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Abstract. We deal with a severe ill posed problem, namely the recon-
struction process of an image during tomography acquisition with (very)
few views. We present di�erent methods that we have been investigated
during the past decade. They are based on variational analysis. This is
a survey paper and we refer to the quoted papers for more details.
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1. Introduction
This survey paper is devoted to a speci�c application of tomographic recon-
struction for a physical experiment whose goal is to study the behavior of a
material under a shock. We describe the motivating experiment in the sequel.
This leads to severely ill posed inverse problems. Indeed, the classical tomog-
raphy reconstruction process (involving the Radon operator that we depict
in Section 2.1) is well posed in the case where there is an in�nite number
of data. In most cases (medical imaging for example) there are a lot of data
(though the number is of course �nite) and the classical �ltered back projec-
tion method (that use the Fourier slice theorem) provides good results and
overcome the lack of well posedness. However, there are many situations when
there is not enough data: this happens for limited view angles (see [33] for
example) or when it is impossible to get more than two or three views. This
is the case of the experiment, depicted on Figure 1.1, that consists in causing
the implosion of the hull of some material (usually, a metal) whose features
are well known, using surrounding explosives. The problem is to determine
the shape of the interior interface at a speci�c moment of the implosion. For
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this purpose, a single X-ray radiography is performed, and the shape of the
object must then be reconstructed using a tomographic approach.

Figure 1.1. Experimental setup.

As mentioned before, when enough projections of the object, taken from
di�erent angles, are available, several techniques exist for tomographic recon-
struction, providing an analytic formula for the solution (see for instance [30]
or [23]). There is a huge literature about theoretical and practical aspects
of the problem of reconstruction from projections, the applications of which
concern medicine, optics, material science, astronomy, geophysics, and mag-
netic resonance imaging (see [10]). An important application is the problem
of medical transmission X-ray tomography (see [32]), in which X-rays are
�red from many angles through a single cross section of the body, measuring
line integrals of the linear attenuation coe�cient of the object. The resulting
collection of projections then permits to reconstruct the 3D body.

When only few projections are known, these methods cannot be used
directly, and some alternative methods have been proposed to reconstruct
partially the densities (see for instance [22]) As in any tomographic recon-
struction process, this problem leads to an ill-posed inverse problem. Since
we only have few radiographs at our disposal, data are not redundant and
the ill-posed character is even more accurate. Moreover, the 
ash has to be
very brief (several nanoseconds) due to the imploding movement of the hull.
Such X-rays cannot be provided by standard sources, and hence numerous
drawbacks appear, for instance the X-rays beam is not well focused and the
X-rays source is not punctual. This causes a blur on the radiograph. Fur-
thermore, contrarily to medical radiography where photons are absorbed by
bones, here X-rays must cross a very dense object and therefore must be of
high energy. Most of the photons are actually absorbed by the object and
only a few number of them arrive at the detector. It is therefore necessary
to add some ampli�cation devices and very sensitive detectors, which cause
a high noise level and another blur.

In this paper, we give an overview of the techniques that have been
developed during the past decade by the authors of the present paper [3, 4, 15]
and other collaborators. It would be too long to report on every technique we
investigated but one can refer to [1, 2, 13, 14] as well. Let us point out that
we decided to use variational methods because they are a quite e�cient tool
to deal with inverse problems. As most of the results have been published
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we do not give proofs and refer to the corresponding papers. However, we
have to mention that Section 4 is new and remained unpublished until now.
Therefore we give more details.

The paper is organized as follows. We �rst assume that the object to re-
construct is radially symmetric; we present in Section 2 the problem and the
mathematical framework (operators and mathematical tools). Section 3 deals
with the case where there is only one projection (and the object to recover is
still assumed to be axially symmetric). We present theoretical results there
while Section 4 is devoted to numerical realization (both algorithms and re-
sults). In Section 5 we abandon the axisymmetry assumption and investigate
a di�erent modeling via optimal transport techniques.

2. Setting the problem
2.1. The operators
Radiography measures the attenuation of X-rays through the object. Recall
that we consider a radially symmetric object. A point on the radiograph is
determined by Cartesian coordinates (y; z), where the z axis is the symme-
try axis. Let I0 denote the intensity of the incident X-rays 
ux. Then, the
measured 
ux I(y; z) at a point (y; z) is given by

I = I0e�
R
�(r;z)d‘;

where the integral operates along the ray that reaches the point (y; z) of
the detector, d‘ is the in�nitesimal element of length along the ray, and �
is the linear attenuation coe�cient. Considering the Neperian logarithm of
this attenuation permits to deal rather with linear operators, and the linear
mapping

� 7�!
Z
�d‘

is called the projection operator.
In practice, the ratio of the diameter of the object by the distance \X-

ray source - object" is small, and we assume for the sake of simplicity, that
the rays are parallel, and orthogonal to the symmetry axis. It follows that
horizontal slices of the object can be considered separately to perform the
projection. In these conditions, for a 3D object represented by a linear atten-
uation coe�cient ~u(x; y; z) (with compact support) in Cartesian coordinates,
the projection operator H0 can be written

(H0~u)(y; z) =
Z

R
~u(x; y; z)dx: (2.1)

Since we assume that the objects are bounded and axially symmetric, it is
relevant to make use of cylindrical coordinates (r; �; z), where the z-axis desig-
nates the symmetry axis. Such objects are represented by a linear attenuation
coe�cient u(r; z), where u denotes a function of L1(R+ � R) with compact
support. In the sequel, all such functions are assumed to have a compact
support contained in the subset 
 = [0; a) � (�a; a) of R2, where a > 0 is
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�xed. Then, one de�nes H0u = H0~u, where ~u(x; y; z) = u(
p
x2 + y2; z) for all

x; y; z 2 R, and where H0~u is de�ned by (2.1). An obvious change of variable
leads to

(H0u)(y; z) = 2
Z +1

jyj
u(r; z)

r
p
r2 � y2

dr; (2.2)

for almost all y; z 2 R.
It is clear that the function H0u is of compact support contained in

~
 = (�a; a)2. In what follows, functions of compact support contained in 

(resp., in ~
) and their restriction to 
 (resp., in ~
) are denoted similarly.
Moreover H0 extends to a linear operator (still denoted H0) on Lp(
), for
every p 2 [1;+1]. In particular, H0 : Lp(
) ! Ls(~
) is a continuous linear
operator, for every p 2 [1;+1] and every s such that s 2 [p; 2p

2�p ) whenever
1 � p � 2, and s 2 [p;+1] whenever p > 2. In particular, H0 : L2(
) !
L2(~
) is a continuous linear operator. Let H�0 : L2(~
) ! L2(
) denote
the adjoint operator of H0 (i.e., the back-projection operator), for the pivot
space L2, i.e., hH0u; viL2(~
) = hu;H�0viL2(
), for every u 2 L2(
) and every
v 2 L2(~
). An obvious computation gives

(H�0v)(r; z) = 2
Z r

�r
v(y; z)

r
p
r2 � y2

dy; (2.3)

for every (r; z) 2 
. Similarly, the operator H�0 extends to a continuous linear
operator H�0 : Ls

0
(~
)! Lp

0
(
), for every s0 2 [1;+1] and every p0 such that

p0 2 [s0; 2s0
2�s0 ) whenever 1 � s0 � 2, and p0 2 [s0;+1] whenever s0 > 2.

The operator H0 features the Radon transform of the object. For more
details on the Radon transform , see [8, 26, 27, 28, 36] for example. Practically,
one radiograph su�ces to reconstruct the object. From the theoretical point
of view, inverting the operator H0 requires further di�erentiability. More
precisely, the next lemma holds.

Lemma 2.1. Let g 2 L2(~
) such that g(y; z) = g(�y; z) for a.e. (y; z) 2 ~
 and
such that @g

@y exists almost everywhere on ~
 and is measurable and bounded.
Then, there exists a unique u 2 L1(
) such that H0u = g, and

u(r; z) = �
1
�

Z a

r

@g
@y

(y; z)
1

p
y2 � r2

dy;

for every (r; z) 2 
.

Without any ambiguity, we denote u = H�1
0 g, and this de�nes the

linear operator H�1
0 that can be extended to a continuous linear operator

H�1
0 : W 1;p(~
) ! Ls(
), for every p 2 [1;+1] and every s such that

s 2 [p; 2p
2�p ) whenever 1 � p � 2, and s 2 [p;+1] whenever p > 2. How-

ever, because of the derivative term, the operator H�1
0 cannot be extended

as a continuous linear operator from Lp(
) to Lq(
) for suitable p and q.
Concretely, this means that a small variation of the measure induces signif-
icant errors on the reconstruction. Since the radiographs at our disposal are
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strongly perturbed, applying H�1
0 thus provides a de�cient and imperfect re-

construction of the original image. Moreover, due to the experimental setup,
there are two additional main perturbations:
� A blur, due to the detector response and the X-ray source spot size. To

simplify, it is assumed that the e�ect B of the blur is linear, and writes

Bud = K ? ud; (2.4)

where ? is the usual convolution operation, ud is the projected image,
and K is a positive symmetric kernel with compact support and such
that

R
Kd� = 1.

� A noise, assumed to be an additive Gaussian white noise, denoted � , of
zero mean and of standard deviation �� .

Others perturbations, such as scattered �eld or motion blur, are not taken
into account in our study. With these assumptions, the projection of an object
u is

vd = BH0u+ �:

A useful tool to deal with ill-posed problems is a regularization process
based on optimization methods. This is what we describe in the sequel.

2.2. Mathematical tools
The most suitable functional space used in image restoration is the space
BV(
) of bounded variation functions de�ned by

BV(
) = fu 2 L1(
) j TV (u) < +1g;

where

TV (u) = sup
�Z



u(x) div �(x) dx j � 2 C1

c (
); k�k1 � 1
�
: (2.5)

The space BV(
), endowed with the norm kukBV(
) = kukL1 + TV (u); is a
Banach space. The derivative in the sense of the distributions of every u 2
BV(
) is a bounded Radon measure, denoted Du, and TV (u) =

R

 jDuj is

the total variation of Du. Standard properties of bounded variation functions
can be found in [6, 9].
We will also need a de�nition of fractional order Hilbert spaces. Let U be an
open subset of Rn. For k 2 N, the Hilbert space Hk(U) is de�ned as the space
of all functions of L2(U), whose partial derivatives up to order k, in the sense
of distributions, can be identi�ed with functions of L2(U). Endowed with the
norm

kfkHk(U) =

0

@
X

j�j�k

kD�fk2Lp(U)

1

A
1=2

;

Hk(U) is a Hilbert space. For k = 0, there holds H0(U) = L2(U). Here
� = (�1; � � � ; �n) is a multi-index such that j�j =

Pn
i=1 �i � k and D�f :=

@�1
x1
f � � � @�nxn f .
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For s 2 (0; 1), the fractional order Hilbert space Hs(U) is de�ned as the
space of all functions f 2 L2(U) such that (see [18])

ZZ

U�U

jf(x)� f(y)j2

jx� yjn+2s dx dy < +1:

Endowed with the norm

kfkHs(U) =
�
kfk2L2(U) +

ZZ

U�U

jf(x)� f(y)j2

jx� yjn+2s dx dy
�1=2

;

Hs(U) is a Hilbert space.

3. Variational models for axially symmetric objects

To simplify the problem we �rst assume that all components of the initial
physical setup are axially symmetric and remain as such during the implosion
process. Therefore a single radiograph of the cross section su�ces in theory to
reconstruct the 3D object. As X-rays are assumed to be parallel, \horizontal"
slices of the object are independent and are treated separately. Hence, usual
regularization techniques for tomography (such as �ltered backprojection) are
not adapted, since they deal with one particular slice. Here, because of the
axial symmetry, slices are composed of concentric annuli and do not need any
regularization. On the contrary, some regularity between the di�erent slices
is required, and only few results in that direction are known (see [17, 22]).

Another di�culty is that we deal with binary objects composed of one
homogeneous material (drawn in black) and of some holes (in white). Our
working example, drawn on Figure 3.1, represents a synthetic object contain-
ing all standard di�culties that may appear, such as:

� several disconnected holes;
� a small hole located on the symmetry axis (where details are expected

to be di�cult to recover because the noise variance is maximal around
the symmetry axis after reconstruction);
� smaller details on the boundary of the top hole, serving as a test for

lower bound detection.

Figure 3.1(a) shapes an object composed of concentric shells of homogeneous
materials surrounding a ball (called the \interior") of another homogeneous
material containing empty holes. It can be viewed as the slice of a axially
symmetric 3D object by a plane containing the symmetry axis of that object.
A rotation of the image of Figure 3.1(a) around the z axis must be performed
in order to recover the 3D-object, in which, for instance, the two white holes
generate a torus. Since the object is mainly featured in the shape of the holes,
in the sequel we will focus on the interior of the object (see Figure 3.1(b)).
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(a) Slice of an axially sym-
metric object by a plane
containing the symmetry
axis.

(b) Zoom on the interior of
the object of Figure 3.1(a);
the homogeneous material
is drawn in black and the
holes in white.

Figure 3.1. Working example.

(a) Theoretical projection
H0u of the object of Fig-
ure 3.1.

(b) Real projection vd =
BH0u + � of the same ob-
ject with realistic noise and
blur.

(c) The real object u. (d) Reconstruction H�1
0 vd

computed with H�1
0 ap-

plied to the real projection.

Figure 3.2. Comparison of u, BH0u, vd = BH0u+ � , H�1
0 vd.
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Based on a single X-ray radiograph which is at our disposal, it is our
aim to perform a tomographic reconstruction to reconstruct the whole axi-
ally symmetric object. We review in this paper di�erent variational methods
adapted to the tomographic reconstruction of blurred and noised binary im-
ages, based on a minimization problem. Note that our approach is global, con-
trarily to usual methods of reconstruction rather dealing with a line-by-line
analysis carried out on each line of the radiograph (see [29]). A comparison
between the theoretical projection H0u and the perturbed one is provided
on Figures 3.2(a) and 3.2(b). The real object u is drawn on Figure 3.2(c).
The reconstruction using the inverse operator H�1

0 applied to vd is drawn
on Figure 3.2(d). The purpose of the experiment is to separate the material
from the empty holes and thus to determine precisely the boundary between
the two areas. This task is di�cult to perform on the reconstruction H�1

0 vd,
and an inspection of Figure 3.2(d) shows that the use of the inverse operator
is not suitable.

3.1. A �rst variational model
We �rst proposed in [4] a variational method based on a minimization prob-
lem in the space of bounded variation functions, proved existence and unique-
ness results. The binary structure of the material under consideration is mod-
eled as a binary constraint: the intensity function is either equal to 0 or 255
(normalized to 0 and 1). Due to this binary constraint, deriving an optimal-
ity system is not straightforward, and we proposed a penalization method for
which we established some properties and derived an optimality system. As-
sume that the kernel K modeling the blur has a compact support contained
in ~
. Then, the operator B de�ned by (2.4) is a continuous linear operator
from Lp(~
) to Lq(2~
), for all p; q 2 [1;+1], where 2~
 = (�2a; 2a)2.

Let vd 2 L2(~
) be the projected image (observed data), and let � > 0.
De�ne H = BH0, and consider the minimization problem

(P)

8
><

>:

minF (u); with F (u) =
1
2
kHu� vdk22 + �TV (u);

u 2 BV(
);
u(x) 2 f0; 1g a.e. on 
;

where k � k2 stands for the L2(~
) norm.

Theorem 3.1. The minimization problem (P) admits at least a solution.

To deal with the binary constraint set whose interior in suitable topolo-
gies may be empty, we use a penalization method that allows to relax this
constraint. Precisely, let " > 0, � � 0, and let �u be a solution to (P). De�ne

F"(u) = F (u) +
1
2"
ku� u2k22 +

�
2
ku� �uk22:

We consider the penalized problem

(P")
�

minF"(u)
u 2 BV(
) \ BR
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where R > 1 is a �xed real number, and

BR = fu 2 L1(
) j kuk1 � Rg:

In the sequel we do not mention the dependence of (P") with respect to the
real number R that can be chosen as large as desired but is �xed. A contrario
the parameter " will tend to 0. Note that the constraint u 2 BR is required
theoretically to ensure convergence properties, however it does not a�ect the
numerical process. Then we get approximation results:

Theorem 3.2. 1. The minimization problem (P") has at least a solution
u" 2 BV(
) \ BR.

2. Every cluster point u� in BV(
)\Lp(
) (for p 2 [1;+1)) of the family
(u") at " = 0 is a solution of (P). If moreover � > 0 then u� = �u.

3. There holds lim
"!0

F"(u") = inf F , and lim
"!0

Z



jDu"j =

Z



jDuj.

Then using [20, Theorem 2.3] we get

Theorem 3.3. Let u" be a solution of (P"). Then there exist �" 2 (M(
)2)0; q" 2
L1(
) and �" = �div �" such that

8u 2 BV(
) \ BR hH�(Hu" � vd) + q" + ��"; u� u"i � 0 ; (3.1a)

�" 2 @TV (u") ; (3.1b)

Here M(
) stands for the space of Radon measures on 
. In order to
derive an optimality system for the minimization problem (P), it would be
natural to attempt to pass to the limit in (3.1a)-(3.1b). However, this not
possible since we cannot obtain estimates that would allow to do it. This is
certainly due to the fact that the set of binary constraints has an empty L1
interior. As a consequence, we cannot bound the family (q") uniformly (in
H�1(
)) with respect to ". Nevertheless, though it would be theoretically
satisfying to get such a limit optimality system, it is not directly useful from
the numerical point of view and we use the penalized one.

3.2. Improving the model with fractional framework
In [15] we made a re�ned study of the intrinsic regularity properties of the
projection operator, which leads to reconsider the above minimization proce-
dure with a more adapted norm.Then, combining this theoretical study with
a careful numerical implementation leads to spectacular numerical improve-
ments.

3.2.1. Re�ned functional properties of the Radon operator. Regularity prop-
erties of the Radon transform and their applications to tomography have been
widely investigated in the literature (see e.g. [4, 25, 26, 27, 28, 36]), but are
generally stated in the spaces Lp. As mentioned above, it has been shown
in [4] that the use of such norms indeed provides acceptable reconstruction
processes, but they will happen to be largely improved by taking into ac-
count stronger regularity features. A re�ned functional analysis of the Radon
projection operator H0 de�ned by (2.2) was led in [15], stating that it enjoys
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strong regularity properties in fractional order Hilbert spaces. We next recall
these results. Denote by

X = L2(�a; a;BV0(0; a)) (3.2)

the set of all functions u 2 L2(
) such that the function (z; r) 7! u(r; z)
belongs to L2(�a; a;BV0(0; a)), where BV0(0; a) is the closed subset of the
set of functions f 2 BV (0; a) vanishing at a. The total variation, which is a
semi-norm, is a norm on BV0(0; a). Hence the space X is a closed subspace
of the Banach space L2(�a; a;BV (0; a)), and can be endowed with the norm

kukX =
�Z a

�a
(jDuzj(0; a))2 dz

�1=2

=
�Z a

�a
(TV1(uz))

2 dz
�1=2

; (3.3)

where the notation uz stands for the function r 7! uz(r) = u(r; z), and
where the notation TV1(f) is used to denote the total variation of a function
f 2 BV (0; a) while TV (f) denotes the total variation of a function of BV(
).

For every s 2 (0; 1), the fractional order Hilbert space Hs(�a; a) is
de�ned as the space of all functions f 2 L2(�a; a) such that

Z a

�a

Z a

�a

jf(x)� f(y)j2

jx� yj1+2s dx dy < +1;

endowed with the norm

kfkHs(�a;a) =
�
kfk2L2(�a;a) +

Z a

�a

Z a

�a

jf(x)� f(y)j2

jx� yj1+2s dx dy
�1=2

:

It is possible to de�ne the Hilbert space Hs(�a; a) in other equivalent ways,
in particular with the Fourier transform or with the fractional Laplacian
operator (see [15] for a survey of equivalent de�nitions).

The space Hs
0(�a; a) is de�ned as the closure in Hs(�a; a) of the set

of all smooth functions having a compact support contained in (�a; a). Note
that, for s 2 [0; 1=2], there holds Hs

0(�a; a) = Hs(�a; a). The Lions-Magenes
space H1=2

00 (�a; a) is the subset of functions f 2 H1=2(�a; a) such that
��1=2f 2 L2(�a; a), where the function � is de�ned on (�a; a) by �(y) =
a� jyj.

For every s 2 [0; 1) n f1=2g, denote by

Ys = L2(�a; a;Hs
0(�a; a)) (3.4)

the set of all functions v 2 L2(
1) such that the function (z; y) 7! v(y; z) be-
longs to L2(�a; a;Hs

0(�a; a)). It is a closed subspace of L2(�a; a;Hs(�a; a)),
and, endowed with the norm

kvkYs =
�Z a

�a
kv(�; z)k2Hs(�a;a) dz

�1=2

; (3.5)

Ys is a Hilbert space. For s = 1=2, de�ne, similarly, the Hilbert space

Y1=2 = L2(�a; a;H1=2
00 (�a; a)): (3.6)
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Theorem 3.4 ([15]). For every s 2 [0; 1), the operator H0 is linear and con-
tinuous from X into Ys.

Note that this result holds as well for the blurred projection operator
H = BH0 = K ? H0. Note also that other regularity properties have been
derived in [15], but the previous theorem is particularly useful in view of
taking bene�t of the Hilbert structure.

3.2.2. Minimization problem in fractional Sobolev spaces. Based on the func-
tional properties stated in Theorem 3.4, we proposed to consider the following
minimization problem. Let s 2 [0; 1), let � and � be nonnegative real num-
bers, and let " > 0. The projected image vd (observed data) is assumed to
belong to Ys. Consider the problem of minimizing

F s�;�;"(u) =
1
2
kHu� vdk2Ys + �TV (u) +

�
2
kuk2X +

1
2"
ku� u2k2L2(
) (3.7)

among all functions u 2 X where X = X = L2(�a; a;BV0(0; a)) whenever
� = 0, and X = BV(
) \X whenever � > 0.

Remark 3.1. In fact the minimum of F s�;�;" should be found among all func-
tions u 2 B� where � > 0 and

B� := fu 2 X j �kukX + kuk1 � � g:

Indeed, because of the lack of coercivity of the functional we need a bound-
edness constraint to prove existence result within the in�nite dimensional
framework. However, we are allowed to choose any (large enough) � and the
solution to the original (non penalized) problem exists without any additional
condition. Therefore, from the practical point of view, this constraint will be
inactive and we do not take it into account for numerical purpose.

The parameter � is the weight of the total variation. If � > 0 then this
term yields a regularization term used in a standard way in image processing.
Note here that we introduce an alternative to this usual regularization, with
the term kuk2X , weighted with �. Note that in our method it is required that
� + � > 0, that is, if � = 0 then � must be chosen positive, and conversely.
Note that F s�;�;" is not di�erentiable because of these terms.

The parameter " > 0 is a penalization parameter. The limit case " = 0
corresponds to the binary constraint u(r; z) 2 f0; 1g a.e. on 
, and for this
limit case it has been proved in [15] that the associated minimization problem
has at least one solution. It has been proved as well that the minimization
problem (3.7) is well de�ned and has at least one solution whenever " > 0,
and this family of optimization problems parameterized by " enjoys a nice
�-convergence property to the limit case.

First-order necessary conditions for optimality of (3.7) have also been
derived in the form of an optimality system, as explained next. Although
F s�;�;" is not di�erentiable, the functional de�ned by

Gs(u) =
1
2
kHu� vdk2Ys (3.8)
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is di�erentiable, and in what follows we denote by rGs(u) its gradient for
the pivot space L2. It can be computed in several ways, in particular using a
fractional Laplacian or using the Fourier transform. This will lead to di�erent
numerical implementation methods. The functional u 7! 1

2"ku � u
2k2L2(
) is

di�erentiable as well, and its gradient for the pivot space L2 is

q"(u) =
(u� u2)(1� 2u)

"
: (3.9)

Recall that X = L2(�a; a;BV0(0; a)), and thus X 0 = L2(�a; a; (BV0(0; a))0).
For every � 2 X 0, viewed as function of z 2 (�a; a) of class L2 with values in
(BV0(0; a))0, denote �z = �(z) 2 (BV0(0; a))0, for almost every z 2 (�a; a).
The duality product between X and X 0 is de�ned by

h�; viX0;X =
Z a

�a
h�z; vziBV 00 ;BV0

dz;

for every � 2 X 0 and every v 2 X. Finally, recall that the notation TV1(f)
is used to denote the total variation of a function f 2 BV (0; a).

Theorem 3.5 ([15]). Let u be a minimizer of (3.7) with the constraint u 2 B�.
Then there exist � 2 (M(
)2)0, � = �div �, and � 2 X 0, such that

rGs(u) + q"(u) + ��+ �� = 0; (3.10)

� 2 @TV (u); (3.11)

and

�z 2 TV1(uz) @TV1(uz); (3.12)

for almost every z 2 (�a; a).

4. Numerical implementation

4.1. Resolution of problem (P")
To solve the original problem, many numerical experiments are proposed in
the literature. Usually, people use the back-�ltered projection method (see
Fig.4.1 below. In this case, results are of bad quality, as explained in [4]. In [1],
the problem is studied via a shape optimization method. The object is viewed
as a domain which optimal shape turns to be a solution. A derivative of the
functional with respect to the domain is performed and a level-set method
[38] is used. With this method, an Hamilton-Jacobi equation involving non
local terms has to be solved. The use of classical �nite di�erence schemes
gives acceptable results (see Fig.4.2) but the method is time-consuming and
highly unstable.
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(a) Median line of the object
(i = 128).

(b) Largest slice of the binary
axially symmetric object by a
plane orthogonal to the symme-
try axis.

(c) Result using the cropped
Ram-Lak �lter.

(d) Result using the Ram-Lak
�lter with a Hamming window.

Figure 4.1. Back-�ltered projection results

(a) Synthetic object (b) Computed solution

Figure 4.2. Level-set method results
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An alternative indirect method has been tested in [4]. A solution to the
�rst order optimality system of Theorem 3.3 has been computed . The results
are good (see Fig.4.3) but the parameters tuning is quite delicate. In addition,
though the computation time is much shorter than the methods mentioned
before, it remains quite long.

(a) Synthetic object (b) Computed solution

Figure 4.3. Penalization indirect method [4]

A more e�cient, direct method has been described in [13]. Figure 4.4
shows what we may obtain. We refer to the quoted paper for more details.

(a) The real object u. (b) Solution

Figure 4.4. Solution with a direct method [13]

4.2. Use of fractional optimality system
4.2.1. The general algorithm. In this section we explain how to carry out
the numerical implementation of the optimality necessary conditions stated
in Theorem 3.5. Notice that the method will depend on the four parameters
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s, �, �, and ". Their respective role will be explained and discussed further.
These parameters being �xed, we propose the following iterative algorithm.

Algorithm 1

Initialization : n = 0, choose u0 = H�1
0 vd.

N1 maximum number of iterations.
Iterations :
for 0 � n � N1 do

(a) Determine �n 2 @TV (un).
(b) Determine �nz 2 TV1(unz ) @TV1(unz ), for every discretized value of
z 2 (�a; a).
(c) Make p �xed-point-like iterations for the solving of

rGs(un+1) + q"(un+1) + ��n + ��n = 0:

(d) Stopping criterion: jF s�;�;"(u
n+1)� F s�;�;"(u

n)j small enough
end for

We next discuss the discretization process, the steps of that algorithm,
and the di�erent implementation choices that can be done.
Discretization process. As usually, the discretized image is represented by a
N � N array. Due to the symmetry, it su�ces to deal with half an image,
of size N � N=2. Denote X = RN�N and Y = X � X, endowed with the
usual scalar product. For u 2 X, the approximation of the Radon measure
Du is identi�ed with a vector of Y of coordinates (Du)i;j = ((Du)1

i;j ; (Du)2
i;j)

de�ned by

(Du)1
i;j =

�
ui+1;j � ui;j if i < N;
0 if i = N; (Du)2

i;j =
�
u1;j+1 � ui;j if j < N;
0 if j = N;

and the approximation of total variation is

TV (u) =
X

1�i;j�N

q
((Du)1

i;j)2 + ((Du)2
i;j)2:

The divergence operator is discretized through

(div p)i;j =

8
>><

>>:

p1
i;j � p1

i�1;j if 1 < i < N

p1
i;j if i = 1

�p1
i�1;j if i = N

+

8
>><

>>:

p2
i;j � p2

i;j�1 if 1 < j < N

p2
i;j if j = 1

�p2
i;j�1 if j = N

Initialization. It is natural to initialize the algorithm with u0 = H�1
0 vd, that

is, by applying the inverse of the (discretized) Radon transform to the ob-
served data. As mentioned previously, the resulting image u0 cannot be ex-
pected to be a nice reconstruction of the object (see also numerical simula-
tions further), since it is far too much noised and blurred, however is the most
natural initial point of our iterative procedure. A random initialization could
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do not lead to a satisfying reconstruction since, in some sense, our algorithm
acts as denoising and debluring.
Subdi�erential of the total variation. The choice of � 2 @TV (u) or �z 2
TV1(uz) @TV1(uz) in (3.11)-(3.1b) follows Chambolle’s method (see [21]). We
brie
y recall the idea for the construction of � 2 @TV (u) in the discretized
setting. Recall that the Fenchel-Legendre conjugate function TV � of TV is
the indicator function 1K2 of

K2 = fdiv g j g 2 Y; (g1
i;j)

2 + (g2
i;j)

2 � 1; 8i; jg:

Moreover,

� 2 @TV (u), u 2 @1K2(�), � = �K2(�+ u)

where �K2 denotes the orthogonal projection on K2. Therefore, � can be
computed with the successive approximation process �k = �K2(�k�1 + u) or
with a semi-smooth Newton method. Similarly, for every discretized value of
z 2 (�a; a)., we compute �z 2 TV1(uz) @TV1(uz) as

�z = TV1i(uz)~�z with ~�z = �K1(~�z + uz)

and
K1 = fg0 jg 2 RN � RN ; (g1

i )2 + (g2
i )2 � 1; 8ig:

Therefore, ~�z can also be computed with the successive approximation pro-
cess (~�z)k = �K1((~�z)k�1 + uz): The projected element �v := �Ki(v) = div �p
where �p = argmin f k div (p) � vk2X j jpi;j j � 1; i; j = 1; � � � ; N g; may be
computed using primal-dual or proximal methods for example.
Fixed-point-like iterations. In order to solve the third step of the iterative
loop, we propose to implement a certain number of steps of a �xed-point-like
iteration solving, as follows.
Given �n and �n, de�ne fn(u) = rGs(u) + q"(u) + ��n + ��n. The aim is
to estimate un+1 by solving the implicit nonlinear system fn(u) = 0. This is
equivalent to seeking u such that

u�Mnfn(u) = u; (4.1)

where Mn is a square (preconditioning) matrix to be chosen. We propose
here to implement p steps of such a �xed-point procedure initialized at un,
and the resulting solution is de�ned to be un+1. In practice, it happens to be
su�cient to take p = 1, that is, we implement only one step of this �xed-point
procedure.

A standard choice of preconditioner is Mn = 
 Id, with 
 > 0 small
enough. This is however not the choice we make. Note that one recovers
the classical Newton method whenever one chooses, at each step of the it-
eration, the matrix Mn to be the inverse of the di�erential of fn at the
current point. The classical Newton methods is a priori not well adapted
here. Indeed, on the one part the discretization of the Radon transform is
ill-conditioned, and hence the Hessian of Gs will be ill-conditioned as well,
for every possible choice of the discretization of Gs (see further for di�erent
ways of computing the gradient of Gs). On the other part, the derivative of
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the function q" de�ned by (3.9), seen as a function of one scalar variable, is
q"(t) = 1

" (2t � 1)(t2 � t), and has three zeros: 0, 0:5, and 1. The classical
Newton method for determining the zeros of that scalar function is written
as

tk+1 = tk �
q"(tk)
q0"(tk)

:

However the three zeros are attractive (see Figure 4.5), and in particular the
attractive zero t = 0:5 should be avoided. Although this analysis is done in
dimension 1, when transposed to imaging, a pixel coded with 0:5 is grey,
exactly between 0 (black) and 1 (white), but our image is binary and this sit-
uation must be avoided. A very simple way, that we can explain in dimension
1, is to modify the classical Newton method so as to make the zero t = 0:5
repulsive. Due to the speci�c expression of the function q"(�), we propose to
modify the classical Newton method as follows:

tk+1 = tk � 2
q"(tk)
jq0"(tk)j

: (4.2)

Let us justify this modi�cation. De�ne Q" the primitive function of q" that
vanishes at t = 0. Then we look for the minima of Q" on [0; 1]. A descent
method with optimal step �k gives

tk+1 = tk � �kq"(tk);

a classical second order expansion gives

Q"(tk+1)�Q"(tk) = ��k(q"(tk))2 +
�2
k

2
(q"(tk))2q0"(tk) + �((tk+1 � tk)2) :

The �rst order analysis gives �k > 0 to let the functional decrease to a local
minimum (here 0 or 1). Looking for a second order scheme gives

��k(q"(tk))2 +
�2
k

2
(q"(tk))2q0"(tk) = 0;

that is �kq0"(tk) = 2 which is equivalent to �k = 2=jq0"(tk)j since �k > 0.

Figure 4.5. Graph of the primitive Q" of q": t 7! Q"(t)

It is then obvious that, on this particular one-dimensional problem, this
method is globally convergent, whatever the initialization t0 may be (except
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for three particular values). More precisely, for every t0 < 1=2 such that
t0 6= 1

2 �
1

2
p

3
, the iterative sequence (4.2) initialized at t0 converges to 0,

and for every t0 > 1=2 such that t0 6= 1
2 + 1

2
p

3
, the iterative sequence (4.2)

initialized at t0 converges to 1. The two particular values 1
2 �

1
2
p

3
correspond

to the local extrema of the function q"(�), and actually, numerically they even
do not cause the divergence of the above method. Indeed, due to the change
of sign in (4.2), and for instance in the case t0 = 1

2 + 1
2
p

3
, then numerically

t1 is set to a very large value, and then the next iterates will converge to 1,
as expected.

We propose here to transpose this very simple idea to choose an ad-
equate preconditioning matrix Mn for the solving of (4.1). As explained
previously, since it su�ces to work with half an image, un is a matrix of size
N�N=2. Then, the matrix q0"(un) is as well of size N�N=2, the lines of which
are denoted by L1(un); : : : ; LN (un). Then, guided by our one-dimensional
analysis, we propose to consider as a matrix Mn, the diagonal N �N -matrix
having as diagonal ith-coe�cient the scalar 1=kLi(un)k (using the Euclidean
norm). Other choices are of course possible, but this speci�c choice happens
to be the most relevant for our numerical simulations.

We are not able to provide a global convergence rate for Algorithm
(4.2.1). However, the partial computations involve second order schemes and
point �xed methods with projections. Therefore, we expect a linear conver-
gence rate.

The previous analysis has been done with �xed parameters. In addition,
we may give error estimates for the computed solution with respect to " and �
and/or � as well. For sake of simplicity we set � = 0. Indeed, we have noticed
very small in
uence of � (see next section). Following [31], we introduce the
R-minimizing solution of the problem as

uy := argminfR(u); Hu = ud g;

where R(u) := TV (u) +ku�u2k2L2(
). As H is surjective, equation Hu = ud
has at least a solution and such a R-minimizer exists. Following Remark 4.5
of [31] and considering that the appropriate assumptions are satis�ed, we get

kHu� � udkYs � C� and D��(u�; uy) � C� ;

where C is a generic constant, u� is a minimizer of F s�;0;1=�, �� 2 @R(uy)
and D��(u�; uy) is the Bregman-distance :

D��(u�; uy) = R(u�)�R(uy)� < ��; u� � uy > :

4.2.2. Computation of the fractional derivative rGs. It remains to explain
how to compute a good approximation of the gradient rGs. This is the
most important issue of our algorithm, in the sense that all previous issues
discussed above can be modi�ed but variants lead to quite similar results
(both in quality and execution time), whereas the choice of the numerical
computation ofrGs leads to signi�cant di�erences. Recall that the functional
Gs de�ned by (3.8) is the square of the norm of the fractional-order Hilbert
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space Ys de�ned by (3.4). We next propose two numerical approaches to
estimate such a norm and rGs. The �rst one uses the Fourier transform and
the second one uses an approximation of the fractional Laplacian. Whereas
the �rst one may be expected to be more exact, actually the second one
happens to be more relevant for the numerical simulations.
Using the Fourier transform. In this section, we compute rGs using the
Fourier transform. First of all, observe that, for every s 2 [0; 1), for ev-
ery u 2 Ys, the function Hu � vd can be extended by 0 to a function of
L2(�a; a;Hs(R)), and its norm can be computed in terms of Fourier trans-
form, by

Gs(u) =
1
2

Z a

�a

Z

R
jFy(Hu� vd)(�; z)j2(1 + �2)s d� dz

=
1
2
kFy(Hu� vd)k2L2(!s);

where L2(!s) denotes the weighted Hilbertian space of all complex valued
functions f de�ned on R� (�a; a) such that

R
R�(�a;a) jf(�; z)j2!s(�) d� dz <

+1; where !s(�) = (1 + �2)s: Setting wd = H�1(vd), it follows that

rGs(u) = (FyH)�!s(FyH)(u� wd); (4.3)

with L2 as a pivot space. Moreover, in order to make this expression more
explicit, the Fourier transform of the blurred projection operator H can be
computed as follows (see [15]). The notation ~v stands for the extension by
0 to R2 of any function v. Here it is assumed that the blur is modeled by a
linear operator B writing as a convolution with a positive symmetric kernel
K (in practice, a Gaussian kernel) with compact support.

Lemma 4.1. The Fourier transform of the blurred projection operator H =
BH0 with respect to the �rst variable is

(FyBgH0u)(�; z) = (FyK)(�; �) ?2 (FygH0u)(�; �)(z); (4.4)

for every u 2 L1(
), every � 2 R and almost every z 2 (�a; a), where
the notation ?2 stands for the convolution product with respect to the second
variable. Its adjoint (with L2 as a pivot space) is

((FyBfH0
�
v)(r; z) = (FyfH0)�(Fyg ?2 v)(r; z); (4.5)

for every v 2 L1(R2), every r 2 [0; a) and almost every z 2 (�a; a).

Using the fractional Laplacian. In this section, we compute rGs using the
fractional Laplacian. By de�nition, there holds

Gs(u) =
1
2

Z a

�a
k(Hu� vd)(�; z)k2Hs0 (�a;a)dz;

for every u 2 Ys, and every s 2 [0; 1) n f1=2g. For s = 1=2, Hs
0(�a; a) is

replaced with the Lions-Magenes space H1=2
00 (�a; a). This norm can actually

be expressed in an equivalent way using the fractional Laplacian operator,
as follows (see [15] for the proofs). For every f 2 Hs

0(�a; a) whenever s 2
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[0; 1) n f1=2g, or f 2 H1=2
00 (�a; a) whenever s = 1=2, the square of the norm

of f within these spaces is equivalent to kfk2L2(U) +k(��)s=2fk2L2(Rn), where
f is extended by 0 outside (�a; a) (notice that (��)s=2f is not of compact
support1). Here, (��)� denotes the fractional Laplacian operator on Rn,
de�ned, using the Fourier transform Ff of f , by (��)�f = F�1(j�j2�Ff).
It follows that

rGs(u) = H�R
1(id + (��)s)(gHu� evd); (4.6)

with L2 as a pivot space, where gHu � evd is the extension of Hu � vd by 0
outside (�a; a), and R
1 is the restriction to 
1.

It is very simple to approximate the operator (��)s. To this aim, con-
sider any usual approximation of the operator ��, typically, the tridiagonal
matrix

N2

0

BBBBBBB@

2 �1 0 � � � 0

�1 2 �1
...

0 �1 2
. . . 0

...
. . . . . . �1

0 � � � 0 �1 2

1

CCCCCCCA

: (4.7)

Since it is a symmetric positive de�nite matrix, its fractional powers can be
computed in many ways, for instance it is straightforward by considering its
singular value decomposition (SVD). Note that this computation is done a
priori and thus does not slow down the execution of the algorithm. There are
some other ways to approximate the Laplacian operator, using higher-order
centered schemes, but these variants do not lead to signi�cant di�erences in
the numerical simulations.

4.2.3. Numerical results. We present hereafter several numerical results us-
ing the synthetic object of Figure 3.1. In our numerical simulations, we con-
sider a Gaussian blur with standard deviation �B = 0:12, that is, modeled
by a convolution with the kernel

K(x) = Ce
� jxj

2

2�2
B 1~
(x);

where C is a normalizing constant so that
R
Kd� = 1. The noise is assumed

to be a Gaussian noise � with standard deviation �� = 0:15 (the image is

1Note that the Laplacian operator should not be confused with the operator A de-
�ned as the opposite of the Dirichlet Laplacian on L2(� a; a), of domain D(A) =
H1

0 (� a; a) \ H2(� a; a). For instance, for every f 2 Hs
0(� a; a) with s 2 (0; 1) n f 1=2g

(and f 2 H1=2
00 (� a; a) for s = 1=2), one has f 2 D(As=2) and thus As=2f 2 L2(� a; a) by

de�nition, whereas (� �)sf 2 L2(Rn) (where f is extended by 0 outside (� a; a)) is not
even of compact support. Recall that functions of Hs

0(U) can be extended by 0 to Hs(Rn)
for every s � 0 such that s =2 N + 1=2; for s = 1=2 for instance, functions of H1=2

00 (U) can
be extended by 0 to H1=2(Rn).
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rescaled between 0 and 1), that is,

�(x) =
1

p
2���

e
� jxj

2

2�2
� :

We de�ne the Signal to Noise Ratio as

SNR(v) = 20 log10 (kuokL2=kuo � uckL2) ;

where uo is the expected original image and uc is the computed one. All
numerical tests have been performed with the same data whose size was
256�256. For the noisy case (without blur) SNR= 2.66 and the SNR corre-
sponding to the noisy and blurred data is 2.35 .

First, we have compared the methods of subsection 4.2.2 to compute
rGs. The most e�cient is the use of the fractional laplacian. Indeed, the
choice of Fourier transform leads to numerical instability together with bad
reconstruction. This comes from the fact that the implementation of the
FFT is not based on Bessel functions which are the natural special functions
associated to the Radon transform. The use of exact formulas with Bessel
functions gives better results but none was as good as the ones we obtained
with the fractional laplacian.

(a) Original image (b) Observed image ud (c) H�1
0 (ud)

(d) Use of exact formulas with

Bessel functions

(e) Use of FFT (f) Use of fractional laplacian

Figure 4.6. Results with Fractional approach : s = 0:5,
" = 0:5; � = 5; � = 0
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We have also tested the case where � 6= 0. If � = 0 then the result is
not satisfactory. If � 6= 0 the e�ect of � is null. More numerical tests are
available in [16]. Though we have improved the numerical method (using
the fractional laplacian) the process is still not very fast. Therefore we use a
wavelet approach that is described in next section.

4.3. Use of needlets
In this section, we describe an approach of smoothed Fourier series type based
on a SVD type decomposition of the Radon projection operator H0.

4.3.1. Abel integral and Jacobi based inversion formula. Let us start by ob-
serving that the Radon projection operator H0 de�ned by (2.2) is related to
the classical Abel integral transform T1=2u(x) =

R x
0

u(t)
(x�t)1=2 dt by the relation

H0u(y; z) =
Z 1�jyj2

0
u(
p

1� t; z)
1

p
1� y2 � t

dt = T1=2uz(1� y2);

where uz(t) = u(
p

1� t; z), for every u 2 BV(
).
For all (�; �) 2 (�1;+1)2 and every m 2 N, let J�;�[�1;1];m denote the

n-th degree Jacobi polynomial de�ned on [�1; 1], and let

J�;�m (x) =

s
n!(2n+ �+ � + 1)�(n+ �+ � + 1)

�(n+ �+ 1)�(n+ � + 1)
J�;�[�1;1];m(2x� 1);

for every x 2 [0; 1]. The family (J�;�n )m2N is an Hilbertian basis of the
(weighted) Hilbert space L2([0; 1]; (1 � x)�x�dx). In [7], the authors pro-
vide a SVD type decomposition of the operator T1=2, showing in particular
that

T1=2(J0;0
m )(x) = �mx�J�1=2;1=2

m (x);

for every m 2 N and for every x 2 [0; 1], where

�m = �(1=2)

s
�(m+ 1=2)
�(m+ 3=2)

�
�(1=2)

(m+ 3=2)1=2 :

In terms of the Radon operator H0, it follows that

H0
�
J0;0
m (1� r2)g(z)

�
(y; z) = �m

p
1� y2J�1=2;1=2

m (1� y2)g(z)

for every function g 2 L2(�1; 1).
Let Qn(r) = J (0;0)

m (1 � r2) and Q#
m(y) = J (�1=2;1=2)

m (1 � y2), by con-
struction, (Qm)m2N and (Q#

m)m2N are orthonormal bases of respectively
L2(0; 1; 2rdr) and L2(0; 1; 2

p
1� y2dy). Therefore any u 2 L2(
; 2rdrdz)

can be expanded along r as

u(r; z) =
X

m2N

�Z 1

0
u(r0; z)Qm(r0)2r0dr0

�
Qm(r0)
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and thus

H0u(y; z) =
X

m2N

�Z 1

0
u(r0; z)Qm(r0)2r0dr0

�
�m
p

1� y2Q#
m(y)

=
X

m2N

�Z 1

0
H0u(y0; z)Q#

m(y0)2dy0
�
Qm(r0)

p
1� y2Q#

m(y):

We derive thus the following one-dimensional inversion formula:

Lemma 4.2. For every u 2 L2(
; 2rdrdz),

u(r; z) =
+1X

m=0

1
�m

�Z 1

0
(H0u)(y0; z)Q#

m(y0)2 dy0
�
Qm(r):

For any orthonormal basis of L2(�1; 1) (Rm)m2N, this formula yields a
two-dimensional inversion formula:

Lemma 4.3. For every u 2 L2(
; 2rdrdz),

u(r; z ) =
+1X

m=0

+1X

m0=0

1
� m

� Z 1

�1

Z 1

0
(H 0u)(y0; z0)Q#

m(y0)Rm0(z0)2 dy0dz0
�

Qm(r )Rm0(z):

Although the previous formula is valid for any orthogonal basis (Rm)m2N,
we will use in the following the choice Rm = J (0;0)

m , i.e. the Legendre poly-
nomial basis. This choice may seem arbitrary and unnecessarily complex.
It turns out that the Legendre polynomial basis is nevertheless the simplest
orthogonal basis of L2(�1; 1) considered as an interval without any periodiza-
tion. This polynomial basis has also, for any degree, some explicit cubature
formula, a property which will proved to be important later on. A construc-
tion similar to the one proposed below could also be made with a Fourier
basis but it su�ers from periodization artifacts that are avoided by the choice
of the Legendre polynomial basis.

4.3.2. Smoothed inversion and needlets. Assume now, as it is the case in
practice, that we have only access to some approximations ĥm;m0 of

hm;m0 =
Z 1

�1

Z 1

0
(H0u)(y0; z0)Q#

m(y0)Rm0(z0)2 dy0dz0

for 0 � m � M and 0 � m0 � M 0, how to use the previous formula to
reconstruct an estimate of the function u?

Hard truncation, and Gibbs phenomenon. The most natural answer is to use
the truncated reconstruction

P̂M;M 0u =
MX

m=0

M 0X

m0=0

ĥm;m0
�m

Qm(r0)Rm0(z): (4.8)

Although optimal from the quadratic risk point of view, this reconstruction
however su�ers from well known Gibbs type artifacts. Gibbs phenomena are
well known in inverse problems and here in our tomography problem they
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appear to be so strong that they make the use of such an inversion formula
not suitable in the problem.

Smoothened truncation. As exempli�ed in [24] in the Fourier case and in
[37] for Jacobi polynomials, there exists a simple method in order to cancel
the Gibbs phenomenon. Let us recall this approach and show how it can be
adapted and used in our context in a relevant way.

Let a be an arbitrary smooth nonnegative function supported in [0; 1],
such that a(w) = 1 for every w 2 [0; 1=2] and a(w) � 1 for every w 2 (1=2; 1].
The method consists of replacing the hard truncation (4.8) with a soft one,
by considering

P̂M;M 0u(r) =
+1X

m=0

+1X

m0=0

a
�m
M

�
a
�
m0

M 0

�
ĥm;m0
�m

Qm(r)Rm0(z): (4.9)

Note that the hard truncation would correspond to a(w) = �[0;1](w). In
Fourier series, the Fejer kernel corresponds to the choice a(w) = max(1�w; 0)
and is known to leads to better approximation. One can understand this
smoothing e�ect through the study of the corresponding smoothed projector

Pa;M;M 0u =
MX

m=0

MX

m0=0

a
�m
M

�
a
�
m0

M 0

�
cm;m0Qm(r)Rm0(z):

with

cm;m0 =
Z 1

0
u(r0; z0)Qm(r0)Rm0(z0)2r0 dr0dz0

Indeed, as soon as a is smooth, say C1, then those projectors satisfy some
very nice properties, for instance all projections are now continuous for all
Lp norms.

The best insight on those smoothened projection is probably the one
proposed in [37]. Following their approach, the projection is �rst rewritten
as a convolution

Pa;M;M 0u =
Z 1

�1
u(r0; z0)Aa;M;M 0(r; z; r0; z0)2r0dr0dz0

with a kernel Aa;M;M 0

Aa;M;M 0(r; z; r0; z0) =
MX

m=0

M 0X

m0=0

a
�m
M

�
a
�
m0

M 0

�
Qm(r)Rm0(z)Qm(r0)Rm0(z0):

One of the main result of this section is to prove that if a 2 C1 then this
kernel is well localized spatially: for all k 2 N;9ck > 0 such that

jAa;M;M 0(r; z; r0; z0)j �
cKMM 0

(1 +Md(1� 2r2; 1� 2r02))K(1 +M 0d(z; z0))K
(M;M 0; r; z; r0; z0)



Tomographic reconstruction with few views 25

where d(u; v) = j arcos(u; v)j and


 (M; M 0; r; z; r 0; z0) =
p

w0;0(M; 1 � 2r 2)w0;0(M; 1 � 2r 02)w0;0(M 0; z)w0;0(M 0; z0)

with w�;�(M; u ) = (u + M �2)�+1=2(u � 1 + N �2)�+1=2. This result is su�cient to
obtain the L p continuity of the projection. Furthermore, one verify the existence of
c > 1 such that
Z 1

�1

Z 1

0
jPa;M;M0u(r; z ) � u(r; z )jp 2rdrdz � c inf

v2T

Z 1

�1

Z 1

0
jv(r; z ) � u(r; z )jp 2rdrdz

where

T := Spanf Qm(1 � r 2)Rm0(z)g0�m�M=2;0�m0�M0=2 :

It turns out that this projection can be discretized as soon as there is a quadrature
formula polynomials of �nite degrees. Indeed, let �j be a set of quadrature point
such that for any Qn(r )Rn0(z) and Qm(r )Rm0(z) with n; n 0; m and m0 smaller than
2j

Z 1

�1

Z 1

0
Qn(r )Rn0(z)Qm(r )Rm0(z)2rdrdz

=
X

�=(r�;z�)2�2j

! �Qn(r �)Rn0(z�)Qm(r �)Rm0(z�);

and de�ne

� a;aj;� (r; z ) =
p

! �
X

m2N

X

m02N

s

a
� m

2j
�

a
�

m0

2j

�
Qm(r �)Rm0(z�)Qm(r )Rm0(z)

then

Pa;2j ;2ju(r; z ) =
X

�2�j

da;aj;� � a;aj;� (r; z )

with

da;aj;� =
Z 1

�1

Z 1

0
u(r 0; z0)� a;aj;� (r 0; z0)2r 0dr 0dz0:

Finally, if the quadrature points are chosen as the zeros of Q2j+1 (1 � r 2)R2j+1 (z)
then forall k 2 N; 9c0k such that

j� a;aj;� (r; z )j �
c0K2j

(1 + 2jd(1 � 2r 2; 1 � 2r 2
�))K(1 + 2jd(z; z�))K 
 (2j ; 2j ; r; z; r �; z�)

:

Furthermore, 8p 2 [1; +1 ]; 9(cp; Cp; D p) 2 R3
+;� such that

8j 2 N;8� 2 �j ; cp2j(p=2�1) �
Z 1

�1

Z 1

0
j� a;aj;� (r; z )jp2rdrdz � Cp2j(p=2�1)

8da;aj;� 2 R�j ;
Z 1

�1

Z 1

0
j

X

�2�j

da;aj;� � a;aj;� (r; z )jp2rdrdz � CpDp2j(p=2�1)
X

�2�j

jda;aj;� jp:
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Needlets. The needlets corresponds to a multiscale representation associated to
those projection. More precisely, for any J > 0

Pa;2J ;2J = Pa;1;1 +
JX

j=1

�
Pa;2j ;2j � Pa;2j�1;2j�1

�

where by construction

Pa;2j ;2j � Pa;2j�1;2j�1 u =
Z 1

�1
u(r 0; z0)Ba;2j ;2j (r; z; r 0; z0)2r 0dr 0dz0

with

Ba;2j ;2j (r; z; r 0; z0) =
2jX

m=0

2jX

m0=0

�
a

� m
2j

�
a

�
m0

2j

�
� a

� m
2j�1

�
a

�
m0

2j�1

��
Qm(r )Rm0(z)Qm(r 0)Rm0(z0):

So that if we let b(w) = a(w) � a(2w) and use

a(w)a(w0) = a(2w)a(2w0) + a(w)b(w0) + b(w)a(w0) + b(w0)b(w0)

Ba;2j ;2j (r; z; r 0; z0) =
2jX

m=0

2jX

m0=0

a
� m

2j
�

b
�

m0

2j

�
Qm(r )Rm0(z)Qm(r 0)Rm0(z0)

+
2jX

m=0

2jX

m0=0

b
� m

2j
�

a
�

m0

2j

�
Qm(r )Rm0(z)Qm(r 0)Rm0(z0)

+
2jX

m=0

2jX

m0=0

b
� m

2j
�

b
�

m0

2j

�
Qm(r )Rm0(z)Qm(r 0)Rm0(z0):

Using the cubature �j and de�ning the needlets

 b;aj;� (r; z ) =
p

! �
X

m2N

X

m02N

s

b
� m

2j
�

a
�

m0

2j

�
Qm(r �)Rm0(z�)Qm(r )Rm0(z)

 a;bj;� (r; z ) =
p

! �
X

m2N

X

m02N

s

a
� m

2j
�

b
�

m0

2j

�
Qm(r �)Rm0(z�)Qm(r )Rm0(z)

 b;bj;�(r; z ) =
p

! �
X

m2N

X

m02B

s

b
� m

2j
�

b
�

m0

2j

�
Qm(r �)Rm0(z�)Qm(r )Rm0(z);

one obtains
�
Pa;2J ;2J � Pa;2J�1;2J�1

�
u =

X

o2f(a;b);(b;a);(b;b)

X

�2�J

doj;�) 
o
J;�

with

doj;�

Z 1

�1

Z 1

0
u(r 0; z0) oj;�(r

0; z0)2r 0dr 0dz0:

Summing those equality over J yields

Pa;2J ;2Ju =
X

�2�0

aj;��
a;a
0;� +

X

o2f(a;b);(b;a);(b;b)

JX

j=0

X

�2�j

doj;� 
a;b
j;�
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which implies that
�

� a;a1;�

	
�2�0

[
[

j�0

[

o2f(a;b);(b;a);(b;b)g

�
 o2j ;�

	
�2�j

is a tight frame.
Again, if the quadrature points are chosen as the zeros of Q2j+1 (1� r 2)R2j+1 (z)

then forall k 2 N; 9c0k such that

j oj;�(r; z )j �
c0K2j

(1 + 2jd(1 � 2r 2; 1 � 2r 2
�))K(1 + 2jd(z; z�))K 
 (2j ; 2j ; r; z; r �; z�)

:

Furthermore, 8p 2 [1; +1 ]; 9(cp; Cp; D p) 2 R3
+;� such that

8j 2 N; 8� 2 �j ; cp2j(p=2�1) �
Z 1

�1

Z 1

0
j oj;�(r; z )jp2rdrdz � Cp2j(p=2�1)

8doj;� 2 R3��j
Z 1

�1

Z 1

0
j
X

o

X

�2�j

doj;� 
o
j;�(r; z )jp2rdrdz � CpDp2j(p=2�1)

X

o

X

�2�j

jdoj;� j
p:

This implies that the L p norm of u can be controlled through the needlet coe�cients
and thus that it su�ces to well estimate the needlet coe�cients to well estimate
the function.

Needlet coe�cient estimation. To produce a good estimate of u, it su�ces thus to
produce good estimates for the needlet coe�cients:

Z 1

�1

Z 1

0
u(r 0; z0) oj;�(r

0; z0)2r 0dr 0dz0:

Using the de�nition, one has for  oj;�:

doj;� =
Z 1

�1

Z 1

0
u(r; z ) oj;�(r; z )2rdrdz

=
Z 1

�1

Z 1

0
u(r; z )

 
p

! �
X

m2N

X

m02N

s

o1

� m
2j

�
o2

�
m0

2j

�
Qm(r �)Rm0(z�)Qm(r)R(0;0)

m0 (z)

!

2rdrdz 0

=
p

! �
X

m2N

X

m02N

s

o1

� m
2j

�
o2

�
m0

2j

�
Qm(r �)Rm0(z�)

� Z 1

�1

Z 1

0
u(r; z )Qm(r )Rm0(z)2rdrdz

�

=
p

! �
X

m2N

X

m02N

s

o1

� m
2j

�
o2

�
m0

2j

�
Qm(r �)Rm0(z�)

hm;m0
� m

:

A natural estimate for doj;� is thus given by

gdoj;� =
p

! �
X

m2N

X

m02N

s

o1

� m
2j

�
o2

�
m0

2j

�
Qm(r �)Rm0(z�)

ĥm;m0
� m

:

Note that by construction

^Pa;2J ;2Ju =
X

�2�0

gda;a0;� � a;a0;� +
JX

j=0

X

o

X

�2�j

gdoj;� 
0
j;xi

=
2JX

n=0

2JX

n0=0

a
� n

2J
�

a
�

n0

2J

� ]hn;n0
� n

Qn(r )Rn0(z)
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and thus the needlets seem not to be useful as the second formula is simpler.
It turns out that this estimate can be transformed in a better one in terms

of expected error by thresholding the estimated coe�cients, i.e. replacing them by
0 when they are small. This idea has been introduced by Donoho et al in statistics
and relies on approximation theory. It is based on the observation that if a needlet
coe�cient doj;� of the true function u is small with respect to the approximation
error between doj;� and gdoj;� then it is better to replace the approximated value by 0.
This idea can not be used as is as the value of doj;� is unknown but it is replaced by
a decision based on a comparison between the approximation gdoj;� and a threshold
Tj;� meant as an expected error term. This yields the thresholding estimate

euJ =
X

�2�0

gda;a0;� � a;a0;� +
JX

j=0

X

o

X

�2�j

� Tj;�
�

gdoj;�
�

 0
j;xi

with � T (x) = x if jxj > T and 0 otherwise and Tj;� is a family of threshold to
be chosen. For instance, in a Gaussian white noise framework, Tj;� is chosen as a
multiple of the expected standard deviation. As soon as there is some blurring, the
inversion formula (4.3) does not hold anymore. Following ideas of [35], we propose
to simply apply a regularized inverse operator B�1

� to the noisy observation vd =
BH 0u + � and apply the thresholded needlet estimator to B�1

� vd. The choice of the
thresholds depends on the speci�c inverse used as is it set to the expected standard
deviation of the coe�cients of the noise after the application of the regularized
inverse.

Algorithm 2
Initialization : Compute I d = B�1

� vd - n = 0
Iterations :
for 0 � n; b0 � 2J do

Compute hn;n0 =
8

22J

N=2X

i=1

NX

j=1

I d[i; j ]Q#
n (2i=N )Rn0(i=N � 1)

end for
For � 2 �0, compute da;a0;� =

h0;0

� 0
Q0(r �)R0(z�)

for 0 � j � J do
For � 2 �j , for all o, compute

gdoj;� =
p

! �
2jX

n=0

2jX

n0=0

s

o1

� n
2j

�
o2

�
n0

2j

�
Qn(r �)Rn0(z�)

]hn;n0
� n

and � Tj;� (gdoj;�)
end for
Set euTh =

X

�2�0

gda;a0;� � a;a0;� +
JX

j=0

X

o

X

�2�j

� Tj;�
�

gdoj;�
�

 0
j;xi

where vd[i; j ] = vd(2i=N; i=N � 1).

Such an algorithm gives similar results to the ones in Figure 4.6(f). There is
no great improvement in terms of SNR for example. However, the computational
time is widely reduced.
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(a) Original image (b) Observed image ud

(c) Fractional laplacian re-
construction, " = 0:5; � =
5; � = 0

(d) Smooth truncated
Needlet reconstruction

(e) Threshold Needlet re-
construction

Figure 4.7. Results with Needlet approach

5. Non axially symmetric objects : optimal transport approach
Next, we abandon the axially symmetry assumption but we use the previous results.
Indeed, we assume that a �rst guess of the object has been reconstructed, for
example with the previous techniques and we would like to move this initial object
to the solution which is not assumed to be axially symmetric any longer.
In what follows, f � 0; � 1; : : : ; � p�1g denotes the p acquisition angles (in [0; � [). The
measured data are � i(:= H i� ) 2 L 2(~
) where H i := H �i ; i = 0; � � � ; p � 1. The
(open) set 
 is now a subset of Rd and ~
 � Rd�1.

We �rst used an elastic model (optical 
ow) to achieve this goal. As we will see,
this is not satisfactory enough and we decided to use optimal transport techniques.

5.1. An elastic model
5.1.1. Presenting the model. We assume that we know an initial object � 0 that we
may compute (for example) as a radially symmetric object with the mean value of
the p projections.
We want to �nd a deformation vector �eld g : � 0 7! � that moves � 0 to � the
so-called solution which �ts the projection data:

�
g : �
 � Rd ! �


x 7! g(x) = (g1(x); � � � ; gd(x))
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We call � the map that provides the solution ; precisely

8g �(g) = � 0 � (Id +g) ;

where Id is the identity operator in Rd. Then, the �tting data term writes

F (g) :=
p�1X

k=0

Z



(Hk�(g) � � k)2(x)dx ;

and we de�ne the cost functional as

J (g) =
1
2

F (g) +
� + �

2
kdiv gk2

L2 +
�
2

kr gk2
(L2)d ;

where � and � are the Lam�e coe�cients that describe the body deformations and
r g = (r g1; � � � ; r gd). Next we consider the optimization problem

min
g2B

J (g) (P )

where B is the vector space of admissible vector �elds, for instance

B := f g : �
 ! �
 j supp �(g) � �
g :

We brie
y and formally describe the method.
The Euler equation writes r gJ (g�) = 0 if g� is a solution. A classical computation
gives

p�1X

k=0

H �k [Hk�(g�) � � k]r x�(g�) � (� + � )r (div g�) � � �g� = 0;

or equivalently

8i = 1; � � � ; d
p�1X

k=0

H �k (Hk� 0(I +g�)� � k)
@�0(I + g�)

@xi
� (� +� )

@(div g�)
@xi

� � �g�i = 0:

In addition we have to prevent �(g�) to have a support outside �
 , so we add the
(vectorial) boundary condition

@g
@n

= 0 :

5.1.2. Numerical realization. The algorithm is devoted to the computation of a
solution to the Euler equation 	(g�) = 0 with a descent method and 	 is given by
(5.1)

	(g) = (� + � )r (div g) + � �g �
p�1X

k=0

H �k [Hk�(g) � � k]r x�(g): (5.1)

We set d = 2 and 
 =] � a; a[� ] � a; a[ as an example. The discretization
process is standard (see Section 4.2). Let us precise the discrete form of the projec-
tion operators in the case where we have three angles : � 0 = 0; � 1 =

�
2

and � 2 =
�
4

.
Recall that

H � � (y) =
Z +1

�1
1
(x; y )� (x cos � + y sin �; � x sin � + y cos � ) dx:

A straight forward computation gives

8` 2 f 1; � � � ; N g H 0� (y‘) ' H 0� (`) :=
NX

k=1

M k;‘ � (k; ` ) : (5.2)
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where h = 2a=N and

M k;‘ =

(
h if x2

k + y2
‘ � a2

0 else
= h

(
1 if (2k � N )2 + (2` � N )2 � N 2

0 else

and in the case where � =
�
2

8k 2 f 1; � � � ; N g H 1� (xk) ' H 1� (k) :=
NX

‘=1

M ‘;k � (k; ` ) : (5.3)

In the case � =
�
4

, the detector has to be discretized in a di�erent way because it
is not parallel to the axis of the cartesian grid. We �nally obtain

8` 2 f 1; � � � ; 2N � 1g H 2� (z‘) ' H 2� (`) :=
NX

k=1

fM k;l � (k; ` � k) : (5.4)

where we have set for every ` 2 f 1; � � � ; 2N � 1g and k 2 f 1; � � � ; N g

fM k;‘ =

(
h

p
2 if j` � 2kj �

q
N2

2 � (` � N )2 and ` 2 I N

0 else

= h
p

2

(
1 if (2k � `)2 + (` � N )2 � N2

2

0 else

Similarly the discrete form of the adjoint operators writes: 8k; ` 2 f 1; � � � ; N g

(H �0 w)(k; ` ) = M k;‘ w(`); (H �1 w)(k; ` ) = M ‘;k w(k); (H �2 w)(k; ` ) = fM k;‘+k w(` + k):

Note that it is usually assumed that h = 1 (and a = N=2) in image processing. For
more details one can refer to [2].

Algorithm 3
Initialization : n = 0, g0 = 0. Choose � (descent parameter)
N1 maximum number of iterations.
Iterations :
for 0 � n � N1 do

(a) Compute.
	n = (� + � )r (div gn) + � �gn �

p�1X

k=0

H �k [Hk�(gn) � � k]r x�(gn)

(b) gn+1 = gn + � 	n.
end for

The results are not very good: the tuning the parameters � and � is delicate. If
they are too large the algorithm diverges.The solution looks as it was noisy (though
a small � seems to have a denoising e�ect) and overall the process is quite slow.
Of course, the numerical method could be improved a lot. However, we decided to
investigate another approach, using optimal transport theory.
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(a) Groundtruth (desired object) (b) Prior �0: the lower left square
is located at the same place as the
desired disk. The upper right one is
not.

(c) Computed object (d) Di�erence between the ground
truth and the computed solution

Figure 5.1. Results with � = 0:1; � = 0:1 and � = 0:5 -
1000 iterations

5.2. Optimal transport model : multi-marginal approach
5.2.1. Presenting the model. We �rst suppose that the studied object is described
by a function (with compact support) f : Rd 7�! R that gives the attenuation
coe�cient of the material at the current point, and we set � (dx ) = cf (x )dx where
c is a normalizing constant so that � is a probability measure on Rd (we denote by
bold letters the vectors and by regular ones the real numbers). In what follows, we
want to recover � from the data and some prior, and we will search � in the set of
probability measures on Rd (with �nite second moments).

The data of tomographic reconstruction problem are
� a set of unitary directions r i 2 Sd�1, i = 1; : : : k , where Sd�1 denotes the unit

ball of Rd�1, corresponding to the X-ray propagation directions.
� a corresponding collection of probability measures � i, i = 1; : : : ; k respectively

de�ned on r?i , with �nite second moments.
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The probability � i represents the X-ray measurement on a hyperplane r i
?. Note

that if d = 2 this hyperplane reduces to a line. In this case, we set d i := r i
? 2 S1, a

generating direction. For the sake of mathematical generality we present the model
in Rd while keeping 1D projections. The probability � i represents now the X-ray
measurement on a line whose direction is d i . Let us denote by �d i the projection
operator on the line directed by d i and by and by T#� the push-forward of the
measure � through the map T : T is a map from Rn to Rp, such that for every Borel
subset A of Rp T#� (A) = � (T�1(A)).Then, without noise perturbation, , we have

� i = �d i#�

or equivalently, for every continuous function ' on R with compact support
Z

R
' (t)� i(dt) =

Z

Rd
' (d i � x )� (dx ):

As said before, the measure � is not uniquely determined by these few pro-
jections and we must add some additional assumption to be able to perform the
desired reconstruction. Again, we suppose that we have a prior � 0 and that the real
object � is close to this prior. We are looking for a probability measure � whose
transportation cost from � 0 is small and whose projections match the data � i. As
these data are noisy, this matching cannot be perfect and we introduce a variational
model.

In the sequel, P2(Rd) (respectively P2(R)) will denote the set of probability
measures on Rd (R) with �nite second moment. For � and � in P2(Rd), the squared-
2-Wasserstein distance between � and � is by de�nition

W 2(�; � ) := inf

2�(�;�)

Z

Rd�Rd
jx � y j2
 (dx ; dy )

where �(�; � ) denotes the set of probability measures on Rd � Rd having � and �
as marginals. The fact that the previous in�mum is attained is classical, also, we
recall a useful dual formula due to Kantorovich that enables one to express W 2 as

W 2(�; � ) = sup
(f;g)2Cb(Rd)�Cb(Rd)

� Z

Rd
fd� +

Z

Rd
gd� : f (x ) + g(y ) � j x � y j2

�

Slightly abusing notations, we shall also use the notations W 2 for the squared
2-Wasserstein distance between probability measures on the real line and the no-
tation �(�; � ) for the set of probability measures having � and � as marginals even
if � and � are probability measures on spaces with di�erent dimensions.

Given positive weights � 0; � 1; : : : ; � k, � 0 2 P 2(Rd), and � i 2 P 2(R) for i =
1; : : : ; k , we consider as cost the weighted sum of squared 2-Wasserstein distances
i.e.

J (� ) :=
� 0

2
W 2(� 0; � ) +

1
2

kX

i=1

� iW
2(� i; �d i#� ):

For further use, let us remark that it is easy to see that one may express the one-
dimensional squared 2-Wasserstein distance between � i and �d i#� equivalently
either as

W 2(� i; �d i#� ) = inf

i2�(�i;�d i#

�)

Z

R�R
(xi � yi)2
 i(dxi; dyi)

or
W 2(� i; �d i#� ) = inf

�i2�(�i;�)

Z

R�Rd
(xi � x � d i)2� i(dxi; dx ): (5.5)
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Our aim is to study the following (convex) minimization problem

inf
�2P2(Rd)

J (� ): (P )

The direct method of the calculus of variations applies so that (P ) admits
at least a minimizer. Let us present the dual formulation as in [5, 3] (in the P2

framework as in the present paper). Let f 0 be a real-valued function de�ned on Rd;
we then de�ne f �0

0 by the in�mal convolution formula:

f �0
0 (x 0 ) := inf

x2Rd

�
� 0

2
jx 0 � x j2 � f 0(x )

�
; 8x 0 2 Rd : (5.6)

In a similar way, for f i: R ! R, we de�ne

f �ii (xi) := inf
yi2Rd

�
� i
2

(xi � yi)2 � f i(yi)
�

; 8xi 2 R:

Then de�ne

F (f 0; f 1; : : : ; f k) :=
Z

Rd
f �0

0 (x 0 )� 0(dx 0 ) +
kX

i=1

Z

R
f �ii (xi)� i(dxi)

and consider the (concave) maximization problem

sup
(f0;:::;fk)2K

F (f 0; f 1; : : : ; f k) (P �)

where K consists of continuous functions that have at most quadratic growth at
in�nity and such that

f 0(x ) +
kX

i=1

f i(d i � x ) = 0; 8x 2 Rd: (5.7)

Then we have equivalence between the primal and dual problem in the following
sense :

Theorem 5.1. The following duality relation holds

inf(P ) = sup(P �):

Moreover, (P �) admits a solution (f 0; f 1; : : : ; f 1) that can be chosen in such a way
that the functions v1; : : : ; vk de�ned by

vi(t) :=
� i
2

t2 � f i(t); t 2 R; i = 1; : : : ; k (5.8)

are convex (which in particular implies that the functions f 1; : : : ; f k can be chosen
semiconcave onR and f 0 semiconvex onRd).

Next we are able to give an equivalent linear reformulation that takes the
form of a multi-marginal optimal transport problem.
For any x := (x 0 ; x1; : : : ; xk) 2 Rd � Rk, let us de�ne

c(x ) := inf
x2Rd

(
� 0

2
jx 0 � x j2 +

kX

i=1

� i
2

(xi � x � d i)2

)

: (5.9)

This quadratic problem has a unique minimizer that we denote T (x ); its expression
is easy to compute and reads as

T (x ) =

 

� 0 id +
kX

i=1

� id i � d i

! �1

(� 0x 0 +
kX

i=1

� ixid i): (5.10)
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Then, c(x ) writes

c(x ) =
� 0

2
jx 0 j2 +

kX

i=1

� i
2

x2
i �

1
2

Az (x ) � z(x ) (5.11)

with

A :=

 

� 0 id +
kX

i=1

� id i � d i

! �1

and z(x ) := � 0x 0 +
kX

i=1

� ixid i: (5.12)

The multi-marginal optimal transport problem then reads

inf

2�(�0;�1;:::;�k)

Z

Rd�Rk
c(x )
 (dx ) (Pm)

where �(� 0; � 1; : : : ; � k) denotes the set of probability measures on Rd � Rk having
� 0; � 1; : : : ; � k as marginals and c is the cost computed above. Again the existence
of an optimal measure for (Pm) is easy to prove and the connection between (P )
and (Pm) is then given by

Theorem 5.2. If 
 solves (Pm) then � := T #
 (where T given by (5.10)) solves(P ).

Thank to expression (5.11), problem (Pm) is equivalent to

sup

2�(�0;�1;:::;�k)

1
2

Z

Rd�Rk
Az (x ) � z(x )
 (dx ) (5.13)

where the symmetric positive de�nite matrix A and the linear map z are de�ned
in (5.12). Using (Pm) dual formulation

inf

( Z

Rd
u0� 0+

kX

i=1

Z

R
ui� i j u0(x 0 )+

kX

i=1

ui(xi) �
1
2

Az (x ) � z(x ); 8x 2 Rd � Rk
)

(P �m)

we can prove that, if 
 is optimal for (5.13) and (u0; u1; : : : ; uk) solves (P �m), then
for 
 a.e. x = (x 0 ; x1; : : : ; xk) one has

u0(x 0 ) +
kX

i=1

ui(xi) =
1
2

Az (x ) � z(x ):

If, in addition, u0 is di�erentiable at x 0 and ui is di�erentiable at xi one has:

r u0(x 0 ) = � 0Az (x ) ) z(x ) =
A�1r u0(x 0 )

� 0
(5.14)

and

u0i(xi) = � iAz (x ) � d i =
� i
� 0

r u0(x 0 ) � d i ) xi = (u0i)
�1

� � i
� 0

r u0(x 0 ) � d i
�

: (5.15)

So, we may deduce the following result on uniqueness of the optimal measure 
 for
(5.13) and that it is of Monge type (i.e. supported by a graph over the x 0 variable):

Theorem 5.3. Assume that � 0 vanishes on small sets and that� i does not charge
points for i = 1; : : : ; k . Then (5.13) admits a unique solution 
 that is of Monge-
Type (i.e. induced by a map) and given by


 := 	#� 0

where

	(x 0 ) :=
�

x 0 ; (u01)�1
� � 1

� 0
r u0(x 0 ) � d1

�
; : : : ; (u0k)�1

� � k
� 0

r u0(x 0 ) � dk
��

and the strongly convex potentials u0, u1; : : : ; uk solve the dual problem (P �m).
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Combining the previous with proposition 5.2 we obtain

Corollary 5.1. Under the assumptions of theorem 5.3, the solution � of (P ) is of
Monge type and given by

� = F #� 0

where

F (x 0 ) := A
�

� 0x 0 +
X

i=1

� i(u0i)
�1

� � i
� 0

r u0(x 0 ) � d i
�

d i
�

: (5.16)

In the sequel (especially for numerical tests) we use a formulation derived
from equations (5.15) and(5.16) as F (x 0 ) = x 0 + � x 0, where � x 0 stands for the
displacement. Indeed, these two equations yield

A�1(F (x 0 )) = A�1(x 0 + � x 0) = � 0x 0 +
kX

i=1

� ixi d i :

With (5.12), we get A�1(� x 0) +
P k
i=1 � i(d i � d i)x 0 =

P k
i=1 � ixi d i that is

A�1(� x 0) =
kX

i=1

� i(xi � x 0 � d i)d i:

Finally

F (x 0 ) = x 0 + A

 
kX

i=1

� i(xi � x 0 � d i)d i

!

: (5.17)

Proceeding as in [3, 5], we deduce the following regularity result:

Theorem 5.4. If, in addition to the assumptions of Theorem 5.3, � 0 belongs to
L1(Rd) then � belongs toL1(Rd) as well.

5.2.2. Numerical realization. The numerical realization is quite delicate and de-
serves a �ner study (by comparing di�erent points of view). What follows is rather
a validation of the model than a complete numerical investigation.

Let us describe the numerical process to solve problem (P �m) (which involves
the computation of only one in�mal convolution, whereas (P �) involves k of them)

inf

( Z

Rd
u0 � 0 +

kX

i=1

Z

R
ui� i j u0 (x 0 ) +

kX

i=1

ui(xi) �
1
2

Az (x ) � z(x ); 8x 2 Rd � Rk
)

where u = (u1; � � � ; uk), x = (x1; � � � ; xk) 2 Rk, x = (x 0 ; x ) 2 Rd � Rk, A , and z(x )
are de�ned by equations (5.11) and (5.12).

Problem (P �m) can be equivalently written as

inf
u

(
kX

i=1

Z

R
ui� i �

Z

Rd
min
x2Rk

 
kX

i=1

ui(xi) �
1
2

Az (x 0 ; x ) � z(x 0 ; x )

!

� 0(dx 0 )

)

: (5.18)

We set

H (u; x 0 ; x ) =
kX

i=1

ui(xi) �
1
2

Az (x 0 ; x ) � z(x 0 ; x )

and compute, if possible, a solution to

min
x2Rk

H (u; x 0 ; x ): (5.19)
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Note that the existence and uniqueness of solutions is not a priori ensured. It
depends on the behavior of the functions u with respect to the quadratic form
Az (x 0 ; x ) � z(x 0 ; x ). Indeed we know by the theory that the solution u is strongly
convex. We must ensure coercivity for H . This will be the case if the strong con-
vexity constant of u is greater that the one of the quadratic form. The latter is
driven by the parameters � i; i = 0; � � � ; k. As the di�erent directions d i play the
same role it is consistent to choose � i = 1; i = 1; � � � ; k. The only parameter to tune
is � = � 0. For numerics we set � = 10�4.
Assuming that problem (5.19) has at least a solution x� we may use Euler equation
and set r x H (u; x 0 ; x�) = 0: A short computation gives :

8i = 1; � � � ; k
@H
@xi

(u; x 0 ; x ) = u0i(xi) � � iAz (x 0 ; x ) � d i:

Therefore the solution x�(u; x 0 ) is implicitly given by the following system :

8i = 1; � � � ; k
@H
@xi

(u; x 0 ; x�) = u0i(x
�
i ) � � iAz (x 0 ; x�1; � � � ; x�k) � d i = 0: (5.20)

With (5.12) relation (5.20) writes:

8i = 1; � � � ; k u 0i(x
�
i ) = � i� 0Ax 0 � d i +

kX

p=1

� i;px
�
p;

where we have set � i;p = � p(Adp � d i) for i; p = 1; � � � ; k. Setting A = (ai;p)i;p=1;��� ;k

gives that x�(u; x 0 ) is solution of the following system

8i = 1; � � � ; k u 0i(x
�
i ) = � 0Ax 0 � (� id i) + (Ax�)i: (5.21)

Once x�(u; x 0 ) is computed, the cost functional in problem (P �m) reads

J (u) =
kX

i=1

Z

R
ui� i �

Z

Rd
H (u; x 0 ; x�(u; x 0 ))� 0(dx 0 ):

To use a numerical method to minimize J , we have to compute rJ (u).
Let be ' : R ! R and i 2 f 1; � � � ; kg :

@J
@ui

(u) � ' =
Z

R
'� i �

Z

Rd

�
@H
@ui

((u; x 0 ; x�(u; x 0 )) � '
�

� 0(dx 0 ):

The computation of
@H
@ui

((u; x 0 ; x�) � ' gives

@H
@ui

(u; x 0 ; x�) � ' = ' (x�i ) +
kX

j=1

@H
@xj

(u; x 0 ; x�)
@x�j
@ui

(u; x 0 ; x�) � ':

Therefore

8i = 1; � � � ; k
@J
@ui

(u) � ' =
Z

R
'� i �

Z

Rd
' (x�i (u; x 0 ))� 0(dx 0 ); (5.22)

where x�(u; x 0 ) satis�es (5.21).
We decided to use a Galerkin type method to approximate the solution. More

precisely, we choose a suitable basis (FEM, spectral or spline) to write the function
u. Here, we decided to use a spline basis, so that u is described by very few scalar
coe�cients. In addition, such an approach allows to compute the integral quantities
once at the beginning of the process. The algorithm writes :
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Algorithm 4
Given � i; i = 0; � � � ; k, d i; i = 1; � � � ; k.

Compute integrals (x 0 and ' are known ), A and A.

Initialization : Choose u0
i=1::k - n = 0 - N1 is the maximum number of iterations.

Iterations :
for 0 � n � N1 do

(a) Compute x�ni=1::k[uni=1::k; x 0 ] solving

(unk;i)
0(x�nk;i) � (Ax�n)i = � 0Ax 0 � (� id i);

(b) Compute rJ (uni=1::k) with
@J
@uj

(uni=1::k) = � j � Tj;k#� 0

where Tni=1::k(x 0 ) := xn�i=1::k(uni=1::k; x 0 ).
(c) Compute un+1

i=1::k = uni=1::k � � krJ (uni=1::k):
(c) Stopping criterion

end for

(a) Groundtruth (desired ob-
ject)

(b) Prior �0

(c) Computed object with opti-
mal transport

(d) Computed object with the
standard back-�ltered projec-
tion algorithm

Figure 5.2. Example 1: no mass outside the two disks.
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We present in Figures 5.2 and 5.3 two academic examples obtained with three
views with directions d1 = (1; 0); d2 = (0; 1); d3 = (1; � 1)=

p
2 . In both cases

� i = 1; i = 1; 2; 3 and � = 10�4. These examples seem similar. The prior � 0 is
designed such that the lower left square is located at the same place as the desired
disk. The upper right one is not. In Figure 5.2 ( Example 1), we note in (c) that
the squares have been moved at the right place (the centers of the disk and square
are the same). However, the shapes do not �t well.

The main di�erence between the two examples is that the material density is
not zero in example 2. So the induced mass will be transported as well : this is an
undesirable e�ect that we see on Figure 5.3.

(a) Groundtruth (desired ob-
ject)

(b) Prior �0

(c) Computed object with opti-
mal transport

(d) Computed object with the
standard back-�ltered projec-
tion algorithm

Figure 5.3. Example 2 : there is mass outside the two disks.
We see in (c) that the whole band containing the square has
been transported and not the square only. So, the upper right
square is not located at it should be.

Recall that these results are extracted from [3] and more details can be found
in that paper. Other numerical methods and/or formulations may be investigated
using for example entropy regularization as in [12].
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6. Conclusion
We have given an overview of the di�erent methods we used to deal with that com-
plicated problem. As we mentioned before, more comments, proofs and examples
can be found in the quoted papers. We have not presented all the numerical meth-
ods and alternative models we have been investigating during the past decade but
the papers appear in the references. Let us point out that results of sections 4.2
and 5.1 were unpublished.

The optimal transport approach seems promising. An alternative point of view
using the partial di�erential transport equation and optimal control techniques is
currently under investigation using the formulation of [11].
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