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Optimal Riemannian quantization
with an application to air traffic analysis

Alice Le Brigant1 and Stéphane Puechmorel1

1ENAC, Université de Toulouse, Toulouse France

Abstract

The goal of optimal quantization is to find the best approximation of a probability distri-
bution by a discrete measure with finite support. In this paper, we introduce an algorithm
that computes the optimal finite approximation when the probability distribution is defined
over a complete Riemannian manifold. It is a natural extension of the well-known Competitive
Learning Vector Quantization algorithm. We use it to analyze air traffic complexity in air traffic
management (ATM). From a given air traffic situation, we extract an image of covariance ma-
trices and use CLRQ (Competitive Learning Riemannian Quantization) to find the best finite
approximation of their empirical spatial distribution. This yields a digest of the traffic as well as
a clustering of the airspace into zones that are homogeneous with respect to complexity. These
digests can then be compared using discrete optimal transport and be further used as inputs of
a machine learning algorithm or as indexes in a traffic database.

1 Introduction

1.1 Motivation

Most of the statistical tools developed so far are dedicated to data belonging to vector spaces, since
it is the most convenient setting for algorithms as well as theoretical derivations. However, when
dealing with real world applications, such a framework may not fit in with the structure of the
data. It is obviously the case for geostatistics over world-sized datasets, but it is also true in many
other fields: shapes in computer vision, diffusion tensor images in neuroimaging, signals in radar
processing do not belong to a Euclidean space, but rather to a differentiable manifold. Riemannian
geometry provides a convenient framework to deal with such objects. It allows a straightforward
generalization of the basic statistical notions such as barycenters (Karcher 1977; Fletcher et al.
2008), covariance and Gaussian distributions (Pennec 2006; Said et al. 2017), and of the usual
linear operations such as principal component analysis (Fletcher et al. 2004; Sommer et al. 2010).
The use of these statistical tools has met a growing interest in various fields, including shape analysis
(Kendall 1984), computational anatomy (Fletcher et al. 2004), medical imaging (Fletcher and Joshi
2007), probability theory (Bigot et al. 2017), and Radar signal processing (Arnaudon et al. 2013;
Le Brigant 2016).

In air traffic management (ATM), a major concern is the ability to infer an estimation of the
perceived complexity for a controller from the knowledge of aircraft trajectories in a given airspace,
as depicted in Figure 1. Many interdependent factors are involved in the cognitive process of a human
controller, making the problem extremely difficult to solve, if even possible. However, there is a
consensus among the experts on the importance of traffic disorder. In the present work, we assume
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the spatial distribution of the aircraft velocities to be Gaussian and use the covariance function as an
indicator for local complexity, in compliance with the above remark. This model leads us to consider
mappings from the plane to the space of symmetric, positive definite (SPD) matrices, that will be
termed as images (of SPD matrices) in the sequel. While the space of SPD matrices does not form a
vector space, it is well known that it can be equipped with the structure of a Riemannian manifold
(Pennec et al. 2006). Working directly with the images is an extremely computationally expensive
task, that is unrealistic in practice. Moreover, the information provided is highly redundant, making
it cumbersome to use in statistical analysis. To cope with this problem, a digest of the images will
be produced using optimal quantization. The main idea is to model an image as a realization of a
random field with values in the space of SPD matrices. The values collected at each sample point
in the image will thus be representative of an underlying probability distribution, supported on the
Riemannian manifold of the SPD matrices. Using optimal quantization on it will then allow a digest
(or summary) to be produced, that can be seen as a generalization of the intensity histogram in
classical image processing.

1.2 Optimal quantization

Indeed, optimal quantization is concerned with finding the best approximation, in the sense of the
Wasserstein metric, of a probability distribution by a discrete measure with finite support. Its origins
go back to information theory and signal processing in the middle of the twentieth century. It was
initially developed for signal compression purposes, in order to find appropriate ways to discretize
a signal. It has since been applied to many different problems, in various fields : in numerical
integration, to approximate integrals with respect to a certain probability distribution µ by a finite
sum; in finance, for the numerical computation of conditional expectations (Pagès et al. 2004);
and in economics, to determine the optimal location of service centers with respect to population
demand (Bouchitté et al. 2011). Furthermore, optimal quantization naturally yields a clustering,
which coincides with the solution given by theK-means algorithm when µ is an empirical law equally
distributed on a finite number of points. In most of these applications, quantization is performed on
distributions of real d-dimensional random vectors; however, the quantization framework has also
been extended to distributions of stochastic processes, for applications in finance (Pages 2008) or
to perform clustering of random functional data such as spectra or speech recordings (Biau et al.
2008). For further references, we refer the reader to the monograph (Graf and Luschgy 2007) or the
survey paper (Pagès 2015).

1.3 The non-Euclidean setting

Here we are interested in quantizing the distribution of SPD matrices. These matrices are obtained
from an air traffic image such as those shown in Figure 1, by evaluating in each point of the image
the covariance function of the velocity field. These covariance matrices reflect the distribution of the
directions as well as the amplitude of the velocities, coded increasingly from yellow to red in Figure
1. Quantizing their distribution yields two desirable results : (1) a clustering of the airspace into
different zones homogeneous with respect to complexity, and (2) a summary of the image through
the optimal discrete approximation. The first one means that each point of the image is assigned
a level of complexity according to the class it belongs to, and the second one, that different traffic
images can easily be compared through the comparison of their summaries, e.g. using optimal
transport. This is an interesting prospect, since it allows for the indexation of air traffic situations
in view of creating automatized decision-making tools to help air traffic controllers.

As previously mentioned, the space of SPD matrices is not a Euclidean space but a Rieman-
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Figure 1: Traffic over the French airspace during one-hour periods of time.

nian manifold. Optimal quantization of probability distributions on Riemannian manifolds has
recently received attention (Kloeckner 2012; Iacobelli 2016). In particular, the famous theorem on
the asymptotic behavior of the quantization error, Zador’s theorem (see Graf and Luschgy 2007,
Theorem 6.2), was extended to probability measures on a complete Riemannian manifold in (Iaco-
belli 2016). However, to the best of our knowledge, no numerical schemes have yet been introduced
to find the optimal approximation of manifold-valued data by a smaller number of points. Here, we
introduce Competitive Learning Riemannian Quantization (CLRQ), an algorithm that computes
the optimal discrete approximation of a probability measure µ on a manifold, using on-line obser-
vations sampled from µ. It is a natural generalization of Competitive Learning Vector Quantization
(CLVQ) (see e.g. Pagès 2015), a stochastic gradient descent algorithm exploiting the differentiability
of the quantization cost function. The algorithm converges when the manifold is complete and µ is
compactly supported. We apply it to distributions of covariance matrices extracted from real traffic
datasets, and compare the results to those of vector quantization. We then compare different traffic
situations by computing the optimal transport cost between their discrete summaries.

1.4 Outline of the paper

The paper is organized as follows. In Section 2, we briefly give some basic notions of Riemannian
geometry, and introduce the context of optimal quantization. In Section 3, we present the CLRQ
algorithm and give some theoretical results. After showing some simple illustrations on the circle,
the sphere and the hyperbolic plane in Section 4, we present our main application in air traffic
management in Section 5.

2 Mathematical setup

Let us begin by introducing some notations and reminding some basic notions of Riemannian geom-
etry. We consider a differentiable manifold M of dimension d equipped with a Riemannian metric,
i.e. a smoothly varying inner product 〈·, ·〉x defined on each tangent space TxM at x ∈ M . Recall
that TxM is a linear approximation of M at point x, and contains all tangent vectors to M at x.
The subscript x in the metric will often be omitted and the norm associated to the Riemannian
metric 〈·, ·〉 will be denoted by ‖ · ‖. Letting ∇ be the Levi-Civita connection, the geodesics of M
are the curves γ satisfying the relation ∇γ̇ γ̇ = 0, which implies that their speed has constant norm
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‖γ̇(t)‖ = cst. They are also the local minimizers of the arc length functional l:

l : γ 7→
∫ 1

0
‖γ̇(t)‖dt

where in the previous expression curves are assumed, without loss of generality, to be defined over
the interval [0, 1]. The exponential map at point x is the mapping, denoted by expx, that maps
a tangent vector v of an open set U ⊂ TxM to the endpoint γ(1) of the geodesic γ : [0, 1] → M
starting at γ(0) = x at speed γ̇(0) = v. That is, expx(v) = γ(1). The inverse of the exponential map
exp−1

x (y), which gives the vector that maps x to y, will be denoted by the more intuitive notation
−→xy. We assume that M is complete, i.e. that the exponential map at x is defined on the whole
tangent space TxM . By the Hopf-Rinow theorem, we know that M is also geodesically complete,
that is, any two points x, y ∈M can be joined by a geodesic of shortest length. This minimal length
defines the geodesic distance between x and y, denote in the sequel by d(x, y). For further details,
we refer the reader to a standard textbook such as (Jost 2008).

Consider a probability measure µ on M with density and a compact support K = suppµ, and
let X be a random variable of law µ. We want to approximate X by a quantized version of X, i.e.
a certain q(X) where q : M → Γ ⊂M is a measurable function with an image Γ of cardinal at most
n. The function q is called an n-quantizer and is chosen to minimize the Lp criteria

Eµ [d(X, q(X))p] . (1)

It is well known that, since any n-quantizer q of image Γ ⊂ M verifies for all x ∈ M , d(x, q(x)) ≥
infa∈Γ d(x, a), with equality if and only if q(x) = arg mina∈Γ d(x, a), the optimal quantizer is the
projection to the nearest neighbor of Γ. If |Γ| < n and |suppµ| ≥ n, one easily checks that q can
always be improved, in the sense of criteria (1), by adding an element to its image. Therefore, the
optimal n-quantizer for criteria (1) is of the form qΓ : M → Γ = {a1, . . . , an}, where the ai’s are
pairwise distinct, and

qΓ(·) =

n∑
i=1

ai1Ci(Γ)(·), where Ci(Γ) = {x ∈M,d(x, ai) ≤ d(x, aj)∀j 6= i}.

The set Ci(Γ) is the ith Voronoi cell associated to Γ and the union of all these cells form the
Voronoi diagram. The quantization problem is therefore equivalent to the approximation of the
support of the probability measure µ by an n-tuple (a1, . . . , an) ∈Mn minimizing the cost function
Fn,p : Mn → R+,

Fn,p(a1, . . . , an) = Eµ
(

min
1≤i≤n

d(X, ai)
p

)
=

∫
M

min
1≤i≤n

d(x, ai)
pµ(dx). (2)

This cost function is called the distorsion function of order p for µ. Finally, there is a third way,
in addition to (1) and (2), of expressing the quantization problem: it is also equivalent to the
approximation of the measure µ by the closest discrete measure with respect to the Wasserstein
distance of order p

Wp(µ, ν) = inf
P

∫
d(u, v)pdP (u, v). (3)

Here ν is a discrete measure with a finite support of n points, and the infimum is taken over all
measures P on M ×M with marginals µ and ν. This is well known for the vector case (Graf and
Luschgy 2007) and applies verbatim to measures on manifolds.
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Since we have assumed that µ has compact support, the existence of a minimizer of Fn,p is easy
to obtain. For the sake of completeness, this is shown in the Appendix. The elements of a minimizer
α are called optimal n-centers of µ. The minimizer α is in general not unique, first of all because
any permutation of α is still a minimizer, and secondly because any symmetry of µ, if it exists, will
transform α into another minimizer of Fn,p. For example, any rotation of the optimal n-centers of
the uniform distribution on the sphere conserves optimality.

The n-th quantization error is defined by

Vn,p(µ) = inf
(a1,...,an)∈Mn

Fn,p(a1, . . . , an) = inf
(a1,...,an)∈Mn

∫
M

min
1≤i≤n

d(x, ai)
pµ(dx).

In the vector case, Zador’s theorem (see Graf and Luschgy 2007, Theorem 6.2) tells us that it
decreases to zero as n−p/d. The limit of np/dVn,p(µ) is proportional to the pth quantization coefficient,
i.e. the limit (which is also an infimum) when µ is the uniform distribution on the unit square of
Rd

Qp([0, 1]d) = lim
n≥1

np/dVn,p

(
U([0, 1]d)

)
.

Moreover, when µ is absolutely continuous with density h, the asymptotic distribution of the optimal
discrete approximation is proportional to hd/(d+p).

In the case of a Riemannian manifold M , the moment condition of the flat case generalizes to a
condition involving the curvature of M . The following term measures the maximal variation of the
exponential map at x ∈M when restricted to a (d− 1)-dimensional sphere Sρ ⊂ TxM of radius ρ

Ax(ρ) = sup
v∈Sρ,w∈TvSρ,‖w‖=ρ

‖dv expx(w)‖ .

The following generalization of Zador’s theorem to Riemannian quantization was proposed by Iaco-
belli (2016).

Theorem 1 (Iacobelli 2016, Theorem 1.4 and Corollary 1.5). Let (M, 〈·, ·〉) be a complete Rieman-
nian manifold without boundary, and let µ = h dvol+ µs be a probability measure on M , where dvol
denotes the Riemannian volume form and µs the singular part of µ. Assume there exist x0 ∈ M
and δ > 0 such that ∫

M
d(x, x0)p+δdµ(x) +

∫
M
Ax0(d(x, x0)p)dµ(x) <∞.

Then
lim
n→∞

np/dVn,p(µ) = Qr

(
[0, 1]d

)
‖h‖d/(d+p),

where ‖ ·‖r denotes the Lr-norm. In addition, if µs = 0 and (a1, . . . , an) are optimal n-centers, then

1

n

n∑
i=1

δai
D−→ λhd/(d+p)dx as n→∞,

where D→ denotes convergence in distribution and λ is the appropriate normalizing constant.

In this work, we are interested in finding numerical schemes to compute the optimal n-centers
α = (a1, . . . , an) in practice from potentially large sets of data. To do so, we will search for the
critical points of the distorsion function.
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3 Competitive Learning Riemannian Quantization

3.1 The algorithm

We assume that the only knowledge that we have of the probability measure µ that we want to
approximate is through an on-line sequence of i.i.d. observations X1, X2, . . . sampled from µ. A
classical algorithm used for quadratic (p = 2) vector quantization is the Competitive Learning Vector
Quantization algorithm, a stochastic gradient descent method based on the differentiability of the
distorsion function Fn,2. We propose here a natural extension of this method to our setting, i.e.
a compactly-supported probability measure on a complete Riemannian manifold. As shown below
(Proposition 1), the distorsion function is differentiable, and its gradient at point α = (a1, . . . , an)
is given by

∇αFn,2 = −2 Eµ
(
1C̊i(Xk)

−−−→
aiXk

)
1≤i≤n

,

with the notation −→xy = exp−1
x (y). In other words, the opposite direction of the gradient is, on

average, given by the vectors inside the expectation. Competitive learning quantization consists in
following this direction at each step k, that is, updating only the center ai corresponding to the
Voronoi cell of the new observation Xk, in the direction of that new observation. In the Riemannian
setting, instead of moving along straight lines, we simply follow geodesics using the exponential
map.

Assume that we have access toN independant and identically distributed observationsX1, . . . , XN .
We choose a sequence of positive steps (γk)k≥1 ⊂ (0, 1) verifying the usual conditions∑

k≥1

γk = +∞,
∑
k≥1

γ2
k < +∞. (4)

We propose the following algorithm.

Algorithm 1 (Competitive Learning Riemannian Quantization).
Initialization : α(0) = (a1(0), . . . , an(0)).
For k = 0, . . . , N − 1,

1. find i = argmin
j

d(Xk+1, aj(k)),

2. set α(k + 1) = (a1(k + 1), . . . , an(k + 1) where

ai(k + 1) = expai(k)

(
γk+1
−−−→
aiXk

)
,

aj(k + 1) = aj(k) ∀j 6= i.

The steps are chosen to be in (0, 1) so that at each iteration, the center that is updated stays
in the same Voronoi cell, guaranteeing that the centers stay pairwise distinct (if initially pairwise
distinct). We will see in what follows that this algorithm converges, provided that the injectivity
radius of M is lower-bounded by a positive constant.

3.2 Theoretical results

Let us first give the theoretical argument behind Algorithm 1, that is, the differentiability of the
distorsion function.
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Lemma 1. Let α = (a1, . . . , an) ∈ Mn and Ci(α) denote the Voronoi cell associated to ai for all
i = 1, . . . , n. No mass is assigned by µ to the boundaries of the Voronoi diagram

µ (∂Ci(α)) = 0.

Proof. For any n-tuple α = (a1, . . . , an), the ith Voronoi cell can be written

Ci(α) = ∩j 6=iH(ai, aj), where H(a, b) = {x ∈ K, d(x, a) ≤ d(x, b)},

which gives

∂Ci(α) = Ci(α) ∩ C̊i(α)c = Ci(α) ∩
(
∩j 6=i H̊(ai, aj)

)c
= ∪j 6=i∂H(ai, aj) ∩ Ci(α).

Now for any i 6= j, the subset ∂H(ai, aj) = {x ∈ K, d(x, ai) = d(x, aj)} defined as the kernel of the
submersion x 7→ d(ai, x)−d(aj , x) is a submanifold ofM of codimension 1, yielding µ(∂H(ai, aj)) =
0 and therefore µ(∂Ci(α)) = 0.

Now we show that the distorsion function is differentiable.

Proposition 1. Let α = (a1, . . . , an) ∈ Mn be an n-tuple of pairwise distinct components and
p > 1. Then Fn,p is differentiable and its gradient in α is

∇αFn,p =

(
−p
∫
C̊i(α)

‖−→aix‖p−1
−→
aix

‖−→aix‖
µ(dx)

)
1≤i≤n

∈ TαMn,

where C̊i(α) is the interior of the ith Voronoi cell of α and
−→
xy := exp−1

x (y) denotes the vector that
sends x on y through the exponential map.

Remark 1. In the quadratic case (p = 2), the gradient of the distorsion function becomes

∇αFn,2 = −2

(
Eµ1{X∈C̊i}

−→
aiX

)
1≤i≤n

=

(
−2

∫
C̊i

−→
aixµ(dx)

)
1≤i≤n

.

This means that the optimal n-centers are barycenters of their Voronoi cells, hence their name.
More generally, for any value of p, each ai, i = 1, . . . , n, is the p-mean of its Voronoi cell, i.e. the
minimizer of

a 7→
∫
C̊i(α)

d(x, a)pµ(dx).

Therefore, the optimal n-centers are always contained in the compact support of µ.

Proof. Let α = (a1, . . . , an) ∈Mn be an n-tuple of pairwise distinct components, w = (w1, . . . , wn) ∈
TαM

n a tangent vector to α, and let (−ε, ε) 3 t 7→ α(t) = (a1(t), . . . , an(t)) be a variation of α in
the direction given by w, i.e. such that ai(0) = ai et ȧi(0) = wi for all i = 1, . . . , n. The functional
t 7→ min1≤i≤n d(x, ai(t))

p is differentiable for all x 6∈ ∪1≤i≤n∂Ci(α), that is µ-almost everywhere by
Proposition 1, and its derivative in t = 0 is given by

d

dt

∣∣∣∣
t=0

min
1≤i≤n

d(x, ai(t))
p =

n∑
i=1

1{x∈C̊i}
d

dt

∣∣∣∣
t=0

d(x, ai(t))
p

= −
n∑
i=1

1{x∈C̊i}
p

2

[
d(x, ai(0))2

]p/2−1
2
〈−−−−→
ai(0)x, ȧi(0)

〉
= −

n∑
i=1

1{x∈C̊i}p‖
−→aix‖p−2 〈−→aix,wi〉 .
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To go from the second to the third line, we have used the well known property that for any given x,
the gradient of the function f : a 7→ d(x, a)2 is given by ∇af = −2 exp−1

a x = −2−→ax (see Lemma 2
in the Appendix). We obtain by Cauchy-Schwarz, since x ∈ B(a,R) and ai ∈ B(a, 2R) (recall that
any n-tuple containing a coordinate outside of B(a, 2R) is a worse candidate than the same n-tuple
where a replaces ai),∣∣∣∣ ddt

∣∣∣∣
t=0

min
1≤i≤n

d(x, ai(t))
p

∣∣∣∣ ≤ p n∑
i=1

‖−→aix‖p−1‖wi‖ ≤ p(3R)p−1
n∑
i=1

‖wi‖.

Therefore, by dominated convergence, t 7→ ψn,p(α(t)) is differentiable and its differential in α at w
is given by

TαFn,p(w) =
n∑
i=1

〈
−2

∫
1{x∈C̊i}‖

−→
aix‖p−1

−→
aix

‖−→aix‖
µ(dx), wi

〉
= 〈〈∇αFn,p, w〉〉,

where 〈〈·, ·〉〉 denotes the L2 metric on Mn, which gives the desired result for the gradient.

Now let us examine the convergence of Algorithm 1. The following theorem from Bonnabel
(2013) tells us that, if the injectivity radius of M is uniformly bounded from below by some I > 0,
Algorithm 1 converges almost surely.

Theorem 2 (Bonnabel 2013, Theorem 1). Let C(α) = EµQ(X,α) =
∫
Q(x, α)µ(dx) be a three

times continuously differentiable cost function, with gradient ∇αC(α) = EµH(X,α). Here α is a
minimization parameter belonging to a smooth connected Riemannian manifold M with injectivity
radius uniformly bounded from below by I > 0. Consider the following algorithm: at each step
the algorithm receives an input Xk drawn according to µ, and performs a gradient descent on the
approximated cost H

αk+1 = expMαk(−γkH(Xk, αk)).

Here, expM denotes the exponential map onM and the sequence of steps (γk) verifies condition (4).
Suppose there exists a compact set K ′ containing all αk for k ≥ 0, and that the gradient H(x, α) is
bounded for all x ∈ suppµ and α ∈ K ′. Then C(αk) converges a.s. and ∇αkC → 0 a.s.

In the context of this paper, M = Mn and the approximated loss function and its gradient in
α are respectively given by, for all α = (a1, . . . , an) ∈M and x ∈M ,

Q(x, α) = min
1≤i≤n

d(x, ai)
2,

H(x, α) = ∇αQ(x, α) =
(
−21C̊i(x)−→aix

)
1≤i≤n

.

This is once again due to Lemma 2. Since the n-centers α(k) = (a1(k), . . . , an(k)) are each the
barycenter of their Voronoi cells, they always stay in the same compact ball B(a,R) as the data
X1, X2, . . .. Since ‖1C̊i(x)

−→yx‖ ≤ 2R for all y, x ∈ K ⊂ B(a,R) and i = 1, . . . , n, the gradient H
is bounded on K × K. That is, all the assumptions of the theorem are verified and Algorithm 1
converges.

4 Examples

Now let us show some toy examples on manifolds of constant sectional curvature: the circle, the 2-
sphere and the hyperbolic plane. To start, we show optimal discrete approximations of the uniform
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and the von Mises distributions on the circle S1 (Figure 2). The top row shows the initialization
(left) and result (middle) of Competitive Learning Riemannian Quantization (CLRQ) of size n = 6
performed on N = 1000 observations sampled from the uniform distribution, while the bottom row
shows the initialization and result of CLRQ of size n = 5 performed on N = 1000 observations
sampled from the von Mises distribution centered in 0 with concentration parameter K = 5. The
centers are initialized uniformly on [0, 2π] and [−π, π] respectively, S1 being identified with [0, 2π).
In order to reduce dependency on the initialization, each step k is repeated a certain number m
of times. In other words, the same step size is used several times. In the uniform case, m = 10 is
sufficient to obtain a visually satisfying result. For the von Mises distribution, we choose m = 50.

On the right-hand side of Figure 2, we plot the evolution of the Wasserstein distance between
the initial distribution and its quantized version. (Recall that the quantization cost function (3)
involves the L2-Wasserstein distance.) As shown in (Rabin et al. 2011), the computation of the
Lp-Wasserstein distance between two measures on the circle can be reduced to the same operation
in the unit interval [0, 1] by "cutting" the circle at a certain point s ∈ S1, i.e. by identifying it
with a unit length fundamental domain for R/Z. However, when the two measures are not evenly
distributed, the optimal cut is easier to find in the L1 case, therefore we choose to merely compute
the weaker L1-Wasserstein (or Kantorovich-Rubinstein) distance using the algorithm introduced in
(Cabrelli and Molter 1995). We plot the distance between the measure µ and its approximation at
each step k of Algorithm 1

ν(k) =
n∑
i=1

µ(Ci(k))δai(k),

where (a1(k), . . . , an(k)) are the n-centers at step k, C1(k), . . . , Cn(k) are the corresponding Voronoi
cells, and δx is the Dirac distribution at x ∈ M . Assuming that N � n, we can approximate µ by
the empirical measure of the observations x1, . . . , xN

µ̂ =
1

N

N∑
i=1

δxk .

In order to compare two discrete measures with the same number of points, we then identify µ̂ and
ν(k) with the measures obtained on the reunion of their supports by completing with zero masses.
For both the uniform and the von Mises examples, the Wasserstein distance decreases as expected.

Next, we show examples on the sphere. Figure 3 displays three steps of the CLRQ algorithm
applied to the von Mises distribution with concentration parameter K = 5, namely steps 1, 50
and 100, where each step contains m = 50 iterations at the same step size. Finally, to show
an example in the negative curvature setting, we use the work of Said et al. (2017) regarding
the definition and generation of Gaussian distributions on the space of SPD matrices to generate
Gaussian samples on the hyperbolic half-plane. Recall that the hyperbolic half-plane is one of the
models of 2-dimensional hyperbolic geometry, and can be identified with the complex upper-half
plane H2 = {z = x+ iy, (x, y) ∈ R× R∗+} where the length of an infinitesimal element dx+ idy at
point x+ iy is measured by

ds2 =
dx2 + dy2

y2
.

The special linear group SL2 acts on H2 from the left through the Moebius transformation : SO2×
H2 → H2, defined by (

a b
c d

)
· z =

az + b

cz + d
.
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Figure 2: Quantization of the uniform (top) and von Mises (bottom) distributions : initial positions
of the n-centers (left), final positions of the n-centers (middle) and evolution of the L1-Wasserstein
distance between the initial distribution and its quantized version (right).

Figure 3: Quantization of the von Mises distribution on the 2-sphere after 1 iteration (left), 50
iterations (middle) and 200 iterations (right).

Figure 4: Quantization of the Gaussian distribution on the hyperbolic half-plane after 1, 20, and
100 steps.

10



This action is transitive since for all (x, y) ∈ R× R∗+,(
y1/2 xy−1/2

0 y−1/2

)
· i = x+ iy.

Noticing that SO2 is the stabilizer of i, we can identifyH2 with SL2/SO2, which is also homeomorphic
to the space of 2 × 2 SPD matrices of determinant 1 (Jost 2008). The space of SPD matrices of
determinant 1 of is therefore homeomorphic to H2, and the homeomorphism is given by Φ : P 7→ L·i,
where L is the upper-triangular matrix of the Cholesky decomposition of the SPD matrix P = LTL.
To generate a Gaussian sample in H2, we generate a Gaussian sample of SPD matrices using (Said
et al. 2017, Proposition 6) and transport them to the hyperbolic half-plane using Φ. Figure 4 shows
steps 1, 20 and 100 of the CLRQ algorithm applied to observations sampled from the Gaussian
distribution centered in i and with standard deviation σ = 0.5. Each step contains m = 100
iterations.

5 Application to air traffic complexity analysis

5.1 Context

This work was motivated by complexity analysis in air traffic management (ATM). ATM deals
with the means of organizing the aircraft trajectories in a given airspace so as to ensure both
safety and efficiency. One of the most important part of ATM is the air traffic control (ATC) that
acts on flying or taxiing aircrafts in such a way that separation norms are satisfied at all time.
Nowadays, most of the ATC is surveillance based, relying primarily on information coming from the
Radars to give instructions to planes. Even in country-sized airspaces the amount of traffic to be
controlled is far beyond the limits of a single operator and the area under the responsibility of an
air traffic controller (ATCO) has to be kept tractable. As a consequence, the whole airspace must
be divided into elementary cells, known as control sectors, that are alloted to a team of ATCOs.
A major concern arising in the design of such sectors is to ensure that the ATCOs workload is
equally balanced over the airspace. Highly complex areas, involving many flows crossings and
altitude changes, like those encountered close to the largest airports, must be kept small, while
low complexity ones, with either a small aircraft density or a simple airspace structure may be
made large. Finding a complexity indicator that can be computed using only airspace and traffic
information and that closely mimics the perceived workload is a difficult, still unsolved problem
(Prandini et al. 2011; Cook et al. 2015). One of the most widely used indicators is the dynamic
density (Laudeman et al. 1998), that combines influential factors , like number of maneuvering
aircrafts, number of level changes and so on, to output a single positive real value representing the
complexity level. Although quite pertinent from an operational point of view, the dynamic density
is a tool requiring a lot of tuning, involving experiments with a panel of ATCOs and that cannot
be adapted to different airspaces without having to re-tune from scratch. For the same reason, it
is quite difficult to use it for assessing the performance of new concepts, since in such a case there
is no reference situation or existing operational context that may be used to perform the tuning
phase. On the other hand, purely geometrical indicators have been introduced (Lee et al. 2007;
Delahaye and Puechmorel 2010), that are free of the dynamic density limitations. While perfectly
suited to infer an intrinsic notion of complexity, they do not model all the aspects of the workload,
as perceived by a human operator. The approach taken in the present work may be viewed as a mix
between the two previous ones: it relies on an intrinsic description of traffic, but does not produce
a complexity value: instead, a summary of the situation is issued, that serves as an input to a
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classification or machine learning algorithm. Even if this last phase looks very similar to a kind of
dynamic density evaluation, it is far less complex:

• The traffic summary itself requires no tuning, while the influential factors taken into account
in the dynamic density have weights that must be adjusted during the learning phase.

• Complexity classes are computed instead of complexity levels: a clustering algorithm will first
segment the traffic dataset into homogeneous subsets, then a workload value will be associated
by experts to each of them. This process is lightweight, since only the representative in each
class has to be expertized.

• Adaptation to different airspaces is an easy task for the same reason: experts will evaluate
only the representative situation in each class.

The first step is to model the spatial distribution of the aircraft velocities as a Gaussian law. Then,
the covariance function is used as an indicator of traffic complexity. This assumption makes sense
from an operational point of view as it represents the local organization, that is the most influential
factor on ATCCOs workload.

5.2 Estimating the covariance matrices

Although we will in practice consider time-windows, we start by considering a given airspace at a
fixed time t containing N aircrafts either flying or taxiing. We respectively denote by zi and vi
the position and speed of the aircraft i, 1 ≤ i ≤ N , at time t. Since the altitude of an aircraft
plays a special role and does not appear on controllers displays, we choose to disregard it and adopt
a planar representation through a stereographic projection. An underlying Gaussian field model
is assumed for the relation between the velocity and the position, whose variance function will be
interpreted as a pointwise measure of the traffic complexity.

A non parametric approach of type Nadaraya-Watson (Nadaraya 1964; Watson 1964) was taken
to estimated the mean and variance functions at point z:

m̂(z) =

∑N
i=1 ViKh(z − Zi)∑N
j=1Kh(z − Zj)

,

Σ̂(z) =

∑N
i=1(Vi − m̂(z))(Vi − m̂(z))TKh(z − Zi)∑N

j=1Kh(z − Zj)
.

(5)

The weights are given by a kernel function K, i.e. a positive, symmetric function of unit area,
scaled by a factor h > 0 : Kh(x) = h−1K(x/h). Since most kernels have compact support, the
estimations are based in practice on a number of observations that is very inferior to the size N
of the sample. The estimator Σ̂ has been studied in (Yin et al. 2010) where it is shown to be
asymptotically normal. Evaluating it at positions z1, . . . , zN yields a series of symmetric, positive
definite matrices Σ̂(z1), . . . , Σ̂(zN ) with empirical distribution

µ̂ =
1

N

N∑
i=1

δΣ̂(zi)
,

where δΣ denotes the Dirac mass at Σ. In order to obtain a summary of the traffic complexity, we
propose to quantize µ̂ using the CLRQ algorithm on the space of SPD matrices.
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5.3 The geometry of SPD matrices

For the sake of completeness, let us briefly recall the most commonly used Riemannian structure
(Pennec et al. 2006) on the space Pn of symmetric, positive definite matrices. Note that in this
application, we are simply interested in the case n = 2. The Euclidean dot product on the space
Mn of square matrices of size n is given by the Frobenius inner product Σ1 ·Σ2 = tr(ΣT

1 Σ2), where
tr denotes the trace. As an open subset of the vector spaceMn, Pn is a manifold where the tangent
vectors are symmetric matrices. It can be equipped with a Riemannian metric invariant with respect
to the action of the general linear group GLn × Pn → Pn, (A,Σ) 7→ ATΣA. At the identity, this
metric is given by the usual Euclidean scalar product 〈W1,W2〉Id = W1 ·W2 = tr(WT

1 W2), and
at Σ, we ask that the value of the scalar product does not change when the tangent vectors are
transported back to the identity via the action of A = Σ−1/2, i.e.

〈W1,W2〉Σ = 〈Σ−1/2W1Σ−1/2,Σ−1/2W2Σ−1/2〉Id = tr(Σ−1/2W1Σ−1W2Σ−1/2). (6)

The associated geodesic distance is given by

d(Σ1,Σ2) =

√√√√ N∑
i=1

log2
(
λi(Σ

−1/2
1 Σ2Σ

−1/2
1 )

)
,

where we use the notation λi(Σ), i = 1, . . . , n, to denote the eigenvalues of Σ. Recall that in order to
update the centers of the discrete approximation in the CLRQ algorithm, we need the exponential
map, i.e. a mapping that associates to each point Σ and tangent vector W at Σ the end point of
the geodesic starting from Σ at speed W . In the case of metric (6), it is given by

expΣ(W ) = Σ1/2exp
(

Σ−1/2WΣ−1/2
)

Σ1/2,

where the exp on the right-hand side denotes the matrix exponential. Finally, we also need the
inverse mapping, i.e. the logarithm map

logΣ1
(Σ2) =

−−−→
Σ1Σ2 = Σ

1/2
1 log

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)
Σ

1/2
1 ,

where the log on the right-hand side denotes the matrix logarithm. Note that the matrix logarithm
is well defined for any symmetric matrix Σ due to the factoring out in the logarithm series of the
rotation matrices of the spectral decomposition Σ = UDUT.

5.4 Real data analysis

5.4.1 Segmenting and constructing summaries

We now have all the tools to construct summaries of the traffic complexity in a given airspace during
a certain time period. As input, we consider an image such as the ones displayed in the first row of
Figure 5, showing the traffic over Paris, Toulouse and Lyon during a one-hour period of time. The
color is related to the norm of the velocity, increasing from yellow to red. To simplify, we center and
reduce the velocities vi. The samples (zi, vi) are seen as observations arriving in a random order,
and the covariance matrix at zi is estimated according to (5) using a truncated Gaussian kernel
K(x) = 1/

√
2π e−x

2/21|x|<r. The truncation of size r avoids useless computations.

Algorithm 2 (CLRQ for air traffic complexity analysis).
Initialization :
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• Choose i1, . . . , in randomly among 1, . . . , N

• Compute Σ̂(zi1), . . . , Σ̂(zin) using (5).

• Set A1(0) = Σ̂(zi1), . . . , An(0) = Σ̂(zin).

For k = 0, . . . , N − 1, let (zik , vik) be the current observation.

1. Compute Σ̂(zik) using (5).

2. Find jmin = argmin
j

d(Σ̂(zik), Aj(k)).

3. Set A(k + 1) = (A1(k + 1), . . . , An(k + 1) where

Ajmin(k + 1) = expAjmin (k)

(
γk+1

−−−−−−−−−−→
Ajmin(k)Σ̂(zik)

)
,

Aj(k + 1) = Aj(k) ∀j 6= jmin.

In practice, we usually look for n = 3 centers, i.e. the best approximation by three points.
Indeed, we have found that generically, the centers can be ordered for the Loewner order when
n = 3 but not always for n > 3. (Recall that the Loewner order is a partial order on the space of
SPD matrices, according to which A ≥ B if A−B is positive semi-definite.) This can be explained
by the fact that the Riemannian metric (6) sorts by rank, and therefore the covariance matrices
are segmented into those of rank close to zero (since we have centered the velocity field), those of
rank 1 and those of full rank. In the second row of Figure 5, these clusters are respectively shown
in green, blue and red. As could be expected, the first cluster corresponds to zones with either an
isolated trajectory or parallel trajectories, the second to simple crossings or variations of speed in a
given trajectory, and the third to zones with high density and crossings involving many trajectories.
Naturally, the choice of the size r of the kernel’s support has a great influence on the clustering,
and it should be adjusted according to the minimum distance authorized between two aircrafts in
a zone considered as non conflictual.

Further results are shown in Figure 6, where we consider the whole French airspace over different
one-hour periods of time. The clusterings obtained using CLRQ is shown in the middle column.
To illustrate the importance of the Riemannian setting with respect to the Euclidean one, we
show results of Competitive Learning Vector Quantization on the same datasets, i.e. the same
algorithm where the centers are updated using straight lines (linear interpolations between the
matrix coefficients) and the distances are computed using the Frobenius norm. These results are
shown in the right column of Figure 6, and are visually less convincing : many zones that are
perceived as complex by the human eye are not classified as such by the algorithm. In Figure 7,
we show that the initialization has little influence on the segmentation of the airspace, which is
satisfactory.

5.4.2 Comparing summaries

Finally, we propose a way to compare our different summaries. A natural way to do so is through
discrete optimal transport, which allows one to compute the distance between two discrete measures

µ =

m∑
i=1

µiδAi and ν =

n∑
j=1

νjδBj .
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Figure 5: Clustering of the airspaces over Paris (left), Toulouse (middle) and Lyon (right).

In our case, the Ai’s and Bj ’s are SPD matrices. Optimal transport seeks to transport the mass
from µ to ν in a way that minimizes a certain cost. Formally, a transport plan between µ and ν
is a matrix π = (πij)i,j with non-negative entries that verifies the two following properties for all
i = 1, . . . ,m and j = 1, . . . , n,

n∑
j=1

πij = µi and
m∑
i=1

πij = νj .

The set of transport plans between µ and ν is denoted by Γ(µ, ν). Intuitively, the value πij represents
the part of the mass µi transported from Ai to Bj to reconstruct νj . Here, we measure the cost
of transporting an infinitesimal unit of mass from Ai to Bj by the corresponding geodesic distance
d(Ai, Bj). The optimal transport plan is chosen to minimize the global cost, i.e. to be a solution of
the following minimization problem

min


m∑
i=1

n∑
j=1

πijd(Ai, Bj); π ∈ Γ(µ, ν)

 . (7)

Note that the minimal cost is the discrete L2-Wasserstein distance between µ and ν. In general,
the linear programming problem (7) is difficult and many different algorithms have been developed
to solve it in various special cases (Mérigot and Oudet 2016). However, in our setting, the discrete
measure involved are supported by a very small number of points (3 in the examples shown) and
problem (7) presents no difficulties. The distances between the summaries of the different traffic
situations shown in the middle column of Figure 6 are given in Table 1. As expected, the first two
situations are deemed similar but very different from the third one which has a much more complex
traffic. The last situation is intermediary. In comparison, the different summaries of Figure 7
obtained for the same traffic situation but different initializations are at small distances from one
another, as shown in Table 2.
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Figure 6: Clustering of the French airspace using Riemannian quantization (middle) versus vector
quantization (right).
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Figure 7: Clustering of the French airspace with 3 different initializations.

0.00 1.92 6.74 4.55
1.92 0.00 8.31 6.07
6.74 8.31 0.00 1.22
4.55 6.07 1.22 0.00

Table 1: Distances between the summaries of Figure 6.

0.000 0.033 0.031
0.033 0.000 0.016
0.031 0.016 0.000

Table 2: Distances between the summaries of Figure 7.
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6 Conclusion

We have proposed a gradient descent type algorithm to find the best finite discrete approximation
of a probability measure on a Riemannian manifold. This algorithm is adapted to large sets of data
as it is on-line, and yields a clustering on top of a finite summary of the non-Euclidean data of
interest. It is convergent when the manifold is complete and when its injectivity radius is uniformly
bounded from below by a positive constant. We have used it to compute summaries of air traffic
images in the form of finite numbers of covariance matrices representing different levels of local
complexity, with associated weights corresponding to the occurrence of these levels of complexity
in the images. In future work, we will consider best finite constrained quantization, i.e. restriction
to finite approximations with equal weights, for the segmentation of the airspace in zones of equal
complexity.
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Appendix

Existence of optimal n-centers

Just as in the vector case (Pagès 2015, Proposition 1.1), for any x ∈ M , the function Mn → R+,
α = (a1, . . . , an) 7→ min1≤i≤n d(x, ai) is 1-Lipschitz for the distance d′(α, β) := max1≤i≤n d(ai, bi),
where β = (b1, . . . , bn). Therefore it is continuous, and so is its pth power. Since K is compact, for
all α ∈Mn and all β in a neighborhood B(a1, r1)× . . .×B(an, rn) of α, we have

∀x ∈ K, min
1≤i≤n

d(x, bi)
p ≤ min

1≤i≤n

(
sup
y∈K

d(y, ai) + ri

)p
<∞.

So by dominated convergence, Fn,p is continuous. As a compact set, K is contained in a geodesic
ball B(a,R), a ∈ M and R > 0. If α = (a1, . . . , an) ∈ Mn is such that d(a, ai) > 2R for at least
one ai, then for all x ∈ K, d(x, ai) ≥ d(a, ai) − R > R, and so the same n-tuple where a replaces
ai is a better candidate to minimize Fn,p. We can therefore limit our search to the closed ball
B(a, 2R), which is a closed and bounded subset of the complete manifold M , and thus compact.
The continuous function Fn,p reaches a minimum on this compact, which is an absolute minimum.

Gradient of the squared geodesic distance function

Lemma 2. Let x ∈M . The gradient of the function f : a 7→ d2(x, a) is given by

∇af = −2 loga x.

Proof. Let a ∈ M , u ∈ TaM , and (−ε, ε) 3 t 7→ a(t) such that a(0) = a, ȧ(0) = u, so that the
differential of f at a in u is written, in terms of the norm associated to the Riemannian metric,

Taf(u) =
d

dt

∣∣∣∣
t=0

f(a(t)) =
d

dt

∣∣∣∣
t=0

d2(x, a(t)) =
d

dt

∣∣∣∣
t=0

∥∥∥−−−→xa(t)
∥∥∥2
,
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where
−−−→
xa(t) = logx a(t). Consider now (−ε, ε)×[0, 1] 3 (t, s) 7→ a(t, s) such that a(t, 0) = x, a(t, 1) =

a(t), and s 7→ a(t, s) is a geodesic for all t. Notice that as(t, 0) =
−−−→
xa(t) and at(0, 1) = u if subscripts

denote partial derivatives. Then, if ∇ denotes covariant derivative

Taf(u) = 2
〈
∇t|t=0

−−−→
xa(t),

−−−→
xa(0)

〉
= 2 〈∇tas(0, 0), as(0, 0)〉 = 2 〈∇sJ(0), γs(0)〉 ,

if J(s) := at(0, s) and γ(s) := a(0, s). Since it measures the way geodesics starting from x spread out,
the vector field J is a Jacobi field along the geodesic γ and therefore verifies the classical equation
in terms of the curvature tensor R of M , ∇2

sJ = −R(J, γs)γs, which implies 〈∇2
sJ, γs〉 = 0, leading

to the scalar product 〈∇sJ, γs〉 being constant. This gives, since J(0) = 0,

〈J(s), γs(s)〉 = 〈∇sJ(0), γs(0)〉 s+ 〈J(0), γs(0)〉 = 〈∇sJ(0), γs(0)〉 s,

and so, if −→xa‖ denotes the parallel transport of the vector −→xa = logx a from x to a along γ, then

〈∇sJ(0), γs(0)〉 = 〈J(1), γs(1)〉 = 〈u, γs(1)〉.

Setting γ̃(s) = γ(1− s), we get γs(1) = −γ̃s(0) = −−→ax = − loga x and so finally

Taf(u) = −2〈u, loga x〉,

which completes the proof.
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