Phys. Rev. E, vol.84, p.46118, 2011.

F. Saracco, R. D. Clemente, A. Gabrielli, and T. Squartini, Detecting early signs of the 2007-2008 crisis in the world trade, Sci. Rep, vol.30286, 2016.

E. T. Jaynes, Information theory and statistical mechanics, Physical Review, vol.106, pp.620-630, 1957.

S. Presse, K. Ghosh, J. Lee, and K. A. Dill, Principles of maximum entropy and maximum caliber in statistical physics, Rev. Mod. Phys, vol.85, pp.1115-1141, 2013.

P. Good, Parametric and Bootstrap Tests of Hypotheses, 2005.

L. Katz and J. H. Powell, Probability distributions of random variables associated with a structure of the sample space of sociometric investigations, Ann. Math. Stat, vol.28, p.442, 1957.

T. Snijders, Enumeration and simulation methods for 0-1 matrices with given marginals, Psychometrika, vol.56, pp.397-417, 1991.

, To apply the formalism to other types of data it suffices to replace the state space G in Definitions II.3 and II.7 by the appropriate state space, e.g. of multilayer networks or of hypergraphs

J. Fournet and A. Barrat, Contact patterns among high school students, PLoS One, vol.9, p.107878, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065922

A. Stopczynski, Measuring large-scale social networks with high resolution, PLoS One, vol.9, p.95978, 2014.

, but as all of the reference models encountered in the literature keep the system size (measured in the number of nodes) fixed, we can (implicitly) fix each full state space to contain only networks of fixed size. Furthermore, for RRMs the time can be considered finite as the observation windows and measurement resolutions are finite

K. Hrbacek and T. Jech, Introduction to Set Theory, Revised and Expanded, 1999.

R. P. Stanley, Cambridge studies in advanced mathematics, vol.1, 2011.

D. Berend and T. Tassa, Improved bounds on bell numbers and on moments of sums of random variables, Probability and Mathematical Statistics, vol.30, pp.185-205, 2010.

, The number of functions leading to different MRRMs is equal to the the number of possible partitions of the state space of temporal networks of a given size

J. I. Perotti, H. Jo, P. Holme, and J. Saramäki, Temporal network sparsity and the slowing down of spreading, 2014.

, These node-grouped MRRMs can be seen as microcanonical variants of the stochastic block model, vol.110

, However, typical stochastic block models found in the literature assign either the links at random inside each block (i.e. equivalent to P[?, ?L]) or while constraining the degree sequence

X. Zhang, C. Moore, and M. E. Newman, Random graph models for dynamic networks, Eur. Phys. J. B, vol.90, p.200, 2017.

T. Squartini, R. Mastrandrea, and D. Garlaschelli, Unbiased sampling of network ensembles, New J. Phys, vol.17, p.23052, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219776

T. Squartini and D. Garlaschelli, Analytical maximumlikelihood method to detect patterns in real networks, New J. Phys, vol.13, p.83001, 2011.

N. Perra, B. Gonçalves, R. Pastor-satorras, and A. Vespignani, Activity driven modeling of time varying networks, Sci. Rep, vol.2, p.469, 2012.

R. Pfitzner, I. Scholtes, A. Garas, C. J. Tessone, and F. Schweitzer, Betweenness preference: Quantifying correlations in the topological dynamics of temporal networks, Phys. Rev. Lett, vol.110, p.198701, 2013.

M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and R. Lambiotte, Memory in network flows and its effects on spreading dynamics and community detection, Nat. Commun, vol.5, p.4630, 2014.

I. Scholtes, Causality-driven slow-down and speedup of diffusion in non-Markovian temporal networks, Nat. Commun, vol.5, p.5024, 2014.

T. P. Peixoto, Inferring the mesoscale structure of layered, edge-valued, and time-varying networks, Phys. Rev. E, vol.92, p.42807, 2015.

T. P. Peixoto and M. Rosvall, Modeling sequences and temporal networks with dynamic community structures, Nat. Commun, vol.8, p.582, 2017.

T. P. Peixoto and L. Gauvin, Change points, memory and epidemic spreading in temporal networks, Sci. Rep, vol.8, p.15511, 2018.

G. Casiraghi, V. Nanumyan, I. Scholtes, and F. Schweitzer, Generalized hypergeometric ensembles: Statistical hypothesis testing in complex networks, 2016.

G. Miritello, R. Lara, M. Cebrian, and E. Moro, Limited communication capacity unveils strategies for human interaction, Sci. Rep, vol.3, p.1950, 2013.

J. Stehlé, High-resolution measurements of faceto-face contact patterns in a primary school, PloS One, vol.6, p.23176, 2011.

V. Gemmetto, A. Barrat, and C. Cattuto, Mitigation of infectious disease at school: targeted class closure vs school closure, BMC Infect. Dis, vol.14, p.695, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01238750

J. Lin, Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Theory, vol.37, pp.145-151, 1991.

Y. Wu, C. Zhou, J. Xiao, J. Kurths, and H. J. Schellnhuber, Evidence for a bimodal distribution in human communication, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.18803-18808, 2010.

R. K. Pan and J. Saramäki, Path lengths, correlations, and centrality in temporal networks, Phys. Rev. E, vol.81, p.16105, 2011.

M. S. Granovetter, The strength of weak ties, Am. J. Sociol, vol.78, pp.1360-1380, 1973.

R. Pastor-satorras, C. Castellano, P. V. Mieghem, and A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys, vol.87, p.925, 2015.

C. L. Vestergaard and M. Génois, Temporal gillespie algorithm: Fast simulation of contagion processes on time-varying networks, PLoS Comp. Biol, vol.11, p.1004579, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140134

U. Alon, Network motifs: theory and experimental approaches, Nat. Rev. Genet, vol.8, pp.450-461, 2007.

S. S. Shen-orr, R. Milo, S. Mangan, and U. Alon, Network motifs in the transcriptional regulation network of escherichia coli, Nat. Genet, vol.31, p.64, 2002.

, penetration of the dynamical process, periodic temporal boundary conditions were applied letting the process to continue from the beginning of the event sequence once it reached the last event. Note that this condition introduces some biases, by generating nonexisting time-respecting paths, vol.92

D. J. Watts, A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.5766-5771, 2002.

K. I. Goh and A. Barabási, Burstiness and memory in complex systems, EPL, vol.81, p.48002, 2008.

M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life, 2006.

R. Kikas, M. Dumas, and M. Karsai, Bursty egocentric network evolution in Skype, SNAM, vol.3, pp.1393-1401, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01273785

M. Karsai, G. Iñiguez, R. Kikas, K. Kaski, and J. Kertész, Local cascades induced global contagion: How heterogeneous thresholds, exogenous effects, and unconcerned behaviour govern online adoption spreading, Sci. Rep, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01403282

D. E. Kirk, Optimal Control Theory: An Introduction, 1971.

Y. Liu, J. Slotine, and A. Barabási, Controllability of complex networks, Nature, vol.473, pp.167-173, 2011.

M. Kivelä, Multilayer networks, J. Complex Netw, vol.2, pp.203-271, 2014.

M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Random generation of combinatorial structures from a uniform distribution, Theor. Comput. Sci, vol.43, pp.169-188, 1986.

M. Latapy, T. Viard, and C. Magnien, Stream graphs and link streams for the modeling of interactions over time, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01665084

P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Soc. networks, vol.5, pp.109-137, 1983.

F. Supplementary, Values of a selection of features in the empirical face-to-face interaction network considered in Section VI A of the manuscript and in randomized networks generated from it. Original data is in black. Randomized data is in blue if constrained, in red if not. Red lines are medians over 100 randomizations, Effects of different timeline shufflings on temporal network features, vol.4

?. P__l-?-p, , p.1

?. , P__pidtau ? P[? L (?? ), p.1

?. , P__pGamma_sgnA Snapshot shufflings

?. ,

?. , P__pTheta with P__L_E

, P__pTheta with P__w_t ? P[k, I ? , p(w), t]: with P__w_t

?. , P__pTheta ? P

, P__pitau ? P[? L (? ), p.1

?. , P__pitau_pidtau ? P[? L (? ), ? L (?? ), p.1

?. ,

?. , , p.P__pttau

?. ?-p[p-l-(?) and ?. L. , , p.P__G_psigma

. ?-p[k, P__k_LCM with P__w_t