
HAL Id: hal-01816603
https://hal.science/hal-01816603

Submitted on 15 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Camomile: Creating audio plugins with Pure Data
Pierre Guillot

To cite this version:
Pierre Guillot. Camomile: Creating audio plugins with Pure Data. Linux Audio Conference, Jun
2018, Berlin, Germany. �hal-01816603�

https://hal.science/hal-01816603
https://hal.archives-ouvertes.fr

Camomile: Creating audio plugins with Pure Data

Pierre GUILLOT
CICM – EA1572
University Paris 8

Saint-Denis, France
guillotpierre6@gmail.com

Abstract

Camomile is an audio plugin with Pure Data
embedded for creating, with patches, original
and cross-platform audio plugins that work
with any digital audio workstation that
supports VST or Audio Unit formats. This
paper presents an overview of the current
functionalities of Camomile and the
possibilities offered by this tool. Following
this presentation, the main lines of future
development are exposed.

Keywords

Pure Data, Plugin, DAW, VST, Audio Unit

1 Introduction

Camomile1 is a free, open-source and cross-
platform audio plugin with Pure Data2 [1]
embedded, used to control patches inside a large
set of digital audio workstations – as long as they
support VST3 or Audio Unit4 formats.
Development for this tool started in spring 2015
with a view to address issues that are related to
pedagogical uses, experimental purposes and
creation contexts. To satisfy these objectives,
several approaches have been explored, resulting

1The plugin is available in the VST2, VST3 and
Audio Unit format for Linux, Windows and MacOS.
The binaries and sources are available on the Github
repository github.com/pierreguillot/camomile (accessed
January 2018). Since the version 1.0.0, the sources are
distributed under the license GNU GPLv3. The sources
of the anterior versions are distributed under the licence
BSD 3.

2Pure Data is a free and open-source software,
created by Miller Puckette at the University of
California, San Diego msp.ucsd.edu/software.html
(accessed January 2018).

3The digital audio plugin format VST (Virtual Studio
Technology) 2 et 3 are developed by the Steinberg
GmbH company steinberg.net (accessed January 2018).

4The digital audio plugin format Audio Unit is
d e v e l o p e d b y t h e A p p l e I n c . c o m p a n y
developer.apple.com/audio (accessed January 2018).

in many prototypes that have preceded the current
version of the plugin. This entire endeavour, the
many functional specifications that have been
defined, the major issues that have been
encountered – such as support for multiple
instances and multithreading in Pure Data, and
linking Pure Data with the plugin –, the different
solutions that have been proposed and the choices
that have been made are all presented in detailed
in [2]5. As most of the technical barriers have been
broken down, the main goal of this project is
currently to offer a tool that can compete with
standard plugins. Hence, following an overview of
the many features already offered by Camomile,
the paper exposes the remaining work that is
needed to complete this plugin, and the
perspectives of development.

In practice, Camomile can be viewed as a meta-
plugin: a plugin that generates other plugins. To
clarify this presentation, the term “meta-plugin”
will be used for this plugin – which embeds Pure
Data; while the resulting plugins, containing the
meta-plugin and patches, and can be used in
digital audio workstations will simply be called
“audio plugins”. Thus, this presentation of
Camomile is organised along two distinct but
complementary axes. The first axis is focused on
the creation of the audio plugin using the meta
plugin: defining its functionality, creating
patches, setting up features and so on. The second
axis focuses on using the audio plugins: support
by digital audio workstations, graphical interfaces
and so on. Nevertheless, to offer a clear
understanding of the defining aspects of each axis,
this presentation is inverted. First, audio plugins
usage is presented to highlight the features offered
to the final user. Secondly, a large set of the
features which can be implemented during the
creation process will be shown. Following this

5The publication also presents the context in which
this project took place and in particular the related
projects such as PdVST and PdLV2 but also the
parallel projects like PdDroidParty and PdParty [4].

http://github.com/pierreguillot/camomile
https://developer.apple.com/audio
http://www.steinberg.net/
http://msp.ucsd.edu/software.html

presentation, future developments of Camomile
and its general perspectives will be exposed.

2 Using plugins

Before presenting the different features available
to create audio plugins, it seems necessary to
introduce what is ultimately an audio plugin
created with Camomile and how this audio plugin
appears to the user. Indeed, the architecture of the
audio plugin generated with Camomile is a bit
particular, and its approach favours sharing
patches, abstractions and other documents to be
used in conjunction with the meta-plugin to
generate plugins, rather than directly sharing audio
plugins – mainly because the audio plugins are
associated with specific formats and operating
systems while the original documents are free from
these restrictions, so this approach gives users
more freedom. So understanding the architecture
of an audio plugin and the result in digital audio
workstations will allow users to get a better grasp
of the process of creating plugins.

2.1 Generating and loading plugins

The flexibility and the dynamic aspect of the
Camomile approach makes it a tool noticeably
different from standard plugins. Indeed, the binary
files offered in the distribution and the meta-
plugins, are not designed to be used directly within
a digital audio workstation6. They must be used to
set up the bond between the digital audio
workstation and patches in order to generate the
new audio plugins (see Figure 1).

Figure 1: Schematic operation of the generation of
an audio plugin from a Pure Data patch and the

meta-plugin Camomile.

In practice, building an audio plugin with
Camomile simply requires associating one of the
meta-plugins provided by the distribution –
according to the desired format and the type of
plugin7 – to a main patch and a set of additional

6In practice, the digital audio workstation can
nevertheless load the meta-plugins but without any
patch, and so without any audio engine, they are
useless.

7The distribution contains meta-plugin for each
format – VST2, VST3 or Audio Unit – and each type of
plugin – effect or instrument.

and complementary contents – textual description
of the audio plugin, abstractions, images and so
on. Specifically, the operation consists in
renaming the meta-plugin according to the main
patch and also consists in respecting a certain
hierarchy of the relative paths of the different files
by creating a bundle8. Once this associated bundle
is installed in the appropriate directory9, the audio
plugin is recognised by the digital audio
workstations and is supported in the exact same
way it would had been if compiled in a
conventional manner (see Figure 2)10. The digital
audio workstation then offers the ability to load
one or more instances of the plugin and interacts
with them in a conventional way with operations
such as creating automations for the parameters,
saving and recalling presets and so on.

Figure 2: Representation of the graphical
interface of the plugin AlmondOrgan, given as an
example with Camomile, and generated from the

patch.

2.2 User interfaces

Apart from the native representation of the
digital audio workstation, which usually offers
generic interfaces to represent and control
parameters, this plugin has its own graphical
interface. This window displays a representation
of the main patch that potentially includes sliders,
buttons, comments, or other user interface

8On Linux and Windows, the meta-plugin and the
patch must be placed in the same folder. On MacOS,
all the files must be placed in the OS specific bundle of
the plugin. These operations are presented step by step
in the documentation of Camomile.

9The installation path of a plugin may depend on its
format, the operating system or the preferences of the
digital audio workstation. The documentation of
Camomile helps to carry out this operation.

10This feature presented in detail in [2] ensures that
the digital audio workstation manages each plugin
created with Camomile independently, thus avoiding
problems related to the management of presets or
parameters but also to the sharing of projects and
plugins.

components that are available in Pure Data (see
Figure 2). This window makes it possible to
represent the sound engine and interact with it, and
also to communicate with the plugin. As will be
shown later, the graphical user interfaces of the
patch can be associated to parameters or specific
actions like displaying a dialogue window to open
or save files.

Figure 3: Auxiliary window of a plugin named
Dummy illustrating the use of the console and the

different types of messages.

In the upper-left corner of the interface, a button
representing a chamomile flower is used to display
an auxiliary window with three tabs (see Figure 3).
The first tab corresponds to a console relatively
similar to the one offered by Pure Data. This
console receives the messages sent via the object
print, the internal warnings of Pure Data – when an
abstraction is not found for example – but also
additional information related to the operation of
the meta-plugin to facilitate debugging the patches.
The console also allows you to copy, delete and
filter messages according to their importance. The
second tab displays information defined by the
creator of the patch such as a description of the
operations and how to use the plugin but also
information related to credits or the plugin version.
Finally, the last tab displays information related to
Camomile, including legal information and credits
related to different dependencies such as Pure
Data, libPD11 [3] and JUCE12.

3 Creating plugins

Building a digital audio plugin with Camomile
requires proper communication between the patch
– the core of digital audio processing – and the
digital audio workstation through the meta-plugin.
For this purpose, Camomile offers several
interfaces to use and handle a wide range of the

11libpd is wrapper that turns Pure Data into an
embeddable audio library libpd.cc (accessed February
2018).

12JUCE is an application programming interface
oriented towards digital audio signal processing
distributed by ROLI company juce.com (accessed
January 2018).

usual features of digital audio plugins, such as
parameters management, reading information
from the play head, or creating the graphical user
interface. These interfaces cover two aspects of
plugin creation: properties definition for the
plugin – such as its ability to handle MIDI events
or the number and nature of its parameters – and
communication between the patch and the digital
audio workstation through the meta-plugin – so
that the digital audio workstation or the plugin can
interact with the patch and reciprocally the patch
with the digital audio workstation – for example,
to send and receive digital audio signals but also
MIDI events, or to control parameters.

3.1 Plugin properties definition

 To ensure optimal functioning within digital
audio workstations, audio plugin properties are
defined using a text file named after the meta-
plugin and the main patch13. This properties file
follows a syntax relatively similar to the FUDI14

protocol where each line corresponds to a new
statement and ends with a semicolon. So each
statement can be used to define or to complete a
feature or a property of the plugin. In order to
ensure the proper functioning of the plugin, the
console displays a warning if some properties
have been wrongly defined, duplicated or omitted.
Although in practice there is no hierarchy, these
properties of the plugins can be organised
according to categories.

First, properties are used to define general
information, which is needed to generate the audio
plugin and for it to function properly in digital
audio workstations; such as the type of the plugin
– to inform the user which meta-plugin to use for
generating the plugin15 – or the compatibility
number – that corresponds to the version of the
plugin with which the patch has been created and
that is used to ensure compatibility with the
patch16.

13The documentation offers a full explanation on
how to create and to use the properties file.

14FUDI is a network protocol invented by Miller
Puckette for Pure Dat a en.wikipedia.org/wiki/fudi
(accessed February 2018).

15The types can be effect or instrument and if the
meta-plugin is not coherent with the type defined in the
properties file, then the console displays a warning.

16 If the version of the meta-plugin used is inferior to
the compatibility version, then the console displays a
warning.

https://en.wikipedia.org/wiki/FUDI
https://juce.com/
http://libpd.cc/

Properties can also be used to activate extra
functionalities that are originally deactivated for
reasons of efficiency, for example if the audio
plugin needs to handle MIDI events, play head
information, or key event.

An important part of the options is focused on
audio signal processing, like latency, which is
implied by the plugin when using an FFT for
example, or audio tail length – the time during
which the output still produce audio after the input
has been stopped – for reverberation effect for
example. But the main audio property defines the
audio buses supported by the plugin – the audio
input and output configurations. The different
audio plugin formats support dynamic audio buses
layout, as well as multichannel and side-chains.
Camomile offers a syntax that helps using these
features. Thereby, an audio plugin can support
several layouts of multichannel buses, for a sound
spatialisation plugin for example, or the enabling
or disabling of side-chains, for a compressor for
example, so the process of the patch can be
adapted depending on the buses layout submitted
by the digital audio workstation17 .

Another important aspect of an audio plugin is
related to the control protocol of its state by the
digital audio workstations using parameters. A
parameter represents one or several aspect of the
audio engine with a numerical value – that can be
saved, restored, automated, etc. by the digital
audio workstation. Camomile offers the possibility
to create highly-developed parameters with names,
labels, ranges of values, steps and so on to
improve their use, their representation and their
meaning.

At last, properties are used to define additional
attributes which are not necessary for the proper
functioning of the plugin, but which can be
essential to its ease of use, such as the description
displayed by the plugin in its tab on the auxiliary
window, the reference to an image file that the
plugin displays as background of the graphical
interface or an option to automatically reload the

17All the audio buses layouts supported by the audio
plugin must be defined at the first loading, so to support
dynamic changes but also some specificities such as
extra buses for side-chaining, this property must be pre-
defined. More complex cases, like when the additional
buses configurations depend on the main bus
configuration, still need to be investigated. Furthermore,
future versions could support a text description of the
buses, like quadraphonic or ambisonic, to improve the
specification of the configurations accepted by the
plugin.

patch when it has changed – useful during the
creation process.

3.2 Communication between the plugin and
the patch

Communication between the patch and the
digital audio workstation through the meta-plugin
is, for its part, ensured via a set of conventions
and practices. First of all, the messages sent and
received by the meta-plugin to and from the patch
are synchronised sequentially to the audio thread
depending on an order defined arbitrarily18.
Overall, the meta-plugin first sends its messages,
such as parameter values or MIDI events, then it
processes the patch's digital audio chain, and
finally it retrieves the messages sent from the
patch to its address19.

As defined by libpd, in a similar way to the
applications PdParty or PdDroidParty, most of the
communication can be handled within the patch
using native objects: the objects adc~ and the
dac~ for the audio signals20, the objects notein,
noteout, ctlin, ctlout and so on for the MIDI
events and the objects key, keyup and keyname for
the keyboard events. Furthermore, using a 'bus'
receiver makes it possible to retrieve information
about the current audio buses layout of the plugin
when the audio starts – for example, to adapt the
audio process. Using a 'play head' receiver during
processing can be used to retrieve information
such as tempo, time signature of the current bar,
current position of the play head and so on, which
could be indispensable for some synthesisers.

18Even if each Pure Data instance – each meta-plugin
– can run in a separate thread, an instance can only be
modified by only one thread, otherwise the behaviour
is undefined and so potentially different from the one
offered by the Pure Data application.

19The specific order of each message according to its
type is fully explained in the documentation.

20In order to use directly the patch as an abstraction
within the Pure data application, replacing the objects
adc~ and dac~ by the objects inlet~ and outlet~ has
been considered. Nevertheless, this solution didn't seem
desirable because it prevents to receive or to send the
audio signals from inside subpatches or abstractions
and it makes more complicated the dynamic patching
that could be useful to adapt the process to the audio
buses layouts submitted by the digital audio
workstations. Furthermore, the implementation of the
meta -p lugin becomes much more complex
implementation especially to manage the audio block
size in the main patch that would be no more
necessarily predefined.

The patch is also used to define the plugin's
graphical user interface. The bounds of the patch's
visible area within the plugin interface is defined
by the properties of the patch when using it as a
graphical abstraction21. The graphical objects –
such as the number box, the slider, the comment
and so on – inside the area will be recreated by the
plugin's interface and directly linked to their
original object in such a way that no additional
operation is necessary to communicate with the
patch via the plugin (see Figure 4).

Figure 4: The part of the patch Castafiore that
defined the graphical interface of the eponym

plugin.

Inspired from the approach defined in PdParty,
the plugin offers a replacement for the native Pure
Data mechanisms such as the one offered by the
objects openpanel and savepanel by displaying a
dialog window to select files from the disk.22

Figure 5: An example of a patch that illustrates the
dynamic graphical interface of the plugin.

21The graphical abstractions are activated with the
Graph-On-Parent option.

22A similar mechanism has been implemented to
display the floating window of the object array. And
the same feature is considered for the object text.

Moreover Camomile makes it possible to
completely and dynamically redefine the graphical
interface by changing its size, the objects and so
on – a useful feature used to adapt the interface to
the modes and requirements of the audio plugin
(see Figure 5).

A specific aspect to the implementation of audio
plugins is parameter management. Parameters
values can be received using a 'param' receiver.
But one could also want to modify the value of a
parameter with the graphical interface – to record
automations for example. This operation requires
first to notify the digital audio workstation that the
parameter will change, then to change the value –
once or several times – and finally to notify the
digital audio workstation that parameter
modification has ended. If there are several
graphical user interfaces and several parameters,
these transactions become complicated to
implement. Nevertheless the distribution offers a
set of abstractions which can be directly
connected to graphical objects to facilitate the
setup of such mechanisms (see Figure 6).

Figure 6: An example of a patch that shows how
to link three graphical objects with three

parameters. The abstractions param.get and
param.set manage respectively the getting and the

setting of each parameter and the abstraction
param.change manages the global distribution of

the messages within the patchs.

At last, when saving the digital audio
workstation project or creating a new program, the
meta-plugin automatically stores parameter states
in an XML file. In addition, Camomile offers a
mechanism to save and recall additional data via
the patch that can be represented by parameters
such as a system path or the content of an audio
buffer.

With all these functionalities, Camomile offers
the ability to create complex audio plugins with a
large set of advanced features. Nevertheless, many
developments can still be considered.

4 Perspectives

First of all, some native features of Pure Data
relative to the graphical user interfaces are missing
or can be improved, such as the implementation of
the graphical object VU-meter or the improvement
of the rendering of the graphical object labels. In
order to get closer to standard plugins, it would be
interesting to investigate the use of external
images, which would replace drawing the
graphical objects – using an image for the
background of the object and one or more images
for the foreground depending on the type of
interface, it would be really easy to customise its
representation. Another approach to offer more
possibilities would be to implement the graphical
part of the data structure of Pure Data [5], to draw
and interact with more personal and original
interfaces.

Support for external libraries is also very in
demand by users. This feature could be a great
improvement, this way someone could use an
external as the audio processor of the plugin –
optimizing the processes – and the patch as the
interface with the meta-plugin and the digital audio
workstation. Unfortunately, dynamic library
loading seems to be restricted by the way Pure
Data is embedded inside the meta-plugin23 and by
the fact that some of them are not directly
compatible with multiple instance support24. Thus,
direct integration of the most widespread libraries
like the Cyclone [6]25 or the Zexy26 libraries inside
the plugin is considered. Nevertheless, this
requires checking the compatibility of all objects
and these dependencies could make Camomile
difficult to maintain27.

23The reason of this restriction still need to be
investigated.

24If a library goes beyond the 'public' API of Pure
Data and uses internal structures that deal with the
multiple instance support, some problems may occur.

25github.com/porres/pd-cyclone (accessed March
2018).

26The Zexy library is developed by IOhannes m
zmölnig puredata.info/downloads/zexy (accessed March
2018).

27Using a monolithic approach by including the
libraries [Bukvic & al., 2017] is one of the causes of the
abandonment of the Pure Data variant, Pd-extended,
puredata.info/downloads/pd-extended (accessed January
2018) originally maintained Hans Christoph Steiner.

Offering a version of the plugin in the LV228

format is also considered, however the differences
with the VST and Audio Units formats raise
compatibility problems that still need to be
explored.

5 Acknowledgements

The author would like to thank the whole
community of Pure Data and libpd developers,
especially Miller Puckette and Dan Wilcox, for
their advice and explanations as well as the users
of Camomile for their great feedback and
suggestions. The author would like to also
acknowledge the CICM and especially Alain
Bonardi and Eliott Paris for their interest in the
project, their comments and their advices.

References

[1] M. Puckette. 1997. Pure Data: Another
Integrated Computer Music Environment
Proceedings of the Second Intercollege
Computer Music Concerts, p . 3 7 - 4 1 ,
Tachikawa, Japan.

[2] P. Guillot. 2018. Camomile, Enjeux et
Développements d’un Plugiciel Audio
Embarquant Pure Data. Actes des Journées
d’Informatique Musicale, Amiens, France.

[3] P. Brinkmann, P. Kirn, R. Lawler, C.
McCormick, M. Roth and H.-C Steiner. 2011.
Embedding Pure Data with libpd. Proceedings
of the Pure Data Convention, Weimar,
Germany.

[4] D. Wilcox. 2016. PdParty: An iOS
Computer Music Platform using libpd.
Proceedings of the Pure Data Convention, New
York, USA.

[5] M. Puckette. 2007. Using Pd as a score
language. Proceedings of the International
Computer Music Conference, p. 184-187,
Göteborg, Sweden.

[6] A. Torres Porres, D. Kwan and M. Barber.
2016. Cloning Max/MSP Objects: A Proposal
for the Upgrade of Cyclone. Proceedings of the
Pure Data Convention, New York, USA.

[7] I. I. Bukvic, A. Gräf and J. Wilkes. 2017.
Meet the Cat: Pd-L2Ork and its New Cross-
Platform Version “Purr Data”. Proceedings of
the Linux Audio Conference, Saint-Étienne,
France.

28The LV2 format by D. Robillard is the successor of
the LADSPA plugin format lv2plug.in/ns (accessed
March 2018).

http://lv2plug.in/ns
https://puredata.info/downloads/pd-extended
https://puredata.info/downloads/zexy
https://github.com/porres/pd-cyclone

	1 Introduction
	2 Using plugins
	2.1 Generating and loading plugins
	2.2 User interfaces

	3 Creating plugins
	3.1 Plugin properties definition
	3.2 Communication between the plugin and the patch

	4 Perspectives
	5 Acknowledgements

