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Abstract

This paper presents a simple approach for obtaining
efficient error bounds in learning problems involving
multiple components. In particular, we obtain error
bounds with a close to radical dependency on the num-
ber of components for multi-category classification,
vector quantification and switching regression when the
regularization scheme relies on a sum of norms over
the components. These results are obtained thanks to
the combination of a number of structural results on
Rademacher complexities and a suitable handling of
the structure of the regularizer.

Keywords: Learning theory, Rademacher complexity,
Kernel methods, Regularization.

1 Introduction

This paper focuses on learning problems involving mul-
tiple components. A good example is multi-category
classification with margin classifiers based on one score
function (here called component) per category. Other
examples include vector quantization/clustering and
switching regression. In vector quantization, one is in-
terested in estimating a model (or codebook) made of a
finite number of components (or codepoints) that can
well approximate the observations of a random vari-
able. Switching regression works similarly, but with
random input–output pairs and components that are
functions approximating the output given the input.
In this paper, we propose a unified approach to derive
generalization error bounds with sublinear dependency
on the number of components for all these problems.

∗email: fabien.lauer@loria.fr

For such problems, the literature provides error
bounds based on the analysis of Rademacher complex-
ities [BM02]. These bounds are linear in the number
C of components as they are derived from a decom-
position of the Rademacher complexity of interest into
a sum of Rademacher complexities over the compo-
nent function classes, see [KMS14] for multi-category
classification, [BDL08] for clustering and [Lau17] for
switching regression. This dependency on the num-
ber of components can be made sublinear by using
chaining arguments and covering numbers, see, e.g.,
[Gue17, MLG18, Lau17]. However, this comes at the
cost of slower convergence rates in the sample size n,
except for linear models in a finite-dimensional space
where a dependency on the dimension is introduced,
see, e.g., [BLL98].

These results typically consider that the model be-
longs to a product of independent component classes,
usually containing elements with bounded norm, while
many practical methods implement a regularization
scheme corresponding to a bound on a sum of norms
over the components. By exploiting this form of reg-
ularization more precisely, we show how to derive er-
ror bounds with a O(

√
C logC) growth rate with re-

spect to C without hindering the convergence rate.
More precisely, our approach uses previous results by
[KMS14, BDL08, Lau17] on the decompositions of
the Rademacher complexities and leads to convergence
rates similar to those obtained in these references, i.e.,
in O(1/

√
n).

For multi-category classification, our assumption
on the regularization scheme was previously used in
[LDBK15] in a more efficient manner, resulting in a
growth rate that varies between O(logC) and O(

√
C)

depending on the precise form of the regularization.
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However, the derivation of this result requires addi-
tional tools and a more involved analysis, while our
proofs remain shorter and more simple. In addition,
the simplicity of the proposed approach allows its easy
extension to other settings, whereas it is not known
yet whether the technique of [LDBK15] also applies to
vector quantization or switching regression.

For clustering/vector quantization and switching re-
gression, it appears that such assumptions on the
model class have not been considered in previous work
to tighten the error bounds. However, note that for
data living in a finite-dimensional Euclidean space,
known bounds, see e.g., [BLL98], are in O(

√
C), so

that we here focus on Hilbert spaces of large or infinite
dimension. Specifically, when considering the finite-
dimensional case we assume that the input data live in
Rd with d > logC. Indeed, our analysis shows that we
can remove the radical dependency on d at the cost of
an additional

√
logC factor.

We claim to provide a “simple” approach to derive
our bounds. However, since this approach easily ap-
plies to many different settings, we present it in a rather
abstract framework before instantiating it for classifica-
tion, clustering or switching regression. As a result, the
paper might not read as smoothly as it could have, but
this is mostly due to notational complexities implied by
the abstraction rather than true technical difficulties.

Paper organization. We start in Section 2 by for-
malizing our general framework and how it can be spec-
ified for the three problems of interest. Then, Section 3
presents the derivation of the error bounds, again, first
in the general framework and next in a dedicated form
for classification, vector quantization and switching re-
gression. Concluding remarks are given in Section 4.

Notation. We denote by [C] the set of integers from
1 to C. For two sets, A and B, BA denotes the the
set of functions from A into B. The notation ‖ · ‖ is
used for the norm in the Hilbert space H induced by
the inner product 〈·, ·〉 in H.

2 General setting

We focus on learning problems in which the aim is to
learn C ≥ 2 components from a Hilbert space H on
the basis of data points zi ∈ Z, i = 1, . . . n. In the
following, Z will be instantiated either as X × Y for
problems with input space X and output space Y or
just as X in contexts without outputs.

Specifically, let Z be a random variable taking values
in Z. A particular problem is characterized by a loss
functional ` : Z × HC , which measures the pointwise
error of a model g = (gk)1≤k≤C made of C compo-
nents gk from H. Then the aim is to minimize, over a
predefined model class G ⊂ HC , the risk

L(g) = E`(Z, g) (1)

on the basis of a sample of n independent copies Zi
of Z. In particular, we concentrate on the standard
strategy minimizing the empirical risk

1

n

n∑
i=1

`(Zi, g). (2)

However, we here focus on statistical aspects of learn-
ing and will not discuss algorithmic issues related to
the actual minimization of this quantity, which can be
highly nontrivial [AK98, ADHP09, Lau16].

For our approach to apply, we require that the loss
can be computed (or upper bounded) through a con-
venient mapping f : Z ×HC → R of g, i.e., such that

∀(z, g) ∈ Z ×HC , `(z, g) ≤ φ ◦ f(z, g) (3)

for some Lipschitz function φ : R → R. The meaning
of “convenient” here shall become clear when we state
our main technical result. Basically, the aim of f is
twofold: to formulate the analysis in terms of Lipschitz
functions and to allow efficient decompositions of the
capacity measures.

Given (3), the empirical risk (2) is equal to or upper
bounded by

L̂n(g) =
1

n

n∑
i=1

φ ◦ f(Zi, g),

which will be used as a proxy for (2) in the subse-
quent analysis. Similarly, the risk of any g ∈ G is
upper bounded by Eφ ◦ f(Z, g), which, in turn, can
be bounded uniformly over G via an analysis of the
complexity of the real-valued function class

FG = {fg ∈ RZ : fg(z) = f(z, g), g ∈ G}. (4)

In particular, our results will be targeted at model
classes of the form

G =

{
g ∈ HC :

C∑
k=1

‖gk‖p ≤ Λp

}
, (5)

in which the vector of the norms of the components has
a bounded `p-norm. Note that such constraints imple-
ment a coupling between the components and imply
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that G cannot be written as a mere product of C inde-
pendent classes.

We now describe a few example applications of this
setting.

2.1 Margin multi-category classifica-
tion

For classification problems with C categories, we focus
our attention on the risk of margin classifiers h : X →
Y = [C]. Such classifiers are classifiers whose output
in [C] is based on a score per category computed by a
component function gk : X → R (thus, H ⊂ RX in this
setting). Specifically, we have

h(x) = argmax
k∈[C]

gk(x)

and, with Z = X × Y, the standard classification loss,

`h(h(x), y) = 1h(x)6=y (6)

= 1argmaxk∈[C] gk(x)6=y = `(z, g),

can be upper bounded using the Lipschitz function

φ(u) =


1, if u ≤ 0

1− u
γ , if u ∈ (0, γ)

0, if u ≥ γ
(7)

as

`(z, g) ≤ 1gy(x)−maxk 6=y gk(x)≤0

≤ φ
(
gy(x)−max

k 6=y
gk(x)

)
.

Note that the output of φ in (7) is not influenced by
values of its argument outside of [0, γ]. Therefore, we
can clip these values and define

f(z, g) = min

{
γ,max

{
0, gy(x)−max

k 6=y
gk(x)

}}
(8)

to satisfy the requirement in (3).
Finally, note that the regularization scheme hinted

at by (5) is commonly implemented in this context,
for instance by multi-class support vector machines
[WW98, CS01, LLW04, GM11, LDBK15], and most
often with p = 2.

2.2 Vector quantization / clustering

Let X be a Hilbert space. The aim of vector quan-
tization, as described in [BLL98], is to learn a subset

{gk}Ck=1 ⊂ XC of C elements from X , called code-
points, that can well represent the observations of the
random variable X ∈ X . Specifically, we can limit the
analysis to nearest neighbors quantizers, for which the
error of a model g = (gk)1≤k≤C is measured via the
loss

`(x, g) = min
k∈[C]

‖x− gk‖2. (9)

Then, the quantity (1) (with Z = X) is known as the
distortion of g for which upper bounds are of primary
importance.

This problem can also be seen as a center-based clus-
tering one, in which the goal is to divide the observa-
tions of X into C groups centered at the gk’s by min-
imizing the empirical risk (2) based on (9). By con-
sidering the Voronöı partition of X associated to these
centers, [BDL08] interprets the quantity (1) as the clus-
tering risk measuring the performance of a particular
model g ∈ XC .

The setting just described enters our framework in
a straightforward manner with Z = X , H = X , f = `
in (9) and φ set as the identity.

2.3 Switching regression

In a regression problem, one must learn a model that
can accurately predict the real output Y ∈ Y ⊆ R
given the input X ∈ X . Switching regression refers to
the specific case where the process generating Y can
arbitrarily switch between different behaviors. The
difficulty then comes from the fact that the switch-
ings are not observed and the association of the ob-
servations to these behaviors is unknown. Thus, the
aim is to learn a collection of functions gk : X → R
from a mixed training sample including examples from
multiple sources. An important application is that of
switched system identification in control theory, see
[PJFTV07, GPV12, LG18] for an overview.

In such a context, the goal is to find g ∈ (RX )C

so that at least one of its components can accurately
estimate the output Y given X. The loss can thus be
defined on the basis of1

min
k∈[C]

(y − gk(x))2.

More precisely, we assume that Y is bounded and, with-
out loss of generality, that Y = [−1/2, 1/2]. Thus, we
can clip the outputs of the components at 1/2 without

1Other choices involving for instance absolute deviations in-
stead squared errors are also possible here; see [Lau17] for a
description of switching regression in a more general setting.
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increasing the error and compute the loss with respect
to the clipped functions as in [Lau17], i.e., by

`(z, g) = min
k∈[C]

(
y −min

{
1

2
,max

{
−1

2
, gk(x)

}})2

.

(10)
This ensures that the loss is bounded by 1 for all y ∈ Y,
which simplifies the analysis below.

The switching regression problem just described can
be characterized in our framework with Z = X × Y,
H ⊂ RX , φ set as the identity and f = ` in (10).

In this context, the learning algorithms in, e.g.,
[LBL11, PLLL14], implement a regularization scheme
in accordance with (5).

3 Error bounds

Here, we first derive our main technical result in a
rather abstract framework before instantiating it for
the three settings presented above in dedicated subsec-
tions. This result will allow us to bound the complexity
of a function class under sum-of-norms constraints as
in (5) via the maximum complexity of function classes
related to the components (to be defined precisely be-
low).

First, we need the following result showing that G
can be embedded in a class G built as a union of prod-
uct classes with decaying components. More precisely,
we mean that the Rademacher complexities of the com-
ponent classes (see Definition 1 below) are decaying
with the component index k. This result will allow us
to work on a class with an easier to handle structure
than that of G.

The idea, made precise in the lemma below, is that if
a function g belongs to G, a large norm for one compo-
nent must be compensated by a small norm for another.
Thus, the component functions can be ordered so as to
belong to a sequence of balls of decreasing radius. The
union in the definition of G implements the fact that
different functions of G result in different orderings of
their components that must all be taken into account
when building an embedding of G.

Lemma 1. Let G be as in (5) and (kl(j))1≤l≤C ∈ [C]C

denote the jth permutation of [C] among J = C!, the
first of which is just [C]. Then, for all p > 0, there are
classes

G1,k =
{
gk ∈ H : ‖gk‖ ≤ k−

1
p Λ
}
, k = 1, . . . , C,

Gj =

C∏
l=1

G1,kl(j), j = 1, . . . , J,

such that

G ⊂ G =

J⋃
j=1

Gj .

Proof. For any g, let g̃ be a version of g with its com-
ponents reordered such that

‖g̃1‖ ≥ ‖g̃2‖ ≥ ... ≥ ‖g̃C‖.

Then, the construction of G is such that g̃ ∈ G implies
that g̃ belongs to a product of some permutation of
the G1,k’s, which makes g also belong to a product of
a (possibly different) permutation of the G1,k’s. Thus,
g̃ ∈ G implies g ∈ G. As a result, showing that for all
g ∈ G, g̃ ∈ G is sufficient to prove that G ⊂ G.

With G as in (5), we have, for all g ∈ G,

C∑
k=1

‖gk‖p =

C∑
k=1

‖g̃k‖p ≤ Λp.

Thus, and by the definition of g̃, for any l ∈ [C],

Λp ≥
C∑
k=1

‖g̃k‖p ≥
l∑

k=1

‖g̃k‖p ≥ l‖g̃l‖p

and
‖g̃l‖ ≤ l−1/pΛ,

which implies g̃l ∈ G1,l. Therefore, g̃ ∈ G1 ⊂ G and the
statement is proved.

Given this embedding of G, we now aim at error
bounds that hold uniformly over G instead of G. De-
spite the apparent loss due to the increase of the size of
the class, the union structure of G will help us to opti-
mize the bound thanks to the following lemma, which
basically states the simple fact that if a risk bound
holds uniformly over Gj for each j, then a bound of
the same flavor holds uniformly over G. Specifically,
we consider bounds based on Rademacher complexi-
ties.

Definition 1 (Rademacher complexity). Let T be a
random variable with values in T . For n ∈ N∗, let
T n = (Ti)1≤i≤n be an n-sample of independent copies
of T , let σn = (σi)1≤i≤n be a sequence of independent
random variables uniformly distributed in {−1,+1}.
Let F be a class of real-valued functions with domain
T . The Rademacher complexity of F is

Rn (F) = E sup
f∈F

1

n

n∑
i=1

σif (Ti) ,

where the expectation is taken over both σn and T n.
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This measure of capacity allows for the derivation of
the following generic bound.

Theorem 1 (After, e.g., Theorem 3.1 in [MRT12]).
Let F be a class of functions from Z into [0, 1] and
(Zi)1≤i≤n be a sequence of independent copies of the
random variable Z ∈ Z. Then, for a fixed δ ∈ (0, 1),
with probability at least 1−δ, uniformly over all f ∈ F ,

Ef(Z) ≤ 1

n

n∑
i=1

f(Zi) + 2Rn (F) +

√
log 1

δ

2n
.

Bounds of this flavor are used in the following to
bound the risk uniformly over G.

Lemma 2. Let G =
⋃J
j=1 Gj be a union of J sets Gj.

Given a mapping f : Z × HC → R, define, for each
one of these sets, FGj

as in (4). If, for some constant

α > 0, for all j ∈ [J ] and all δj ∈ (0, 1), the bound

∀g ∈ Gj , L(g) ≤ L̂n(g)+αRn(FGj
)+

√
log 1

δj

2n
(11)

holds with probability at least 1− δj, then, for any δ ∈
(0, 1), the bound

∀g ∈ G, L(g) ≤ L̂n(g) + αmax
j∈[J]

Rn(FGj
) +

√
log J

δ

2n

holds with probability at least 1− δ.

Proof. Setting δj = δ/J and using the union bound, we
obtain that all the J bounds (11) hold simultaneously

with probability at least 1 −
∑J
j=1 δj = 1 − δ. Then,

for any g ∈ G, there is some j ∈ [J ] such that g ∈ Gj
and for which we can apply the bound (11). Upper
bounding the corresponding Rademacher complexity
by the maximum complexity over all j ∈ [J ] completes
the proof.

We can now state the main theorem, in which the
“convenient” form of f that we require appears as a
condition on the decomposition of its Rademacher com-
plexity.

Theorem 2. Let f be as in (3) and such that for any

G =
∏C
k=1 Gk, for FG as in (4),

Rn(FG) ≤ c
C∑
k=1

Rn(ΨGk),

where c > 0 is a constant and ΨGk is a real-valued
function class deduced from Gk via a mapping ψ : Z ×
H → R as

ΨGk = {ψgk ∈ RZ : ψgk(z) = ψ(z, gk), gk ∈ Gk}. (12)

If ψ is such that, for any Gk = {gk ∈ H : ‖gk‖ ≤ Λ},
the bound

Rn (ΨGk) ≤ ΛqR(n) (13)

holds with q ≥ 1 and a function R(n) that does not
depend on Λ, then, for G as in (5), all p ∈ (0, 2] and
any δ ∈ (0, 1), the bound

∀g ∈ G, L(g) < L̂n(g) + 4cLφΛq
√
CR(n)

+

√
C logC + log 1

δ

2n
, (14)

in which Lφ is the Lipschitz constant of φ, holds with
probability at least 1− δ.

Proof. By Lemma 1, we have G ⊂ G =
⋃J
j=1 Gj with

J = C! < CC . For any Gj of Lemma 1, we have by (3)
and Theorem 1 that, with probability at least 1 − δ,
for any g ∈ Gj ,

L(g) ≤ 1

n

n∑
i=1

φ ◦ f(Zi, g) + 2Rn(φ ◦ FGj
) +

√
log 1

δ

2n
.

In addition, by the contraction principle, see e.g.,
Lemma 4.2 in [MRT12],

Rn(φ ◦ FGj
) ≤ LφRn(FGj

).

Thus, we can apply Lemma 2 with α = 2Lφ
and it remains to show that for all p ∈ (0, 2],
maxj∈[J]Rn(FGj

) ≤ 2cΛq
√
CR(n). Using the assump-

tions and the fact that, for any j ∈ [J ], Gj is the prod-

uct
∏C
k=1 Gj,k, we have

Rn(FGj
) ≤ c

C∑
k=1

Rn(ΨGj,k
)

= c

C∑
l=1

Rn(ΨG1,kl(j)
)

≤ cΛqR(n)

C∑
l=1

kl(j)
−q/p

= cΛqR(n)

C∑
k=1

k−q/p.

Thus, for all q ≥ 1 and p ∈ (0, 2],

Rn(FGj
) ≤ cΛqR(n)

C∑
k=1

1√
k

≤ cΛqR(n)

∫ C+1

1

1√
t− 1

dt

= 2cΛqR(n)
√
C,
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which completes the proof.

Note that for specific values of p < 2, tighter bounds
on the second term in the right-hand side of (14) are
typically available. For instance, for p = 1, the

√
C

can be replaced by (1 + logC). However, the growth
rate with respect to C remains determined by the last
term in (14).

In the next subsections, we detail the consequences
of Theorem 2 for the three considered settings.

3.1 Multi-category classification

In the multi-category classification setting of Sect. 2.1,
the conditions of Theorem 2 are verified for kernel ma-
chines thanks to two results from the literature. The
first one is a classical bound on the Rademacher com-
plexity of balls in a reproducing kernel Hilbert space
(RKHS) (see [BTA04] for definitions and properties of
RKHSs):

Lemma 3 (After Lemma 22 in [BM02]). Given an
RKHS H of reproducing kernel K,

Rn({gk ∈ H : ‖gk‖ ≤ Λ}) ≤ ΛxΛ√
n
,

where Λx = supx∈X ‖K(x, ·)‖ = supx∈X
√
K(x, x).

The second one is a decomposition result due to
[KMS14]:

Lemma 4 (After Theorem 2 in [KMS14]). Let the
mapping f be as in (8) and FG be defined as in (4). If

G =
∏C
k=1 Gk, then 2

Rn (FG) ≤
C∑
k=1

Rn (Gk) .

Therefore, with ψ(z, gk) = gk(x), q = 1 and Lφ = 1
γ ,

Theorem 2 yields the following bound.

Theorem 3. Let H be an RKHS of reproducing kernel
K. Then, for the class G as in (5) and any δ ∈ (0, 1),
the multi-class risk based on the loss (6) is bounded
with probability at least 1− δ, uniformly for all g ∈ G,
by

L(g) ≤ L̂n(g) +
4ΛΛx
γ

√
C

n
+

√
C logC + log 1

δ

2n
,

with Λx as in Lemma 3.

2Theorem 2 in [KMS14] actually states that Rn (FG) ≤
CRn

(⋃C
k=1 Gk

)
, but the proof essentially allows for the deriva-

tion of the bound stated here.

Note that, under the assumptions of Theorem 3, a
growth rate in C between logarithmic and radical (de-
pending on p) can be obtained as detailed in [LDBK15]
so that Theorem 3 does not constitute an improvement
over the literature. However, for the most common
case of p = 2, our result only adds a

√
logC factor

compared to the one of [LDBK15] with a much shorter
and simpler proof.

3.2 Clustering

We now consider the clustering case and the setting of
Sect. 2.2. In this context, Theorem 2 yields a bound
with almost radical dependency on C. The remaining
ingredients can be found in the derivation of Theorem
2.1 in [BDL08].

Theorem 4. Let G be as in (5) and assume that
P (‖X‖ ≤ Λx) = 1. Then, for any δ ∈ (0, 1), the
clustering risk based on the loss (9) is, with probability
at least 1− δ, uniformly bounded for all g ∈ G by

L(g) ≤ L̂n(g) + 4(2Λx + 1)Λq
√
C

n
+

√
C logC + log 1

δ

2n

with q = 1 if Λ ≤ 1 and q = 2 otherwise.

Proof. Given that f = ` (9), we can rewrite the func-
tions fg ∈ FG (4) as

fg(x) = min
k∈[C]

‖x− gk(x)‖2

= ‖x‖2 + min
k∈[C]

−2〈x, gk〉+ ‖gk‖2,

which leads to

Rn (FG)

= E sup
g∈G

1

n

n∑
i=1

σi

(
‖Xi‖2 + min

k∈[C]
−2〈Xi, gk〉+ ‖gk‖2

)

≤ E
1

n

n∑
i=1

σi‖Xi‖2

+ E sup
g∈G

1

n

n∑
i=1

σi min
k∈[C]

−2〈Xi, gk〉+ ‖gk‖2.

The fact that the σi’s are centered and independent of
the Xi’s yields

E
1

n

n∑
i=1

σi‖Xi‖2 = 0.

6



Then, by following the proof of Lemma 4.3 in [BDL08]
(or by using Lemma 8.1 in [MRT12]), we obtain that

Rn (FG) ≤
C∑
k=1

Rn (ΨGk) ,

where ΨGk is built as in (12) with ψ(x, gk) =
−2〈x, gk〉 + ‖gk‖2. In addition, [BDL08] also shows
that for Gk = {gk ∈ H : ‖gk‖ ≤ Λ},

Rn (ΨGk) ≤ 2Λ

√
E‖X‖2
n

+
Λ2

√
n

≤ Λq
2
√
E‖X‖2 + 1√

n

with q = 1 if Λ ≤ 1 and q = 2 otherwise.
Therefore, since P (‖X‖ ≤ Λx) = 1, E‖X‖2 ≤ Λ2

x

and Theorem 2 applies to this setting to yield the
claimed risk bound.

3.3 Switching regression

For the switching regression setting of Sect. 2.3, the
conditions of Theorem 2 are fulfilled by making use of
the analysis in [Lau17]. In particular, we rely on the
following decomposition result.

Lemma 5 (After Theorem 3 in [Lau17]). Let G =∏C
k=1 Gk ⊂ HC and FG be as in (4) with f = ` (10).

Then,

Rn (FG) ≤ 2

C∑
k=1

Rn(ΨGk),

where ΨGk is as in (12) for the clipping function ψ:

ψ(z, gk) = min

{
1

2
,max

{
−1

2
, gk(x)

}}
.

The condition (13) is in turn satisfied with a contrac-
tion argument and the application of Lemma 3, which
yields, for any RKHS H and all Gk = {gk ∈ H : ‖gk‖ ≤
Λ},

Rn(ΨGk) ≤ Rn(Gk) ≤ ΛΛx√
n
.

Therefore, we can apply Theorem 2 with c = 2 and
q = 1 to obtain a risk bound with almost radical de-
pendence on C.

Theorem 5. Let H be an RKHS of kernel K and
set Λx = supx∈X

√
K(x, x). Then, for the class G as

in (5) and any δ ∈ (0, 1), the switching regression risk
based on the minimal squared loss (10) is bounded with
probability at least 1− δ, uniformly for all g ∈ G, by

L(g) ≤ L̂n(g) + 8ΛxΛ

√
C

n
+

√
C logC + log 1

δ

2n
.

4 Conclusions

The paper presented a unified approach to the deriva-
tion of error bounds for problems in which one is to
learn C components from a Hilbert space. With this
approach, and under appropriate assumptions on the
model class, we could obtain an almost radical de-
pendence on C (up to logarithmic factors) for multi-
category classification, vector quantization and switch-
ing regression.

Future work will study the applicability of this ap-
proach to other problems involving multiple compo-
nents, such as multi-task learning and structured pre-
diction. In addition, recall that for multi-category clas-
sification, logarithmic to radical dependency on C can
be obtained as in [LDBK15] via a somewhat more in-
volved analysis of Gaussian complexities (that can be
used to bound the Rademacher complexity). As hinted
at in the introduction, future work will aim at extend-
ing this analysis to the other settings of clustering and
switching regression in the hope of further reducing the
influence of the number of components on the bounds.
On the algorithmic side, a practical evaluation of meth-
ods implementing the regularization scheme suggested
by our analysis in vector quantization should also be
conducted.
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