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Abstract. A lot of research has been devoted to the problem of defining and constructing signature schemes with
various delegation properties. They mostly fit into two families. On the one hand, there are signature schemes that
allow the delegation of signing rights, such as (hierarchical) identity-based signatures, attribute-based signatures,
functional signatures, etc. On the other hand, there are malleable signature schemes, which make it possible to derive,
from a signature on some message, new signatures on related messages without owning the secret key. This includes
redactable signatures, set-homomorphic signatures, signatures on formulas of propositional logic, etc.

In this paper, we set out to unify those various delegatable signatures in a new primitive called universal witness
signatures (UWS), which subsumes previous schemes into a simple and easy to use definition, and captures in
some sense the most general notion of (unary) delegation. We also give several constructions based on a range of
cryptographic assumptions (from one-way functions alone to SNARKSs and obfuscation) and achieving various levels
of security, privacy and succinctness.

Keywords: Digital signatures, Delegation, Malleable signatures, Functional signatures, Identity-based cryptography,
Obfuscation, SNARKSs.

1 Introduction

Many signature schemes in the literature have delegatability properties either for keys or for messages.

The first family includes notions like (hierarchical) identity-based [Sha84,GS02, CHYCO04, KNOS8] and attribute-
based [LAS™10, MPR11, OT14] signatures, in which a master key authority grants signing rights to users, who may in
turn be able to delegate those rights to lower-level signers. It also includes a slightly different class of schemes where
the owner of the master secret key can sign all messages in the message space, and can delegate signing rights on
restricted families of messages (again, possibly with recursive delegation): functional signatures [BGI14,BMS16] and
policy-based signatures [BF14] are examples of such schemes.

The second family of schemes is that of malleable signature schemes, as defined e.g. by Ahn et al. [ABCT15],
Attrapadung et al. [ALP12] and Chase et al. [CKLM14]: in those schemes, it is possible, given a signature on some
message, to publicly derive signatures on certainly related messages. Specific examples include content extraction
signatures [SBZ02], redactable and sanitizable signatures [JMSWO02, ACdTO05], some variants of set-homomorphic
and network coding signatures [JMSWO02, BFKW09] (where users sign sets, resp. vector spaces, and those signatures
can be delegated to subsets or subspaces) and more. A different example and one of the original motivations of this
work is Naccache’s notion of signatures on formulas of propositional logic [Nac10], which makes it possible to derive a
signature on a propositional formula @) from a signature on P whenever P = Q).

Main idea of this work. The goal of this paper is to unify all of the schemes above into a single very general and
versatile primitive, which we call universal witness signatures (UWS), and to propose concrete instantiations of that
primitive achieving good security and privacy properties.

Our first observation is that delegation of keys and delegation of messages are really two sides of the same coin,
which can be unified by regarding a signature on a message m by an identity A as really the same object as a key
associated with the sub-identity (A, m) of A. The operation of signing messages simply becomes a special case of key



delegation. Then, we can obtain in some sense the most general notion of signature scheme with (unary) delegation by
saying that the set of identities is endowed with an essentially arbitrary pre-order relation <, and that given a key SK 4
on an identity A, we are able to derive another key SKg on any identity B such that B < A. Unforgeability is then
defined in the obvious way: roughly speaking, after obtaining keys SK 4, on various identities A, (possibly derived
from higher-level identities), an adversary is unable to construct a valid key SK for an identity B that doesn’t satisfy
B < A, for any i.

The type of delegation functionality achieved by such a scheme is simply determined by the pre-order relation <.
For example, regular (non-delegatable) signatures are obtained by choosing a set of identities equal to the message
space together with a special identity *, such that m < x for any message m, and no other relationship exists. Then,
SK. is the secret key in the traditional sense, and it can be used to derive keys SK,,, playing the role of signatures. If
non-trivial relationships exist between the messages m themselves, we get a malleable signature scheme instead. For
instance, we get redactable signatures if messages are ordered in such a way that m’ < m if and only if m/ is obtained
from m by replacing some of the text in m by blanks. And we obtain identity-based signatures with a larger set of
identities, still containing a special identity * associated with the master key authority, but also identities id; associated
with the various users of the system, and identities (id;, m) for each pair of a user and a message. The order relation is
then given by id; < * for all ¢, and (id;, m) < id; for all ¢ and all messages. If additional nontrivial relationships exist
between the id;’s, we essentially get hierarchical identity-based signatures.

We would like to support a really general class of pre-order relations <, to support for example the signatures on
propositional formulas mentioned earlier, which are malleable signatures on messages (formulas) ordered by logical
implication. However, the delegation algorithm that lets us publicly derive SKp from SK4 when B < A should
certainly be able to efficiently test whether the relation B < A actually holds. This is not possible directly for a relation
like logical implication. For general NP relations, however, it does become possible if the delegation algorithm also
receives as input a witness w of B < A (for logical implication, for example, it would be a proof that A = B).

Our contributions. Along the lines sketched above, our first contribution is to define the notion of universal witness
signature (UWS) scheme with respect to an arbitrary NP pre-order relation < with a greatest element *. Such a scheme
consists of only two algorithms:

Setup(1*): returns a key SK, on the special identity *, as well as some public parameters PP;

Delegate(PP,SK4, A, B, w): checks that SK4 is a valid key for the identity A and that w is a valid witness of
B < A.If so, returns a fresh key SKp for the identity B. Otherwise, returns L.

We do not actually need a separate algorithm for signature verification: to check whether SK 4 is a valid key on A,
we can simply try to delegate A to itself (since < is a pre-order, there is a trivial witness wa<4 for A < A), and test
whether the Delegate algorithm returns something or just L.

Security for a UWS scheme is defined as the unforgeability notion described in the previous paragraph. As usual,
we distinguish between selective security (in which the adversary has to choose in advance the identity on which it will
try to forge) and adaptive security. We also identify two other desirable properties of a UWS scheme: the privacy notion
of context-hiding UWS, which says that the delegation path used to obtain a given key is computationally hidden, and
the notion of succinctness, which says that the size of a key SK 4 is bounded only in terms of the size of A and the
security parameter, independently of the delegation path.

We show that universal witness signatures are sufficient to obtain many earlier schemes appearing the literature,
including HIBS, redactable signatures, functional signatures and Naccache’s propositional signatures (for which our
concrete constructions provide the first complete instantiations, to the best of our knowledge).

And finally, we give several constructions of UWS based on a range of assumptions, and achieving various subsets
of our desirable properties. First, we show that one-way functions alone are enough to obtain adaptively secure
UWS for arbitrary NP pre-order relations. The approach is similar to the one-way function-based construction of
functional signatures [BGI14]. As in the work of Boyle et al., however, the resulting scheme is neither context-hiding
nor succinct. Then, we prove that virtual black-box obfuscation [BGI* 12] (for a well-defined program depending on
the pre-order relation under consideration) provides a very simple construction of secure, succinct, context-hiding
UWS. This construction ticks all of our boxes, but it is of course based on a very strong assumption: in fact, Barak et al.



showed that VBB is unachievable for general circuits. There could exist a virtual black-box obfuscator for our specific
program of interest (and in fact, candidate constructions of indistinguishability obfuscation conjecturally satisfy that
property), but this is rather speculative. We therefore try to achieve similarly strong properties based on somewhat more
reasonable assumptions. We give two such constructions: one based on SNARKSs [Kil92, BCI* 13, GGPR13] (actually,
proof-carrying data [CT10, BCCT13,BCTV14]), which is secure and succinct but achieves a somewhat weaker form of
privacy than the context-hiding property; and another based on indistinguishability obfuscation [BGI™12, GGH™"13,
SW14,GMM™16], which is succinct and context-hiding but which we only prove selectively secure. Both of those
constructions suffer from a limitation on delegation depth: it can be an arbitrary polynomial in the security parameter but
fixed at Setup time. Moreover, our iO-based construction only applies to order relations rather than general pre-orders.

2 Universal Witness Signatures

Our notion of universal witness signature generalizes many existing signature schemes with delegation or malleability,
such as homomorphic signatures [JMSWO02], functional signatures [BGI14] and hierarchical identity-based signa-
tures [CHYCO04]. It supports delegation hierarchies defined by arbitrary NP pre-order relations, which, to the best of
our knowledge, makes it more general than all previously proposed such schemes. And yet, its syntax is quite simple,
consisting of only two algorithms.

Formal definition. Now we give a formal definition of our scheme. Note that the terms identity and message are
synonymous in our setting, and can be used interchangeably. Similarly, the signing key for an identity can equivalently
be seen as a signature on the corresponding message.

Definition 1 (Universal Witness Signatures). A universal witness signature scheme (UWS for short) for an NP
pre-order relation < with a greatest element x consists of two probabilistic polynomial-time algorithms:

- Setup(1*) — (PP, SK,.) : This algorithm takes as input a security parameter \, produces a master signing key
SK.,, keeps it secret and outputs public parameters PP.

— Delegate(PP,SK4, A, B,w) — SKg : This function takes as input the public parameters, a signing key for
identity A, an identity B, and a witness w. If w is a valid witness of the NP statement B < A and SK 4 is a valid
signing key for identity A, then the algorithm outputs a signing key for identity B, otherwise it outputs 1.

We note that there exists a trivial witness for A < A. For simplicity’s sake, we also define a third algorithm Verify,
which is merely a specialization of Delegate:

- Verify(PP,SK4, A) — {True, False} : This algorithm takes a public parameter, an identity A and a signing
key SK 4. We have Verify(PP,SK4, A) = False if and and only if Delegate(PP, SK4, A, A, wa<a) returns L,
where w a< 4 is the trivial witness for the reflexive property A < A.

Additional properties of UWS. We now propose three desirable properties for a UWS scheme. Intuitively, we will
say that a UWS scheme is secure (i.e. unforgeable) if a polynomially-bounded adversary allowed to make arbitrary
delegation queries cannot come up with a valid signing key on an identity A* that isn’t reachable by delegation from
any of the signing keys she obtained.

We will say that the scheme is context-hiding if a signing key does not reveal the delegation path used to derive it.
For example, a signing key SK4 on A obtained from a long delegation path is indistinguishable from a signing key for
the same identity delegated directly from the master key SK,.

Finally, we will say that the scheme is succinct when the size of a signing key is bounded depending only on the
size of the associated identity (and not on the length of the delegation path used to derive it).

These properties can be captured formally as follows.

Definition 2 (Correctness). Correctness of an UWS scheme states that for all SK 4, if
UWS.Verify(PP,SK 4, A) outputs True and wp< 4 is a witness of B < A,

then the signing key SKp <— UWS.Delegate(PP, A, B, wp<4) is not equal to L, and UWS Verify(PP,SKg, B)
outputs True.



Definition 3 (Selective security of UWS schemes). The selective security of an UWS scheme is captured by the
advantage of an adversary A in the following security game against a challenger C:

1. A chooses a target identity A*.

2. C runs the algorithm Setup(17) to get SK, and PP. Then it keeps the master signing key SK, secret and sends the
public parameter PP to A, together with a tag tsk, referring to SK,.

3. C initializes an associative list H in which the challenger maintains a set of tuples (t, A, SK) where t is a tag
for the signing key generated by the challenger, A is an identity, and SK is a signing key for the identity A. The
associative initially consists of just the tuple (tsk_, *, SK,).

4. A can submit two types of queries:

Delegate queries: Assume that C generated the signing key SK4 on an identity A, and that A received the
corresponding tag tsk ,. For any identity B for which A knows a witness wp<a of B < A, A can instruct C
to execute Delegate(PP,SK 4, A, B, wp<4). The challenger will then generate a new unique tag tsg,, on
the resulting signing key SKp, and add the tuple (tsk, , B, SKg) to its associative list H, sending back the tag
tsk, to A.

Reveal queries: Using the corresponding tag, A can ask C to reveal any previously generated signing key SK 4
provided that the associated identity A does not satisfy A* < A.

5. After polynomially many queries of the type above, A outputs a candidate forgery SK 4-, and wins if and only if

Verify (PP, SK 4+, A*) = True.

A UWS scheme is selectively secure if and only if for all probabilistic polynomial-time adversaries A, the advantage of
A in the previous game is negligible.

We also consider the adaptive security of UWS schemes, which is similarly defined, with the notable exception that the
adversary does not announce in advance the identity A* on which she will forge, but can choose it adaptively instead
(with the condition that it does not satisfy A* < A for any of the identities A associated with revealed signatures).

Definition 4 (Context-hiding). A UWS scheme is context-hiding if, for every tuple (SKy, SKsy, A1, Ao, w1, we) and
every identity B such that

Delegate(PP, SK;, A;, B, w;) — SK| # L
and

Delegate(PP, SKy, Ay, B, wy) — SK;, # L,
the distributions of (PP, B, SK}) and (PP, B, SK5) are statistically close.

Definition 5 (Succinctness). An UWS scheme is succinct if there exists a polynomial p such that the size of any
signature SK 4 is bounded by p(\, |Al).

3 Applications: From UWS to Other Primitives

Our universal witness signature scheme can be considered as a generalization of many existing malleable signature
schemes. To showcase this, we use our UWS scheme to instanciate several well-known signature schemes, and some
more original ones, namely: functional signatures and propositional signatures. A construction of hierarchical identity-
based signatures and redactable signatures is also given in Appendix B. To the best of our knowledge, this is the first
time that a construction for propositional signatures appears in the literature.

Functional signatures. Functional signatures, introduced by Boyle et al. [BGI14], are a particularly wide-ranging
generalization of identity-based signatures in which the key authority can generate signing keys sk associated to
functions f, such that the owner of Sk can sign exactly those messages that are in the image of f. Moreover, to sign m
in the image of f, the owner of Sk needs a witness to this fact, namely a preimage of m under f. In this section, we
show how we can easily obtain functional signatures based on universal witness signatures.



Definition 6 (Functional Signature). The functional signature for a message space M and a function family F =
{f : Dy — M} is a tuple of algorithms (Setup, KeyGen, Sign, Verify) which is specified as follows:

- Setup(1*) — (msk, mvk): the setup algorithm takes a security parameter \ and it returns a master signing key
msK and a master verification key mvk. Then it keeps the master signing key secret msK and publishes the master
verification key mvk.

- KeyGen(msk, f) — sky : the key generation algorithm takes a master signing key msk and a function f to
specify which one will be allowed to sign the messages, then it outputs a corresponding signing key.

- Sign(f,skg,m) = (f(m),0f(m)): the signing algorithm takes a function f and the corresponding signing key
sKy as input and produces f(m) and the signature o ¢, of f(m)

- Verify(mvk, o,,, m) — {True, False}: the verification algorithm takes a signature-message pair (m, o,,) and the
master verification key mvk. The algorithm outputs True if o, is a valid signature of m, otherwise outputs False.

Functional signatures from UWS. Consider the order O corresponding to the function family F:

Let M be the message space. The order O is an order on the set {*} U F U M
* is the greatest identity, bigger than all other messages.

- m < fwhen3Im' e MAm = f(m’)

There does not exist any other non-trivial order

We note < be the previously defined order. Then consider the UWS scheme corresponding to this order. The construction
of the functional signature is described in figure Figure 1.

Security of the functional signature scheme. A functional signature scheme is typically expected to verify the following
properties:

— Correctness: This property expresses the fact that a properly generated signature is verified to be correct. Formally:
Vf € F,¥Ym € Dy, (msk, mvk) < Setup(1*), sk; < KeyGen(msk, f), (f(m),o(m)) < Sign(f, sk, m),

Verify(mvk, o (), f(m)) = True.

— Unforgeability: The unforgeability of the functional signature scheme is defined by the the following security game
between an adversary A and a challenger C:
e C generates a pair of keys (msk, mvk) < Setup(1%), then publishes the master verification key mvk byt
keeps the master signing key msk secret.
e ( constructs an initially empty associative list # indexed by f € F, a key generation oracle Okeygen and a
signing oracle Ogjgy as follows:

* Okeygen(f): If there exists already a value associated to f in the associative list H, then outputs #H( f) di-
rectly. Otherwise the oracle uses the KeyGen algorithm to generate the signing key sk <— KeyGen(msk, f)
associated to f, then adds the function-signing key pair ( f, k) to the associative list.

* Osign(f, m): If there exists a value associated to f in the associative list #, then uses the signing algorithm
to generate a signature o ¢(,,)of f(m)

Verify (mvk, o, , m): Setup(1*):
return UWS.Verify (PP, SK ; (), f(m)) (PP, SK.,) + UWS.Setup(1*)
return (SK,, PP)

KeyGen(msk, f):
return UWS.Delegate(PP = msk, SK.., *, f, “f < *”')

Sign( f, sky, m):
o f(m) = UWS.Delegate(PP, sky, f, f(m), m, “f(m) < f)
return (f(m), o ¢(m))

Fig. 1. Functional signatures from UWS.



e A can query the two oracles Ogjgn and Okeygen- A can also make requests of corresponding value in the
associative list H. A win against the security game if it can produce a message-signature pair (m, o) such that :
« Verify(mvk,m,o) =1
* There does not exist m’ and f such that m = f(m’) and f was sent as a query to the key generation oracle
OKeyGen'
* There does not exist a function-message pair (f,m’) was a query to the signing oracle Osjgn and m =

f(m’)

Let A be an adversary against the functional signature constructed using UWS scheme with non-negligible advantage.
Then by the definition it can produce a message-signature pair (m, o) such that:

1. Verify(mvk, m, o) = True
2. There does not exist ' and f such that m = f(m') and f was sent as a query to the key generation oracle OkeyGen-
3. The message m was not sent as a query to the signing oracle Osg;gn.

Condition 1 implies that Verify(PP,o,m) = True. Condition 2 implies that for all (f,m’) which verifies that
f(m') = m, sk; has never been revealed. Then the third condition implies that o,,, has not been revealed. As in
the specific order corresponding to the functional signature, the only elements bigger than m are m itself, *, and
{f|3Im' € M.f(m') = m}. With the conditions 2 and 3, the signatures of these identities have never been revealed,
but A can produce a valid signature for m which break the existential unforgeability of the underlying UWS scheme.

Propositional signatures. In an invited talk at CRYPTO and CHES 2010, Naccache [Nac10] introduced the new
notion of propositional signatures, for which he suggested a number of real-world applications such as contract-signing.
Propositional signatures are signatures on formulas of propositional calculus, which are homomorphic with respect
to logical implication. In other words, given a signature on a propositional formula P, one should be able to publicly
derive a signature on any @ such that P = (). Since the satisfiablity of propositional formulas cannot be decided
efficiently without auxiliary information, the derivation algorithm should also take as input a witness of P = @), i.e. a
proof of @ assuming P.

To the best of our knowledge, no construction of propositional signatures has been proposed so far. However, it is
easy to see that they are, again, easily obtained from UWS.

Security of propositional signatures. Formally, a propositional signature scheme is a triple (G, D, V) of efficient
algorithms for key generation: G(1*) — (MVK, oFaise), signature derivation: D(mvk, op, P, Q, 7) — 0¢, and verifi-
cation: V(mvk, op, P) — True/False. The signature ofase On the false proposition plays the role of master secret
key, due to ex falso quodlibet. Correctness states that if op is a valid signature on proposition P (in the sense that
V(mvk, op, P) evaluates to True) and = is a valid proof of P = @, then D(mvk, o p, P, Q, 7) a valid signature o on
Q. Unforgeability says that after obtaining signatures on propositions P; of his choice, an efficient adversary cannot
produce a valid signature on a prosition @) such that none of the P;’s implies Q).

Propositional signatures from UWS. Clearly, the UWS scheme associated with the corresponding set of propositional
formulas endowed with the NP preorder relation given by logical implication (where witnesses are proofs) exactly
gives a propositional signature scheme.

In fact, our definition of security captures for UWS captures a slightly stronger security model, where unforgeability
still holds when the adversary can make unrestricted delegation queries on messages he cannot see, so as to control
delegation paths.

4 Construction of UWS

We now explain how to realise UWS. The first construction requires only the existence of one-way function, but is
neither context-hiding nor succinct. These properties can be obtained at the cost of introducing new assumptions such
as the existence of proof-carrying data (for succinctness) or obfuscators (for context-hiding).



4.1 Construction from One-Way Functions

Firstly, we propose a construction of the UWS scheme based only on the existence of one-way functions. The existence
of one-way function is a very weak and basic assumption of cryptography. But this very basic construction does not
verify many other properties than adaptive security like succinctness or context-hiding.

In this construction, we use a “certificate of computation” approach: Every signature is provided with a certificate
of the delegation path. And an identity A can provide a certificate of the identity B if and only if B < A. For example
if for the generation of the signature of the identity A, we have passed the identities *,idy,ids, ..., id,, A. Each
identity produced a signing-verification key pair (Sk;q,, VK;q4,) using the key generation of a signature scheme, and
Ovkia, is a signature of (id;, wia,<id; ;> VKid, )* produced using the signing key sk;_; The signature of the identity A is
represented by

SKA = (SkA7 [ (VkAa A7 wAS’rh UVKA) 9 (Vkid” ) Zd’n, widngidn,1 9 O-Vkidn) gy

o (VK W, 0w, ) |)

For simplicity we will note “w is a valid witness of x < y” by “x <,, ¥ in the following sections of this paper and
we propose the following construction of our UWS scheme using a classical existential unforgeable signature scheme
Sig = (Setup, Sign, Verify).

Setup(1*):

— The setup algorithm first takes two pairs of keys (msk, mvk), (vKk., sk.) from the signature’s parameters generation
algorithm.

— Then it generates a signature ok, of (*, w.<,VK,) using the signing key msk, this can be considered as a
certificate of the verification key VK, delivered by the master authority.

— The certificate ¢, of the identity * is [(VK., *, w.<«, ovk, )]. The signing key (signature) SK,. of the identity * in our
UWS scheme is (SK., c.) and the public parameter PP will be mvk.

Delegate(mvk, SK4, A, B, w):
— The signing key SK 4 has the form (Sk, c4), where the certificate c 4 is a list
[(VkA7 Aa ’lUA, 0A)7 M (VK*7 *7 ’LU*S*, UVk* )]

— The delegation algorithm first verifies that the certificate c 4 is valid, by checking that each o is a valid signature on
(¢dj, w;, VK;) with respect to the verification key VK;_;. It also checks that the witnesses are valid: B <,, A <y,
id,, ... and that VK4 is a correct public key for sk 4 by signing a random message and verifying it.

— If all these verification steps succeed, a fresh key pair (skg, vk ) for Sig is generated, together with a signature
op on (B, wp<a,VKp) using the siging key sk4 The algorithm then computes an extended certificate cp by
prepending (VKp, B, wp, o) to c4, and returns the signature SKp as (skp, cp).

This construction is summarized in Figure 2.
Theorem 1. The construction of UWS based on the one-way function is correct.

Proof. 1f we have Verify(mvk, SK4, A) = Trueand B <,, A, then SKg = (skp, cg) withcg = [(VKp, B,w,05),c4l,
and by construction, we have that (VK g, Skz) is a valid signature key pair, and o g is a valid signature of (B, wg< 4, VKp).
By the verification above and hypothesis of SK 4 is valid, ¢ is also a valid certificat and Verify(mvk, SKp, B) outputs
True. O

The proof that this construction is adaptively secure is given in Appendix C.

* This is represented as a message id;||wia; <ia,_, ||VKid; -



Fig. 2. Construction of UWS from one way functions.

Delegate(mvk, SKa, A, B, w):
SkA, cA SKA
{(Vkmi,iywmavkidi )} “—ca
Check certificate and witnesses:

N Assert Sig. Verify(vk;_1, (idj, wj, VK;), o;) forall j
Setup(17): Assert B <,, A < i ok S,
(msk, mvk) « Sig.Setup(1*) Check public key:

(sks, vk.) = Sig.Setup(1*) m <& random(1*)
owk, < Sig.Sign(msk, (*, wi <, Vks)) om  Sig.Sign(ska,m)
Cx 4 [(Vks, *, Wiz, Ouk, )] Assert Sig.Verify(vka, m, o)
return (Mvk, (Skx, ¢ ) Generate new key pair and certificate:
(skz,Vkg) « Sig.Setup(1*)
owp + Sig.Sign(ska, (B,wp<a,VKkg))
Concatenate (Vkp, B, wp<a, Tk ) withca:
cp + (Vkp, B,wp<a, owg)|lca
return SKg = (skg, ¢B))

wa<id, - <x

4.2 Succinct Construction from Proof-Carrying Data

The previous construction based on one-way functions is clearly neither context-hiding nor succinct. In this section, we
give a construction based on SNARKS, which is adaptively secure and succinct; we also provide arguments suggesting
that it should satisfy some form of context-hiding property at least when the SNARK is zero-knowledge. As a downside,
we are limited to a polynomial number of delegation steps: the maximum delegation depth must be fixed at setup

time, as a polynomial in the security parameter. Our construction use the following theorems proposed by Bitansky et
al. [BCCT13].

Theorem 2 (SNARK Recursive Composition Theorem). There exists an efficient transformation RecComp algo-
rithm such that, for every publicly-verifiable SNARK (Gsnark, Psnarks Vsnark ), the 3-tuple algorithms

(G,P,V) = RecComp(Gsnark, Psnark: Vsnark)
is a publicly-verifiable PC D system for every constant-depth compliance predicate.

Theorem 3 (PCD Depth-Reduction Theorem). Let H = {H }ren be a collision-resistant hash-function family.
There exists an efficient transformation DepthRed,, with the following properties:

- Correctness: If (G,P,V) is a PCD system for constant-depth compliance predicates, then (G', P, V') =
DepthRedy, (G, P, V) is a path PC'D for polynomial-depth compliance predicates.

— Verifiability Properties: If (G, P, V) is publicly verifiable then so is (G',P', V')

— Efficiency: There exists a polynomial p such that the (time and space) efficiency of (G',P’, V') is the same as that
of (G, P, V) up to the multiplicative factor p(k)

For the construction, we follow the same line of thinking as in Section 4.1. We consider an existential unforgeable
signature scheme Sig = (Gen, Sign, Verify), with master signing key msk and master verification key mvk. Let us first
define the distributed computation transcript 7' = (G, linp, data) and the corresponding C-compliance C(zou, liNP, 2in)
as follows:

G = (V, E): The graph of the distributed computation transcript, with V" labeled by the identity and (A, B) € E
labeled by the tuple (VKz, SKp, wp<a, ovky)-

linp: The local input of the vertices will be the identity corresponding to this vertex.

— Zou: The data of the edges are the labels of the edges, specifically zou = (VKg, SKp, wp<a,ovk, ).

C(Zout, iNp, zin): parse zow as (VKp, SKp, wp<a, ovk, ), and suppose zi, = (VK4,SK4, wa<c, ovk, ) with C
the predecessor of A. The algorithm C(zoy, linp, zi,) outputs True if



o Sig.Verify(VK4, (linp(B), wp<a, VKg), 0wk, ) = True
e B A

—WB<A

e For a random message m, we have Sig.Verify(VKg, m, Sig.Sign(SKz, m)) = True.

Let us consider the PCD scheme (G, P, V) corresponding to the distributed computation transcript described as above.
Then we have all the building blocks for our universal witness signature.

- Setup(1*) — (PP, SK,): Let (mvk, msk) < Sig.Gen(1*), then use the generation algorithm of the proof-
carrying data to get PP = crs < G(1*). Let z. = (mvk, msk, “x < %7, oy, ), we compute 7, < P(crs, L, L, z,, %)
and oy, < Sig.Sign(msk, (x, “x < «”, mvk)). Then output SK, = (z,,m,) and VK, = mvk.

- Delegate(PP,SK4, A, B,wp<4) — SKp:

e Parse SK4 as (ZA, 7TA) with z4 = (VKA, SKA, wa<c, O'VKA)-

e We first check whether 7 4 is valid proof of the fact that z 4 is consistent with the C-compliance transcript. If
the test fails then the algorithm ouputs L

e If the check suceeds, use the underlying signature scheme’s generation algorithm to get (SKp, VKp) +
Sig.Gen(1*), and use the sign algorithm to get oyk, = Sig.Sign(SK4, (B,wa<p,VKg)). Let 25 =
(VKB7 SKB, WB<A,O0VKp )

e Finally use the proof algorithm P to generate a proof of zg: mp < V(CrSs, z4, 74, 25, B) which is a proof of
the fact that zp is consistent with the C-compliance transcript. The algorithm outputs SKp = (25, 7p).

This construction is summarized in Figure 3.
Theorem 4. The construction of UWS scheme based on the Proof-Carrying Data is correct.

Proof. 1f SKp is produced by the Delegate algorithm on SK 4, and SK 4 is a valid signature of A, by the correctness
of the PCD scheme, we have 7 is a valid proof of the fact that zp is consistent with the C-compliance transcript. This
assures that the new signature SKg will pass the verification algorithm which means Verify(PP, SKg, B) will outputs
True. O

We give also proof of the selective security and succinctness of this construction in Appendix D.

4.3 Construction from Indistinguishability Obfuscation

The SNARK based construction from the previous section has some limitations: a polynomial bound on delegation depth,
and no rigorously proved context-hiding property. A very simple construction without either of these shortcomings
(thus achieving all the desired properties of universal witness signatures) can be obtained from virtual black-box
obfuscation: we describe that construction in Appendix E. Admittedly, however, virtual black-box obfuscation is an
onerous assumption: it is known to be unachievable for general circuits in the standard model [BGI*12]. In this section,
we provide a satisfactory construction using a somewhat more realistic flavor of obfuscation (indistinguishability
obfuscation) together with puncturable pseudorandom functions (as is usual for iO-based constructions). Both notions
are formally recalled in Appendix A.

Delegate(mvk, SK4, A, B, w):
Setup(1*): (za,ma) = SKy
(msk, mvk) < Sig.Setup(1™) (VKa, SKa, wa<c,0ovk, ) + 24
Crs «— g(1*) Assert that 7 4 is valid proof of z 4 / C-compliance
ovk, < Sig.Sign(msk, (x, “x < %7, VK,)) (SKs, VK13) — Sig.Gen(1™)
T < P(crs, L, L, 2, %) ovkg < Sig.Sign(SK4, (B,wa<n,VKg))
Ze = (VK*,SK*, o < *”,O'VK*) ZB (VKB,SKB,’U)BSA, (TVKB)
return (24, 74 ), CIS) i+ V(Crs,za,ma, 25, B)
return (2, TR)

Fig. 3. Construction of UWS from proof-carrying data.



Fig. 4. The CheckSign algorithm.

CheckSign[K[(SKa4, A, B, w):

if f(F(K, A)) == f(SKa) A A >, Bthen
return SKp = F(K, B)

elseif f(F(K,A)) == f(SKa) A A =,, B then
return SKp := SK 4

else return L

Our construction of UWS from punctured PRFs and iO achieves correctness, context-hiding, and succinctness.
However, besides the reliance on 10, which is a strong assumption, the maximum delegation level must again be chosen
at setup time, and there is a limitation of the type of preorder relations we support. More precisely, our construction
applies to order relations (< is anti-symmetric) and moreover, any given element has at most polynomially many
elements greater than itself. We will use the following three primitives in our construction:

1. Let C* = iO(C) be the indistinguishability obfuscation of the circuit C;
2. Let (G, F) be a punctured PRF scheme in which G generates the system parameters and F is the keyed PRF;
3. Let f be an injective length-doubling PRG.

Here is our construction:

- Setup(1*):
e We generate the PRF key K from G(1*) and compute the indistinguishability obfuscation CheckSignb of the
algorithm CheckSign.
e The master signing key (signature of x) SK, is the PRF value F (K, %) of * and the public parameter PP is the
obfuscated circuit CheckSignb.
- Delegate(PP,SK4, A, B,wp<a):
. CheckSignb(SKA, A, B,wp<4) which is an indistinguishability obfuscation of the program CheckSign
described Figure 4.

Theorem 5. The iO-based construction is correct, succinct, and context-hiding.

Proof. All three properties rely on the underlying indistinguishability obfuscation’s properties; we denote this obfuscator
10. By construction, a valid signature SK4 of identity A is equivalent to the fact that SK4 = F (K, A). Very roughly,
it follows that:

— Correctness If SK g is produced by the algorithm Delegate, then SKgp = F (K, B). We have Verify(PP, SKg, B)
True.

— Succinctness and Context-hiding SK4 = F (K, A) is independent of the delegation path, and its output is that of
a pseudorandom function. Hence the UWS scheme is succinct and context-hiding.

A security proof and extended proofs of sunccinctness and the context-hiding property are provided in Appendix F. 0O

5 Conclusion

In this paper, we have introduced a very general notion of delegatable signature scheme: universal witness signatures
(UWS). We have formally defined the security properties that UWS should ideally satisfy, and provided four different
constructions based on a range of assumptions from the existence of one-way functions to virtual black-box obfuscation,
and achieving some or all of these security properties. Those constructions can be used to instantiate a number of
other primitives, and provide, in particular, the first instantiations of propositional signatures, a notion with numerous
interesting applications.

Each of our constructions has some limitations, however. Constructing secure, succinct and context-hiding UWS
with unbouded delegation depth based on relatively weak assumptions is left as a challenging open problem. In addition,
our work did not tackle the problem of anonymity for UWS-like schemes, and we only considered unary delegation.
Those problems are also worth investigating in future work.
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A Some Definitions of Required Primitives

In this section, we recall the formal definitions of SNARKS, proof-carrying data, and notions related to obfuscation. All
these notions are used in this paper to construct our Universal Witness Signature scheme.

A.1 SNARK Proof Systems

Succinct non-interactive arguments of knowledge, or SNARKSs for short, are powerful proof systems that we use in
particular to instanciate proof-carrying data constructions. To achieve this we define the SNARK proof system for the
universal language on Random-Access Machines.

Definition 7 (Universal relation and Language). The universal relation is the set Ry of instance-witness pairs
(y,w) = (M, z,t),w), where |y|, |w| < t and M is a random-access machine, such that M accepts (x,w) after at
most t steps. We denote by L the universal language corresponding to the universal relation Ry .

For any constant ¢ > 0, we denote by R, C Ry the subset of Ry consisting of pairs (y, w) = ((M,z,t), w) such
that ¢ < |z|° (and hence the running time of M on input (x, w) is polynomially bounded).

We will define a SNARK proof system for NP using those relations R .. Such a proof system is a triple (G, P, V) of
three algorihms operating as follows:

G(1*): on input of the security parameter ), outputs a common reference string crs and verification state 7;
P(crs,y,w): produces a proof 7 of the statement y = (M, x, t) if w is a valid witness;
V(e, 7,y,m): deterministically verifies the proof 7, provided that y = (M, z, t) satisfies t < |z|°.

The proof system is a SNARK if it verifies the following properties.
Definition 8 (SNARK for NP). A SNARK for NP is a triple (G, P, V) as above statisfying the following properties.

— Completeness: For all large enough ), all constants ¢ > 0, and every pair (y,w) = (M, x,t), w) € R, we have
Pr [V(c, Ty, ) =1 ‘ (crs,7) « Q(l’\); ’P(Crs,y,w)} =1.

— Adaptive proof of knowledge: For every polynomial size prover P*, there exists a polynomial size extractor Ep+
and a negligible function e such that for all )\, all constants ¢ > 0 and every auxiliary input string z € {0, 1}p°|y()‘),
we have

(crs, ) + G(11)

(y, ™) + P*(crs, z)] <e(N).

w  Ep=(Crs, z)

Vie,7,y,m) =1
and (y,w) ¢ Re

— Full succinctness: There exists a universal polynomial p such that, for all large enough ), all ¢ > 0 and every
instance y = (M, x,t) such that t < |x|°, we have that:
e the generator G(1) runs in time p(\);
the prover P(crs,y, w) runs in time p(A + | M| + |z| + t);
the verifier V(c, T,y, m) runs in time p(A + |M| + |x|) (and independent of c); and
an honestly generated proof m has length |7| < p(\).
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A.2 Proof-Carrying Data

Proof Carrying Data (PCD), introduced by Chiesa and Tromer, is a cryptographic mechanism for ensuring that a given
property is maintained at every step of a computation, typically in a distributed setting. The property of interest is
specified as a compliance predicate, and every modification of the data comes accompanied with a proof that the data,
and any operation leading to its current contents, satisfies the compliance predicate.

In this section we give a formal definition of PCD adapted from Bitansky et al. [BCCT13].

Definition 9 (Distributed computation transcript). A distributed computation transcript is a tuple T = (G, linp, data)
with G = (V, E) a directed acyclic graph, linp : V. — {0, 1}* a label function for vertices and data : E — {0,1}* a
label function for edges. We require that linp(v) = L for all v which are sources or sinks. The output of T, denoted
out(T), is equal to data(, D) which is the lexicographical first edge such that ¥ is a sink.

Definition 10 (Proof-Carrying transcript). A proof-carrying transcript is a pair (T, w) with T a distributed computa-
tion transcript and 7w : E — {0,1}* an edge label function.

Definition 11 (Compliance predicate). A compliance predicate C is a polynomial-time computable predicate for
nodes of the distributed computation transcript. We denote it C(2,,;1iNp, 2i,), where z;, is some input, 2., is the
(alledged) output, and the node’s label is linp.

Given a distributed computation transcript DCT, we say that node n in DCT, with inputs z;, and local input linp,
is C-compliant if C(zou, iNP, 2in) holds for every output z,,, of n. We say that DCT is C-compliant if every node in
the graph is C-compliant. We say that a string z is C-compliant if there exists a C-compliant distributed computation
transcript containing an edge labeled z.

Definition 12 (Distributed-computation generator). A distributed-computation generator is an algorithm S(C, o, PCT)
which takes a C-compliance, a reference string o and a computation transcript. Then at every time step, it chooses to do
one of the following actions

— Add a new unlabeled vertex to the computation transcript. Then the algorithm outputs a tuple ( “add unlabeled vertex”, x, 1),
with x the new vertex.

— Label an unlabeled vertex. Then it outputs (“label vertex”, z,y) with x € V neither a source nor a sink and
linp(z) = L, and y is the new label of the vertex.

— Add a new labeled edge. Then it outputs (“add labeled edge”, x,y) with x ¢ E and y the label of the edge.

We introduce in Algorithm A.1 the ProofGen(C, o, S, P) procedure, which describes an interactive protocol with C a
compliance predicate, o a reference string, S a distributed-computation generator (not necessarily efficient) and P¢
a PCD prover w.r.t. C, the PCD prover P¢ interacts with the distributed-computation generator S such that when S
chooses to add a labeled edge P produces a proof for the C-compliance of the new message and add this new proof as
the proof label of the edge.

Using the above ProofGen algorithm, we can give the formal definition of the Proof-Carrying Data scheme.

Definition 13 (Proof-carrying data scheme). A proof-carrying data (PCD) scheme is a triple of algorithms (G, P, V)
with G is probabilistic and P and V are deterministic.

A proof-carrying data system for a class of compliance predicates C'is a triple of algorithm (G, P, V) that works as
follows:

-g (1A) — CrS, on input the security parameter )\, outputs a common reference string CrS.

— Pelcrs, m;, zi-20, iNP) — 7, for a compliance predicate C € C which takes as input a common reference string
Crs, inputs z; with corresponding proofs ;, a local input linp, and an output z,. The algorithm produces a proof
T, for the fact that z, is consistent with some C-compliance transcript such that C € C.

- Vel(cers, z,, ) — {True, False} for a compliance predicate C € C takes as input a common reference string Crs,
an output z, with corresponding proof w,, the algorithm returns True if 7, is a valid proof of the fact that z, is
consistent with some C-compliance transcript, otherwise it returns False.

And there exists a negligible function &(-) such that (G, P, V) satisfies:
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Algorithm A.1: ProofGen(C, o, S, P)

Result: z,, 7, T
1 Set T and PCT to be “empty transcript” (with T' = (G, linp, data) and PCT = (T, proof) with G = (V, E) = (0,0));
2 while S doesn’t halt and outputs a message-proof pair (zo,7,) do

3 (b,z,y) + S(C,0, PCT);

4 if b = “add unlabeled vertex” then

5 | SetV :=V U{z}andlinp(z) := L

6 else if b = “label vertex” then

7 ‘ Setlinp(z) :=y

8 else if b = “add labeled edge” then

9 Parse (v, w) := z with (v, w) € V?;

10 E:=EU{(v,w)};

1 data(v,w) :==y;

12 if v is a source then

13 ‘ setm =1

14 else

15 7 := Pc(o, data(v, w), linp(v), inputs(v), inproofs(v)) with
inputs(v) := (data(ui,v),...,data(uc, v)), inproofs(v) := (proof(ui,v),...,proof(uc,v)) and
(u1,...,uc) = parents(v).;

16 proof(v,w) (=7

17 end

18 end

19 end

20 Outputs(zo, mo, T)

— Completeness: For every compliance predicate C € C and (possibly unbounded) distributed computation generator
S)

T is B-bounded
Pr C(T)=1
V(o, z,,7,) = False

o+ G(1*,B)

(20.70.T) +- ProofGen(C,, 5,P) | =™

— Proof of Knowledge: For every polynomial-size prover P* there exists a polynomial-size extractor Ep~ such that for
every compliance C € C, every large enough security parameter k € N, every auxiliary input z;,, € {0, 1}P°(k),
and every time bound B € N.

o+ G(1\ B)
(Zouts ™) < P*(0,2i) | >1—2(N)
T« 573* (0’, Zzn)

V(0, zout, ™) = True

Pr = (out(T) = zout NC(T) = 1)

A.3 Punctured Pseudorandom Functions and Obfuscation

Punctured pseudorandom functions (punctured PRFs), first introduced by Boyle et al. [BGI14], have been extensively
used [SW14] with the obfuscators to construct provably secure cryptographic schemes. In our case, we combine
punctured PRFs with an indistinguishability obfuscation to get the UWS scheme.

Definition 14 (Punctured Pseudorandom Function). A puncturable family of PRF's is a triple of algorithm (G, P, F)
corresponding to generation of initial parameters, getting punctured keys and applying the PRF. These three algorithms
have to verify that there exists a pair of computable functions n(-) and m(-), satisfying the following conditions.

— Functionality preserved under puncturing: For every PPT adversary A such that A(1") outputs a set S C
{0, 137N, then for all x € {0,1}™N) where x € S, we have that:

Pr[F(K,z) = F(Ks,z): K + G(1*),Ks = P(K,S)] =1
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— Pseudorandomness at punctured points: We consider an experiment with a PPT adversary (A, D) in which A(1*)
outputs a set S C {0,1}N and a state o, and the challenger then generates a PRF key K < G(1*), punctures
it on the set S: Kg + P(K,S), and then sends o, S, Kg to the distinguisher D together with either the list of
evaluations F (K, x) of the PRF on the elements x of S (where the x’s are sorted in lexicographic order, say), or a
list of uniformly random strings of the same lengths as those evaluations. The goal of the adversary is to distinguish
those two cases, and pseudorandomness at punctured points says that the probability of success is negligible.

Obfuscation of programs is a powerful notion in cryptography, as it enables many attractive protocols [SW14].

As proved by Barak et al. [BGI™12], the ideal virtual black-box notion can not be achieved for all polynomial size
circuits (also it can in principle be achieved for a large class of specific circuits nonetheless). As a result, Barak et al. also
introduced weaker notions of obfuscation which do not suffer from the same impossibility result, including in particular
indistinguishability obfuscation (:O) which is defined as follows, and for which concrete candidates have been proposed
since then—we can in particular mention the seminal construction of Garg et al. [GGH™ 13] from multilinear maps.

Definition 15 (Indistinguishability obfuscation). A uniform PPT machine iO is called an indistinguishability obfus-
cation (iO) for a circuit class {C\}, if it verifies the two following properties:

1. Functionality Preserving: For all security parameters A € N, for all C € Cy, for all inputs x, we have that
Pr[C'(z) = C(z)|C" + iO(\,C)] =1

2. Indistinguishability of obfuscation: For any (not necessarily uniform) PPT distinguisher (Samp, D), there exists
a negligible function £(-) such that the following conditions holds: if for all security parameters A € N.

Pr [Vz.Co(z) = C1(2)|(Co, C1,T) Samp(l)‘)] >1—e(\)
then

| Pr [D(a, i0(7,Cy)) = 1| (Co,C1,7) Samp(lk)]
—Pr[D(0,iO(1,C1)) = 1| (Co, C1,7) Samp(lk)] | <e(N)

B Additional Primitives from UWS

B.1 Hierarchical Identity-Based Signatures

Hierarchical identity-based signatures (HIBS) were first introduced by Chow et al. [CHYCO04]. In that hierarchical
version of identity-based signatures, the Private Key Generators are organized as a tree structure. An identity of depth /,
is represented by an ¢-tuple id = (id, id1, . . .idy—1), and given the signing key SKjq associated with id, it is possible
to extract signing keys SKiq on all identities id" of the form id" = (idy, .. .,id;_1,id, ...) (i.e. such that id is a prefix
of id").

Definition 16 (HIBS). A hierarchical identity-based signature is a tuple of algorithms (Setup, Extract, Sign, Verify)
which verifies the following specifications:

- Setup(1*) — (PP, msk): Setup algorithm takes the security parameter X as input and it outputs public parameters
PP, and the master signing key msk, which is a signing key on the depth zero identity () (which is a prefix of all
identities).

- Extract(PP, SKiy, id, id") — SKiy': Given the secret key SKiq on identity id, and an identity id’ such that id is a
prefix of id', output a signing key SKig: on id’.

- Sign(PP, SKig,id, m) — o,,,- Takes a signing key corresponding to the identity id and a message m. Outputs a
signature o, of the message m.

- Verify(PP, o,,, m,id) — {True, False}: Takes the master verification key, a message m, and its signature o, as
input. It outputs True or False.

These algorithms need to verify also the following standard correctness property: if SK is a signing key for identity id
and o + Sign(SK,id, m), then we have Verify(PP, o, m,id) = True.
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HIBS from UWS. Consider an HIBS scheme with identity space Z and message space M. We can define an order
relation < on the disjoint union Z L (Z x M) as follows: id" < id if and only if id is a prefix of id"; (id’, m) < ID if
and only if id is a prefix of id’; and (id’,m’) < (id,m) if and only if m = m/ and id is a prefix of id’. Then the HIBS
scheme can easily be constructed from any universal witness signature scheme for the order relation < (note also that
since < is efficiently computable, witnesses can be omitted). The construction is as described in Figure 5.

Security of HIBS. Chow et al. [CHYCO04] give the following game to define the security of HIBS. That model captures
what they call existential unforgeability under selective identity, adaptive chosen-message-and-identity attacks.

The adversary A outputs an identity id" which will be used to challenge the security of the HIBS scheme.

The challenger C takes a security parameter A and computes the public parameters PP and the master signing key

msk, sending the public parameters PP to the adversary .4 and keeping the master signing key msk secret.

The adversary A can submit two types of queries:

Extract: in which A receives the signing key SKig on any identity id of his choosing

Sign: in which A chooses a message m and an identity id, and receives a valid signature o on message m under
identity id

Finally, A outputs a message m* and a signature o*, and he wins if and only if V(PP,o*, m*,id*) = True.

That security notion is clearly satisfied by our UWS-based construction of HIBS, provided that the UWS scheme
is adaptively secure (we in fact achieve the stronger notion of unforgeability under fully adaptive attacks). However,
starting from a selectively secure UWS scheme, we may not be able to satisfy the property above, since the UNS
definition of selective security would require the adversary to announce both the target identity and the target message
of her forgery from the start (since we are effectively forging on (id*, m*)).

B.2 Redactable Signatures

Redactable signatures are a type of homomorphic signature scheme originally defined by Johnson, Molnar, Song and
Wagner [JMSWO02], that allows to redact part of a signed message while preserving signature validity. They were
proposed as a way of guaranteeing the authenticity of documents published as part of public disclosure initiatives while
taking security and privacy concerns into account. They have also found uses in medical and legal settings.

Let us consider the alphabet X = {0, 1, #}. We define a partial order on X' with # <y 0 and # <x 1, no other
non-trivial order in the alphabet. Then this order can induce a partial order in the set 2* by point-wise comparison.
Which means g, z1, ..., Tn < Yo,Y1,---,Yn if Vi € {0,...,n}t.z; <5 y;.

Definition 17 (Redactable signature scheme). A redactable signature scheme is a tuple of algorithms (G,S,V, D)
with (PP, sk) <— G(1*) which verifies the following properties:

— S(PP, sk, m) outputs a signature o, on m € X*.

— D(PP, 0., m,m’) takes as input the public parameters, a signature o, on a message m, and another message
m' € X*, and returns a signature c,,» on m' provided that o, is valid and m' < m.

— The verification algorithm V is subject to the obvious correctness constraints (it accepts validly generated and
derived signatures).

Setup(1*): Sign(SKig, id, m):

return UWS. Setup(1*) return UWS. Delegate (PP, SKig, id, (id, m))
Extract(PP, SKig, id, id): Verify (PP, o, , m, id):

return UWS.Delegate (PP, SKig, id, id") return UWS.Verify(F‘P7 om, (id, m))

Fig. 5. HIBS from UWS.
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Redactable signatures from UWS. We will use our UWS scheme to construct the redactable signature scheme. Let
us consider a UWS scheme (Setup, Delegate) with respect to the order < on the set {*} U X*, where X* is ordered
as in the redactable signature scheme, and * is appended as the greatest element. Note that the order < is efficiently
computable, so that we do not actually need witnesses. We can construct a redactable signature scheme as descibed in
Figure 6.

Security of redactable signatures. A redactable signature is said to be secure (i.e. unforgeable) if an efficient adversary
allowed to make signature queries on arbitrary messages my, ..., m, € 2™ is not able to produce a valid signature on a
new mesage m* that does not satisfy m* < m; for any .

Our construction clearly satisfies that property, provided that the underlying UWS scheme is adaptively secure.

C Adaptive Security of the OWF-Based Construction

Theorem 6. If the signature scheme SiQ used in Section 4.1 is adaptively and existentially unforgeable then the
OWF-based UWS scheme based is also adaptively secure with our definition.

Proof. We will construct an attacker against the adaptively existential unforgeability of the underlying signature scheme
Asig by using an attacker against the existential unforgeability of the UWS scheme Ayws.

Suppose that we have an adversary Ayws which wins the existential unforgeable security game against the UWS
scheme with an advantage €. By definition, it can produce SK 4 which is a valid signature of A. Thus SK4 verifies the
following properties:

1. SKA = (SKA, [(VkA, A7 WA<id,, s O'va),
(VKid,, » iy, Wid,, <idy 1 Ovkia, )5 - - > (VKidy s 11, Wid, <5 Ovky ), (VKs, %, Wiz, 0vk,)])
2. For m ¢+ random(1*) and o,,, < Sig.Sign(m, sk ), Sig.Verify(vk 4, m, o,,,) outputs True
3. The identities verifies that A Swacia, o N Ak Sy o, k.
4. Each signature in the certificate verifies the following conditions:
- Sig.Verify(mvk, ||w.<«||VKs, ovk, ) — True

- Sig.Verify(vkidTH s ’I7,| ‘widngidnfl | |Vkid” s UVKmn ) — True
- Sig.Verify(vkiq, , Allwa<ia, ||IVKa, 0w, ) — True

Suppose that the number of requests of delegation is bounded by a fixed number ¢ and the adversary .4 can produce
SK,, = (Skin, ¢ ) corresponding to m where c¢,, is a certificate of the signature. For example, in the case of SK 4,
ca = [(VKa, A, wa<id,, Ovky ), - - -5 (VKi, %, Wi<k, 0wk, )]. We define 2 types of forgeries:

— Type 0 forgery: ¢, is a suffix of ¢, which is a certificate of m' revealed by the requests of the adversary A.
— Type 1 forgery: c,, is not a suffix of any ¢, which is a certificate of m’ revealed by the request of the adversary A.

Definition 18 (Valid certificate). c, is a valid certificate of x if and only if the adversary has required a signature of y
and ¢ is a suffix of ¢,. We note maxPref(c,) the longest suffix of c, which is a valid certificate for a certain identity’.

> This is uniquely defined since suffixes are totally ordered.

g V(PP, 0, m):

return UWS. Setup(1*) return UWS. Verify (PP, o', , m)

S(PP, sk, m): D(PP,opm,m,m’):

return UWS.Delegate (PP, sk, x, m) return UWS.Delegate (PP, o.,,, m, m”)

Fig. 6. Redactable signatures from UWS.
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To construct an adversary Ag; 4, we need simulate the delegation oracle Opelegate and the reveal oracle Ogeyeqr by the
functions in the underlying signature scheme.

Let us consider the associative list 7 initially empty. Let go» be the number of queries to the oracle O. We will proof
that the attacker Ayws with non-negligible advantage ¢ against its own security game can win the security game of

the underlying signature scheme with advantage ﬁ which is not negligible. We suppose that .Ayws outputs
Delegate

SKi = (8km, cm) as challenge text against the UWS scheme. We choose an integer i in {0, . . . , 20pgeqae } } @nd then
proceed as in the case ¢ described below:

Case 0: 1In this case, we guess that Ayws is a type 1 forgery and maxPref(c,,) is the empty suffix e. Firstly we
construct a simulator which simulates Opglegate and OReveal-

— Opelegate : We construct the delegation function just as it has been defined.
— OReveal : Outputs the corresponding value in the associative list.

During the procedure Setup, the simulator follows the same procedure except that for signing m.. = *||w.<.||VKs we
replace the signing algorithm Sig.Sign by the signing oracle Omsk using the master signing key msk.

Suppose that there exists an adversary .A which produces an attack text SK’ of type 0 forgery against the UNS oy
scheme. Let (m/, = (¥'||w’ ., |[VK.), 5w, ) be the last element of the certificate of SK'. We submit the message-
signature pair (m/, oy, ) as a challenge text for underlying signature scheme using the master signing key msk. As
(ml, 0y, ) is not a suffix of any c, revealed by the adversary (by the assumption of this case), so the probability of
Osign has evaluated on m/, is zero. Thus if our guess is correct, we can win the security game against the underlying
signature scheme with a non-negligible probability.

Case i (fori € {1,...,qOpqeme }): In these cases, we guess that Ayws is a type 1 forgery, and it outputs (SK4, A)
with SK4 = (ska, c4). In the case i we suppose that in the i-th query’s result SK,, we have ¢, = maxPref(ca).
Then we construct an adversary Ag;, for the underlying signature scheme.

— Opelegate : We follow the construction of the delegation function in the UWS scheme for the first 7 queries. Then
when we use the function Delegate(PP, SK, , z, y, w), we replace the signing procedure using sk, by the signing
oracle Ogy, until another different sk, corresponding to = have been generated.

— OReveal : Outputs the corresponding value in the associative list.

Let (m, 0,,) = ((vk,id,w), o.y,) be the element in ¢4 just after maxPref(c4). The existence of (m, 0., ) is assured by
the fact that maxPref(c4) # ca otherwise it is a type 0 forgery. Then we submit it as challenge text for the underlying
signature scheme with signing key sk,.. With a negligible probability Og, has signed the message m (even Ayws have
required to delegate from x to m, any valid signing key corresponding to the identities smaller than m can never be
revealed, otherwise it contradict with the assumption “c, = maxPref(c4)”, so we can simply ignore these requests),
but as SK 4 is a valid signature of A. o, is a valid signature of m w.r.t the signing key sk, which means if our guess is
correct then we have constructed an adversary Asjg who can win the security game against the underlying signature
scheme.

Case i (for i € {qOpgegae T 1y - - - > 2q0pgeque } ) IN these cases, we guess that Ayws is a type 0 forgery and it outputs
(SK4, A) with SK4 = (ska, ca, csk, ). In the case i, we suppose that in the (i — gop, e, )-th query’s result SK, we
have ¢, = c4. Then we construct an adversary Ag;, for the underlying signature scheme.

— Obelegate : We follow the construction of the delegation function in the UWS scheme for the first i — gopgegme — 1
queries. Then when we use the function Delegate(PP, SK,, =, y, w), we replace the signing procedure using sk,
by the signing oracle Ogy .

— OReveal : Outputs the corresponding value in the associative list.

Let m be a message randomly generated. We obtain the signature o, corresponding to the message m using sk,
obtained in the SK 4. As m is generated randomly, so the signing oracle O, only has a negligible probability to have
signed the message m. So with a non-negligible probability (m, o,,) is a valid challenge text for the security game
against the underlying signature scheme. Thus if our guess of this case is correct then we can construct an adversary
against the underlying signature scheme.
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Put all together: Finally as the 240, + 1 types of forgeries recover all the possibilities,® our adversary constructed
Asig can win at least one of them with advantage ¢, and the adversary choose randomly between the 2¢op,,q. + 1 cases,

then the advantage of Ag;g against the underlying signature scheme is at least ﬁ, which is still non-negligible
Delegate

if € is non-negligible. o

D Security Proof of the PCD-Based Construction

Suppose that there exists an adversary Apcp with non-negligible advantage against the PCD-based UWS scheme
described in Section 4.2. In the selective security game, the adversary first announces the identity id* that will be
targeted. Since as a hypothesis, there are only polynomially many identities, the set I = {id | Pid’.id < id' Aid* & id'}
also has polynomial size. We ask the Delegate . oracle to sign all identities in the set /, then we construct a simulator
for the UWSpcp oracles.

We construct the following simulator S

- Delegatepc, (PP, SK4, A, B,wp<a4): S verifies that SK4 is a valid signature. Then use the signatures of the
identities in I to generate a valid signature for the identity B. Then store it in an associative list’.
— Revealpcp (A): This algorithm follows the honest procedure of access to the associative list.

Together with the attacker Apcp, the simulator S can be considered as a prover which provides a valid PCD proof
(2ia», Tiq+ ). Then by the proof of knowledge property there exist a extractor F algorithm which can produce a valid
distributed computation transcript T' <— E(PP) verifing that out(T") = z;q~ and C(T') = True. From this transcript we
can construct a valid signature (SK; g+, ¢;q+ ) for éd* in the underlying signature scheme. This will be a valid attack for
the underlying signature scheme in the construction of UWS scheme.

Remind that actually our construction is also selective with the a pre-order without anti-symmetric property, because
in our construction, when we delegate to an identity whether there already exists a vertex with the same label, we will
always create a new vertex. Thus the distributed computation script corresponding to the pre-order is always acyclic.

E Construction from Virtual Black-Box Obfuscation

Obfuscations of programs is a very powerful cryptographic primitive, from which many attractive protocols can be
constructed [SW14].

For our construction, we remind that in previous sections we have constructed two different UWS. But these
constructions have not been proven completely context-hiding. In this section, we will use the Virtual Black-Box (VBB)
obfuscator to construct the first context-hiding UWS scheme.

Note that constructing a VBB obfuscator for all circuits is known to be impossible in the standard model, by a result
of Barak et al. [BGIT 12]. Nevertheless, this impossibility result doesn’t preclude VBB to be achievable for a given,
restricted class of circuits (which is the setting in which we use it here); moreover, some existing candidate obfuscators
have been shown to achieve VBB for all circuits in idealized models, such as the generic graded encoding model or the
weak multilinear map model. Therefore, we regard the use of VBB obfuscation to establish feasibility results in a clean
and easy way as quite reasonable: it yields concrete instantiations that are secure in idealized models, can also provide
useful insights towards extending these results to weaker forms of obfuscation (like indistinguishability obfuscation)
that do not suffer from the same theoretical limitations.

Definition 19 (Virtual Black-Box Obfuscator). A virtual black-box obfuscator O is a probabilistic algorithm verify-
ing the following three properties:

— Functionality: For every circuit C, the string O(C) describes a circuit that given any inputs outputs the same
result as C.
— Polynomial Slowdown: There exists a polynomial p such that |O(C)| < p(|C).

% Note that they are also all needed, to cover both type 0 and type 1 forgers.
7 Which may be implemented efficiently as a hash table.
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Fig.7. The P[msk] algorithm.

P[msk](mvk, SK4, A, B, w):
if Sig. Verify(mvk, A,SKa) A A >,, B thenreturn SKp = Sig.Sign(msk, B) else return SKg = L

— Virtual Black-Box: For any PPT adversary A, there exists a PPT algorithm S and a negligible function € such
that for all circuits C':

Pr[A(O(C)) = 1] = Pr [sC(ﬂC\) - 1} ( <e(lo)

We give our construction as follows. Let O be a VBB obfuscator and Sig = (Setup, Sign, Verify) a deterministic
existential unforgeable signature scheme. Assume that all identities and witnesses have at most polynomial size with
respect to the security parameter. Let us consider the following UWS scheme:

- Setup(1*):
e We generate a pair of signature keys (msk, mvk) « Sig.Setup(1*). Then compute the VBB obfuscation
P* = O(P[msk]) of the algorithm P[msk]
e The master signing key (signature of *) SK, is Sig.Sign(msk, ) and the public parameter is PP = (P, mvk).
- Delegate(PP,SK4, A, B,wp<a):
° Pb(ka7 SKy4, A, B, wBSA)
where P is described in Figure 7, in which msk is a constant. This algorithm is doing directly what we want to do,
it checks if SK 4 is a valid signature of the identity A.

Theorem 7. The VBB-based construction is correct, succinct and context-hiding.
Proof.

— Correctness Using the functionality of VBB obfuscation, we can see that the valid signature SK 4 is equal to
Sig.Sign(msk, A). Thusif B <,, Aand SKp = Delegate(PP, SK4, A, B, w) then wee have Sig.Verify(mvk, B, SKp)
outputs True, which means Verify(mvk, SKg, B) does not output L.

— Succinctness, context-hiding. A valid signature SK 4 equals to Sig.Sign(msk, A), then the signature is completely
independent from the delegation path, thus the UWS scheme is succinct and context-hiding.

O

The intuition for this construction’s security is based on the virtual-black box property of VBB obfuscation. A detailed
proof of security is given below.

E.1 Security Proof of the VBB-Based Construction

We simulate the two oracles Opelegate and OReveal, Which will be used by the adversary later on:

- Obelegate (PP, A, B,wp<4): If A = x or the value corresponding to the identity A in the associative list is T, then
itadd (B, T) to the associative list.
— OReveal(B): If the value corresponding to the identity B in the associative listis T, then it outputs Sig.Sign(msk, B).

We will present the security proof using hybrids:

— Hybrid 0: This hybrid is the real-world adaptive security game for the adversary .A. Denote the advantage of A by
Ad’UO

— Hybrid 1: In this hybrid, we replace PP = (mvk, P*) by PP = mvk. and consider the adversary S”("), which is
an adversary with the oracle access to the algorithm P. Denote the advantage of S” by Adwv;.
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Lemma 1. There exists a negligible function € such that with the security parameter \:
Advy < Advy +e(N).

Proof. By the virtual black-box property which is:
VA.3S. |Pr[A(O(Delegate)) = 1] — Pr [sDe'egate<-> (1'08'993‘9') = 1” < ¢(|Delegate])

We know that, Advg < Advy + e(N). O
Lemma 2. There exists a negligible function ¢ such that with the security parameter \:
Advy < g(N).

Proof. By the adaptive security of the signature scheme, there exists a negligible function £(-) such that all adversaries
A have at most €(\) advantage against the signature scheme.

And from the security game in the hybrid 1, we can see that we can simulate the oracle access to the delegation
algorithm by the access of the signing oracle. From a forgery (m, SK,,) of the UWS scheme, we submit it as a forgery
of the underlying signature scheme. In the security game, by the definition S* has never required to get a message-
signature pair (m’, SK,,+) such that m < m/. Thus (m, SK,,) is a valid forgery for the underlying signature scheme.
By the adaptive security of the signature scheme and the fact that S is a valid adversary, we have Adv; < e()\). O

Succinctness. The succinctness of the UWS scheme is clear from the construction. A valid signature of the message m
in the UWS scheme by the construction in equal to Sig.Sign(msk, m). Thus if the underlying signature scheme is
succinct. Then the UWS scheme constructed is succinct.

F Security of the Indistinguishability Obfuscation-Based Construction

F.1 Security Proof

We prove the selective security of the constructed signature scheme using the following hybrids.

Hybrid 0 : In this hybrid, we proceed exactly as in the initial selective security game of the UWS scheme.

1. Adversary chooses a message m.

2. Challenger uses the PRF’s generation algorithm G to get the key K for the PRF.

3. Challenger uses the obfuscator :O to get an indistinguishability obfuscation CheckSignb[K ] of the function
CheckSign[K] and sets it as a public parameter and keep the PRF’s key K secret.

4. Adversary can require the Challenger to apply polynomial times the function CheckSignb [K](SK4a, A, B,w) and
can only require the Challenger to reveal a secret key SK 4 of A if A < m.

5. Adversary returns a secret key corresponding to the message m.

We topologically sort all the identities e, . . . , e, greater or equal to m in non-increasing order. In particular, e, = m,
and the number / of such identities is polynomial by assumption.

We also initialize a list L to the empty list, and two associative lists 7, and H’, with key space L, also initially
empty. As we advance through the list of hybrids, the list L will be expanded to contain all identities e; up to a certain
index ¢, and the associative lists will contain bitstrings associated with those identities.

Forall i € {1,...,¢}, we define the following four hybrids.

Hybrid i : We add (e;,y; = F (K, e;)) to the associative list Hz, and (e;, z; = f(y;)) to the associative list 1., then

we include e; in the list L + L U {e;} and we puncture the PRF key K, at the point e; where Ky = K used in the
hybrid 0. We also modify the obfuscated circuit as Algorithm F.1:
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Algorithm F.1: CheckSign[K 1, H1|(SK4, A, B, w)
Result: SKp

1 if B € L then

2 if A== Band f(SKa) = H7,(A) then

3 ‘ outputs SKp := SK4

4 else if A >,, B and f(SK4) = H7(A) then

5 | outputs SKp := H(B)

6

7

8

9

else if A € L then
if A >, Band f(SKa) = H7(A) then
| outputs SKp := F(Kp, B)

else
10 if A== Band f(F(Kr,A)) = f(SK4) then
1 ‘ outputs SKp := SK4
12 elseif A >, Band f(F(Kpr,A)) = f(SKa) then
13 ‘ outputs SKp := F (K, B)
14 else
15 ‘ outputs L
16 end
17 end

Hybrid ¢’ :In this hybrid, we replace y; = H,(e;) by arandom y in the domain of f, and z; = H’, (e;) by zF = f(y}).
Hybrid i" : We replace y by an independent random element y;*, without modifying z}.
Hybrid i""" : We replace z} by an independent random element z}* in the codomain of f, without modifying y*.

Final hybrid : In the final hybrid which is after hybrid ¢/, we modify the obfuscated algorithm by Algorithm F.2.

Algorithm F.2: CheckSign|K 1, H1|(SK4, A, B, w)

Result: SKp
1 if A ¢ L then

2 if A== Band f(SKa) == f(F (K, A)) then

3 ‘ outputs SKp := SK4

4 elseif A >, B and f(SKa) == f(F (KL, A)) then
5 | outputs SKp := F(KL, B)

6 else

7 ‘ outputs L

s end

Proof. We begin the proof by noticing that in the final hybrid, there is no valid signature of m, so that the probability of
the adversary win the security game is 0. Moreover, in all hybrids, the challenger can simulate all valid Reveal queries
from the adversary, as he possesses the PRF key K punctured on the points L, and none of the identities of valid
Reveal queries belong to L.

Thus, to complete the proof, it suffices to show that the hybrids are indistinguishable.

Lemma 3. [f the adversary A can distinguish hybrid i and the one that precedes it, then A can break the indistin-
guishability property of the underlying indistinguishability obfuscator.
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Proof. The only difference between hybrid ¢ and the one that precedes it is the change of the circuit CheckSign to
be obfuscated; namely, the PRF key is punctured at e;, and evaluations of the PRF at that point are replaced by their
values (as program constants) prior to puncturing. As a result the circuits corresponding to both hybrids are functionally
equivalent, since each modified evaluation is replaced by its correct value in the previous program. It follows that if
A can distinguish between the two obfuscated programs, it breaks the indistinguishability property of the underlying
indistinguishability obfuscator.

Lemma 4. If the adversary A can distinguish hybrid i and hybrid i’ with non-negligible probability, then A can break
the pseudorandomness of the PRF at punctured points.

Proof. The only difference between the hybrid i and the hybrid 4’ is that we replace Hr,(e;) = F(K{e,,... e, .}, €i) by
a random value, and we only know K. . .1, by the pseudorandomness of the PRF at the punctured point e;, the
hybrids ¢ and 7’ are indistinguishable.

Lemma 5. If the adversary A can distinguish hybrid i’ and hybrid i" with non-negligible probability, then A can break
the indistinguishability of the underlying indistinguishability obfuscator.

Proof. (of Lemma 5) The only points at which the two circuits differ are of the form (SK.,, e;, e;, w), where e; >, €;
and in particular j < i and f(SK.,) = z7*. In particular, 27* must belong to the image of f, which happens with
negligible probability since f is length-doubling and z7* is a random element in the codomain. Thus, with overwhelming
probability, the circuits are functionally equivalent. Thus any adversary which can distinguish these two hybrid can

break the indistinguishability of the underlying indistinguishability obfuscator.

Lemma 6. If the adversary A can distinguish hybrid i"" and hybrid i"' with non-negligible probability, then A can
break the pseudorandomness of the underlying PRG f.

Proof. The only thing changed between hybrid i" and hybrid ", is that we change the output of the PRG by a random
value in the codomain, if an adversary A can distinguish these two hybrids, then A breaks also the pseudorandomness
of the underlying PRG function.

Lemma 7. If the adversary A can distinguish the penultimate hybrid {""' and and the final hybrid with non-negligible
probability, then A can break the indistinguishability of the underlying indistinguishability obfuscator.

Proof. This proof is very similar to the proof of Lemma 5. The only points at which the two circuits differ are of the
form (SK.,, e;, e, w), where e; € L and in particular j < £and f(SK.,) = z7*. This means z;* must be an image of f,
but since f is length-doubling and 27* is a random element in the codomain by the modification of the previous hybrids,
which can only happen with negligible probability. Thus the two circuits are functionally equivalent with overwhelming
probability, and as a result, if the adversary A can distinguish the two hybrids, it can break the indistinguishability of
the underlying indistinguishability obfuscator.

F.2 Context-Hiding Property and Succinctness

Apart from the very basic notion of unforgeability, there are many other properties which are interesting such as
context-hiding and succinctness. We will show that our construction verifies such properties.
Remind that the value of the signing key SK 4 for the identity A is equal to F(K, A).

Context-hiding. As defined in the preliminary, no adversary can distinguish between SKj; and SK% which were
generated respectively by Delegate(PP, SK4,, A1, B, w;) and Delegate(PP,SK 4,, Az, B, w,), because SKj; =

SKQB. Actually they have exactly the same value.

Succinctness. As we mentioned before, a valid signature SK 4 for an identity A is equal to 7 (K, A). So the length of
the signature is bounded by the length of messages in the PRF’s range.
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