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Professur für Strömungsmechanik, Helmut-Schmidt-Universität Hamburg, D-22043 Hamburg, Germany

Abstract

The quality of eddy-resolving turbulence simulations strongly depends on appropriate inflow
conditions. In most cases they have to be time-dependent and satisfy certain conditions for
the first (mean velocities) and second-order moments (Reynolds stresses) as well as concerning
suitable length scales. To mimic a physically realistic incoming flow, synthetically generated
turbulent velocity fluctuations superimposed on the mean velocity field are a valuable solution.
However, the resolution of the grid near the inlet has to be sufficiently fine to avoid excessive
damping of the turbulence intensity. In order to circumvent this problem, the injection of
synthetically generated inflow data not at the inlet itself but inside the flow domain near the
area of interest, where the grid is typically much finer, is an elegant loophole. In the present
study two different injection techniques based on a source term formulation are analyzed and
evaluated. In addition to these techniques the injected data are weighted by a Gaussian
distribution defining the influence area. In the recent work the definition of the influence
area is enhanced compared to the initial version of Schmidt and Breuer (2017) extending the
application range. The case of a rather small influence area in comparison with the grid cell
size is now tackled which is often relevant for industrial applications.
The flow past a wall-mounted hemisphere is chosen as test case. The bluff body is exposed
to a thick turbulent boundary layer at Re = 50,000. The generation of the turbulent velocity
fluctuations in the present investigation relies on the digital filter concept, but the injection
techniques evaluated are not restricted to this inflow generator. The synthetic turbulent ve-
locity fluctuations are injected about one diameter upstream of the hemisphere. Wall-resolved
large-eddy simulations are carried out for two grid resolutions and the corresponding results
are analyzed and compared with the reference measurements by Wood et al. (2016). Finally,
one injection technique is found to be clearly superior to the other, since it guarantees the
correct level of the velocity fluctuations and the reproduction of the autocorrelations.

Keywords: artificially generated turbulence, inflow generator, injection method, source term
formulation, large-eddy simulation (LES), flow past hemisphere

1. Introduction

Large-eddy simulations and other eddy-resolving methods for the prediction of turbulent flows
nowadays become essential for industrially relevant applications. Especially, LES has shown
to provide a good compromise between attainable accuracy and computational effort required.
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However, eddy-resolving methods are known to be more sensitive to the formulation of appro-
priate boundary conditions than approaches relying on the Reynolds-averaged Navier-Stokes
equations [1, 4, 6]. That comprises all boundaries including rigid walls, outflows and especially
inflow boundaries. Similar to the outlet the inflow boundary typically represents an artificial
cut through the flow field. Consequently, LES predictions require appropriate inflow data of
Dirichlet type, which adequately represent the physical flow field. For the prediction of laminar
flows the specification of a steady velocity (or pressure) field at the inlet is sufficient in most
cases. For turbulent flow predictions based on the Reynolds-averaged Navier-Stokes equations
using for example two-equation closure models, additional specifications for the turbulence
intensity and the length scales of the energy carrying vortices are sufficient.
For LES resolving partially the spectrum of turbulent length scales in the flow, appropriate
boundary conditions which mimic the unsteady vortical flow at the inlet are essential [4, 25, 31].
These have to be physically meaningful instantaneous data for the entire inflow plane satisfying
characteristic autocorrelations and cross-correlations of the velocity components among each
other. Since the inflow boundary conditions can have a strong influence not only in the
vicinity of the inlet but also on the entire flow development, the specification has to be done
with reasonable care. For spatially developing flows examples can be found for DNS in e.g.
[14, 16] and for LES in e.g. [25, 31], where in principle no differences exist between LES and
DNS concerning the challenge of appropriate inflow boundary conditions.
Besides the application of periodic boundary conditions with or without rescaling techniques
or the re-usage of data from auxiliary simulations, synthetically generated inflow data are a
meaningful method to solve this problem. Tabor and Baba-Ahmadi [30], Fröhlich and von
Terzi [9] or Sagaut et al. [20] published complete overviews of the different methods used to
generate turbulent inflow data and the reader is referred to these references for more detail.
Weighing all pros and cons, Schmidt and Breuer [25] choose the digital filter method of Klein et
al. [14] as the basis for their extended synthetic turbulence inflow generator (STIG) for hybrid
LES-URANS applications. This method allows to generate inflow data with low computational
effort only necessitating time-averaged velocities, Reynolds stresses and three integral length
scales. These required data can be easily provided by experiments or direct numerical simu-
lations, making the digital filter method of Klein et al. [14] popular. Schmidt and Breuer [25]
evaluated the digital filter method with success based on two classical wall-bounded internal
flows. i.e., the plane channel flow [17] and the flow over periodic hills [7].
During the application of the synthetic turbulence inflow generator to more challenging test
cases, a critical issue was noticed, which is general and not restricted to the digital filter
method. At or close to the inflow region the grids generated for the prediction of external
flows around obstacles such as airfoils often possess a relatively coarse resolution resulting
from the grid stretching from the obstacle towards the outer boundaries. Consequently, a LES
prediction can not resolve the small flow structures in this region leading to a strong damping
effect of the synthetic turbulent inflow fluctuations. A solution to this problem is to inject
the fluctuations closer to the region of interest, where the grid is fine enough. Schmidt and
Breuer [27] suggested a first injection method (denoted STIG–D in the present work): The
artificial turbulence is superimposed to the fluid flow at a plane inside the domain based on
a source-term formulation relying on a temporal derivative. The technique is also combined
with a Gaussian bell-shape distribution of the source term in space in order to mimic a 3D
influence area and to augment the propagation of the synthetic fluctuations in streamwise
direction. The procedure was evaluated based on the flow past a SD7003 airfoil at Re =
60,000. In this application the integral length scale in streamwise direction is much larger
than the cell size at the injection area. Thus, the width of the Gaussian function can be set
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according to this integral scale. The STIG–D method was also applied in the LES prediction
of the flow around a wall-mounted hemisphere by Wood et al. [31]. Here the integral length
scale in streamwise direction was found to be smaller than the grid resolution. Hence, in order
to artificially correct the turbulent inflow conditions, the width of the Gaussian distribution
was ad-hoc adjusted to a value deviating from the streamwise integral length scale. For this
purpose, several LES predictions were required which results in additional high computational
costs. A second problem related to the STIG–D injection method was found by Schmidt and
Breuer [26], i.e., it does not preserve the autocorrelations of the fluid flow.
In order to avoid the deviations of the autocorrelations, an enhanced injection method (denoted
STIG–R in the present work) was developed based on a source term formulation which relies
on a relaxation method. The spatial Gaussian distribution is used again to form the three-
dimensional influence area. Schmidt and Breuer [26] validated this new injection technique
based on the airfoil flow using a grid which is relatively fine compared to the integral length
scale at the injection region. Since that is not the case for all applications, the injection
technique has to be extended to support a large range of the integral length scales for a given
grid resolution without empirical adjustments. That is the central objective of the present
work including a thorough evaluation of the extended method based on the wall-mounted
hemisphere flow [31].

2. Injection method for synthetic turbulence within the domain

As discussed above the application of appropriate temporally and spatially correlated velocity
distributions as inlet boundary conditions is essential to predict realistic flow fields. For this
purpose, the digital filter concept of Klein et al. [14] is applied as a synthetic turbulence inflow
generator (STIG) in the present study. It provides instantaneous three-dimensional velocities
relying solely on the definition of one integral time scale T , two integral length scales1 (e.g.,
Ly and Lz) and the distributions of the mean velocity and Reynolds stresses.

2.1. Length scales, integral length scales and turbulent structures of the synthetic turbulence

The integral time scale T as well as the integral length scale Λ rely per definition either on
the autocorrelation or the two-point correlations in the two directions within the inflow plane,
respectively [25]. In the digital filter concept of Klein et al. [14], the autocorrelation function
Ruu is described by a Gaussian bell shape assuming homogeneous turbulence in a late stage.
This special shape implies that the length scale L used in the definition of Ruu is equal to the
integral length scale Λ of the problem:

Λ =

∫ ∞

0

Ruu(r) dr =

∫ ∞

0

exp

(
−π r

2

4L2

)
dr =

√
π
π

4L2

/ 2 = L . (1)

The integral length scale is related to the size of the turbulent structures, but not equal to
its extension. The largest turbulent structure, also called macrostructure, is approximately
delimited by the two-point correlations tending towards zero. Therefore, the largest structure
is always larger than the value of the integral length scale for each direction. The method of
Klein et al. [14] is based on digital filters. Thus, all the generated structures have a size of
the same order of magnitude. In Klein et al. [14], the half filter width W/2 is set to twice the

1Note that in the present study equal length scales are assumed in the different directions, i.e., Ly = Lz = L.
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integral length scale L. Therefore, the size of the largest turbulent structure present in the
synthetic data is about four times the integral length scale L.
In order to take these synthetically generated turbulent structures in the simulation into ac-
count, the grid resolution has to be adjusted accordingly. If the cell size is larger than these
structures, they can not be resolved.

2.2. Source term formulation

At the inflow region the grid has typically a coarse resolution resulting from the grid stretching
from the inner to the outer domain. Thus, small flow structures can not be resolved. Combined
with hardly avoidable damping effects of the numerical scheme on coarse grids, the synthet-
ically generated turbulence is typically hindered to reach the region of interest. In order to
circumvent this problem, a shift towards finer resolved areas within the computational domain
is meaningful. This methodology requires the injection of the artificial turbulence as a source
term inside the domain. In general, the idea to use a source term formulation for this purpose
is not new and has been used before by others, e.g., [12, 29].
To formulate a source term injection method, Schmidt and Breuer [26] considered at first the
integral form of a general momentum conservation equation for a general quantity φ (φ =̂
u, v, andw) as used in the finite-volume scheme:

∫

V

∂ (ρφ)

∂t
dV +

∫

S

(
ρujφ − Γφ

∂φ

∂xj

)
· nj dS = Sφ . (2)

Γφ represents the diffusion coefficient and Sφ the source terms not depending on the STIG. V
is the volume of the cell and S its surface. t denotes the physical time. In order to inject the
artificial turbulence generated by the STIG, a supplementary source term Ssyn

φ is added. As a
consequence, the flow field is altered and denoted φ∗. Assuming that the usual source term Sφ,
the convective and diffusive fluxes are not immediately influenced, Equation (2) now reads:

∫

V

∂ (ρφ∗)

∂t
dV +

∫

S

(
ρujφ − Γφ

∂φ

∂xj

)
· nj dS = Sφ + Ssyn

φ . (3)

The formulation of the STIG source term is obtained by subtracting Eq. (2) from Eq. (3):

Ssyn
φ =

∫

V

∂ (ρφ∗)

∂t
dV −

∫

V

∂ (ρφ)

∂t
dV =

∫

V

∂ (ρφ′)

∂t
dV , (4)

where φ′ is the difference between the altered and the original quantity and describes the
velocity fluctuations.
In the first source-term method, denoted STIG–D, Schmidt and Breuer [26] set the fluctuation
value φ′ to the synthetically generated fluctuation value (φ′)syn, which leads to:

φ∗ = φ+ (φ′)syn . (5)

Therefore, the STIG–D source-term results in:

Ssyn
φ

∣∣
STIG−D =

∫

V

∂ (ρ(φ′)syn)

∂t
dV . (6)

The STIG–D source term is directly based on the temporal derivative (STIG–D: D for deriva-
tive) of (φ′)syn. The first derivative in time is approximated by a backward differencing scheme:

Ssyn
φ

∣∣
STIG−D ≈

∫

V

ρ
(φ′)syn

t+∆t − (φ′)syn
t

∆t
dV . (7)
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Applying the STIG–D source term for a simulation of a channel flow, a thorough analysis of
the autocorrelations [26] showed significant deviations from the theoretical autocorrelations
defined by the predefined scales. By analyzing the STIG–D method, it was found that the
starting assumption φ∗ = φ + (φ′)syn is responsible for these observations. It means that the
injected perturbation (φ′)syn is assumed to immediately modify the variable φ to the altered
value φ∗. In reality an injected perturbation influences the variable with a certain delay given
by the relaxation time. Therefore, in order to ensure the correct physical representation of
the autocorrelations, Schmidt and Breuer searched for an enhanced formulation of Ssyn

φ . They
assumed that the previously mentioned relaxation time is related to the integral time scale T
(STIG–R: R for relaxation). This leads to the starting assumption for the enhanced source-
term method STIG–R:

φ∗ = φ+
∆t

T
(φ′)syn . (8)

By substituting φ∗ in Eq. (4) the STIG–R source term is expressed as:

Ssyn
φ

∣∣
STIG−R =

∫

V

∂ (ρφ∗)

∂t
dV −

∫

V

∂ (ρφ)

∂t
dV

=

∫

V

∂
(
ρφ+ ρ∆t

T
(φ′)syn

)

∂t
dV −

∫

V

∂ (ρφ)

∂t
dV

=

∫

V

ρ
∆t

T

∂ ((φ′)syn)

∂t
dV .

As for STIG–D the first derivative in time is approximated by a backward differencing scheme.
However, contrary to STIG–D, a second assumption is made [26]: For STIG–R the flow at
the time step t has the correct autocorrelation and is undisturbed. It means that φ∗t = φt or
(φ′)syn

t = 0. Thus, it follows:

Ssyn
φ

∣∣
STIG−R ≈

∫

V

ρ
∆t

T

(φ′)syn
t+∆t − (φ′)syn

t

∆t
dV

≈
∫

V

ρ
(φ′)syn

t+∆t

T
dV .

To summarize, instead of using the temporal derivative of the synthetic velocity fluctuations as
done in STIG–D, in STIG–R the synthetic velocity fluctuations at the computed time step are
now directly scaled by the inverse of the integral time scale T . This characteristic time scale
can be physically interpreted as a relaxation time describing a certain time interval required
by the system to react to the introduced velocity fluctuations. It is important to stress that
the relaxation time is not chosen arbitrarily but given by the integral time scale T . Thus,
this source term formulation does not demand any additional empirical parameter. Instead,
the required parameter is directly coupled to the synthetic inflow generator. Note that the
choice of the required integral time scale T as well as the integral length scale L is explained
in Section 3.2. With regard to the synthetic turbulence inflow generator L and T describe the
size of the characteristic scales found in the generated inflow data. The revised method was
shown to guarantee the correct distribution of the autocorrelations [26].

2.3. Assurance of an adequate influence area

The synthetic turbulence data are generated by the STIG in a 2D plane. This is suited for
the case when the data are applied at the inflow. However, in order to inject the data in a 3D
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domain guaranteeing the correct integral length scale in the streamwise direction, an additional
treatment based on a Gaussian bell-shape weighting is applied. The Gaussian distribution is
chosen since it fits to the definition of the filter coefficients by Klein et al. [14]. It forms a 3D
influence area with the dimension Linf equal to twice the integral length scale L (in the main
flow direction). Two scenarios exist:

• The first is sketched in Fig. 1. The grid is fine in comparison to 2L. In other words,
several control volumes (at least three) exist in the influence area defined by Linf = 2L.
In this case the source terms are weighted in the vicinity of the injection plane according
to:

SCFD
φ (xi) = Ssyn

φ exp

(
−π

2

(∆di)
2

L2

)
, (9)

where ∆di is defined as the distance in the i-direction between the origin of the influence
area (injection plane) and the current position xi.

1Influence area

Linf

xi

L

Flow

∆di

Injection plane

Gaussian bell-shape

Figure 1: First case: Fine grid resolution in comparison to Linf = 2L: Application of a Gaussian bell-shape
distribution of the source term to mimic a 3D influence area.

• The second case is sketched in Fig. 2. Here, the influence area Linf = 2L is smaller
than the distance between the cell centers of the two neighboring control volumes (i.e.,
Linf < 2∆d0). In this case the effect of the Gaussian bell-shape source term distribution
can solely be applied on this central cell. For this purpose, a correction factor based on
L and ∆d0 is required. In order to evaluate the global effect of the Gaussian bell-shape
weighting, it is integrated over the entire influence area:

∫ L

−L
exp

(
−π

2

(x
L

)2
)
dx =

√
2 erf

(√
π

2

)
L. (10)

Thus, in this case the source term solely applied at the injection plane has to be scaled
to fit the cell size ∆d0 as follows:

SCFD
φ (xi) = Ssyn

φ

√
2 erf

(√
π

2

)
L

∆d0

≈ Ssyn
φ 1.3063

L

∆d0

. (11)
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1

L

Linf

Flow

Gaussian bell-shape

Influence area

∆d0/2

Injection plane

Figure 2: Second case: Coarse grid resolution in comparison to Linf = 2L: Application of a data scaling.

2.4. Validation of the method

As mentioned above the initial source-term method STIG–D was evaluated based on the flow
around an airfoil [26] and based on the flow around a hemispherical obstacle [31]. In the latter
the integral length scale in streamwise direction required for the STIG is smaller than the cell
size. Since that was found to lead to a strong decrease of the imposed velocity fluctuations, the
Gaussian weighting function according to Eq. (9) was empirically adjusted to assure the correct
turbulence intensity at the injection plane. That is an obvious drawback of STIG–D. The
second critical issue found by Schmidt and Breuer [26] was that STIG–D does not guarantee
correct autocorrelations. That was solved by the development of the enhanced source-term
injection method STIG–R. Based on the flow around the airfoil they successfully validated the
enhanced method and showed that it is superior to STIG–D. In their test case the integral
length scale in streamwise direction was much larger than the cell size. Consequently, the 3D
influence area is defined according to the first scenario in Section 2.3.
In order to finalize the validation of the method, the enhanced STIG–R method combined with
the 3D influence area presented in Section 2.3 for a coarse grid resolution in comparison to
Linf (second scenario) has to be thoroughly studied. That is the objective of the present work,
which relies again on the hemisphere flow.

3. Description of the test case

In environmental and civil engineering surface-mounted hemispherical bluff bodies are com-
monly used as architectural design elements (see Fig. 3). Although the hemisphere represents
a simple geometry, it exhibits a rather complicated flow field including complex flow patterns.
They can be roughly classified into an upstream horseshoe vortex system and a recirculation
area with trailing vortices in the wake region. If these bluff bodies are exposed to turbulent
boundary layers, the complexity of the flow field increases significantly. Therefore, Wood et
al. [31] conducted complementary experimental and numerical investigations of the turbulent
flow around a wall-mounted hemispherical obstacle relying on the STIG–D procedure with the
rather crude ad-hoc modifications mentioned above. The experimental reference data available
on the ERCOFTAC Knowledge Base Wiki in the category ’Semi-confined Flows’ accessible as
case 3-33 under http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_3-33 are used for
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the evaluation of the new simulations based on STIG–R and STIG–D combined with the ad-
equate 3D influence area. It has to be noted that the STIG–D results below differ from the
STIG–D data published in [31]. In the current work the width of the 3D influence area Linf is
set to twice the integral length scale L (following scenario 2 of Section 2.3), whereas in [31] it
was empirically adjusted to give the correct turbulence level after the injection plane.

(a) Ericsson Globe in Stockholm (by Tage Olsin). (b) San Giovanni degli Eremiti in Palermo (by Madlen
Jahncke).

Figure 3: Examples of hemispherical domes in civil engineering.

3.1. Geometry and physical properties

The investigated hemispherical body (diameter D) is mounted on an uniform smooth wall
as depicted in Fig. 4. The structure is put into a thick turbulent boundary layer, where the
distribution of the time-averaged velocity in main flow direction closely follows the 1/7 power
law. At a distance of 1.5 diameters upstream of the bluff body the thickness of the boundary
layer δ corresponds to the height of the hemisphere (δ = D/2). The characteristics of the
boundary layer were determined based on laser-Doppler anemometry (LDA) and constant-
temperature anemometry (CTA) in a wind tunnel with an open test section [31]. As visible in
Fig. 5 besides the mean velocity all relevant Reynolds stresses were determined as a function
of the wall distance. These data are the basis for the generation of the inflow data for the
present predictions. The Reynolds number of the air flow (ρ = ρair = 1.225 kg/m3, µair =
18.27 × 10−6 kg/(m s) at ϑ = 20◦ C) is set to Re = ρairDU∞ / µair = 50,000. U∞ is the
undisturbed free-stream mean velocity in x-direction at standard atmospheric conditions. The
Mach number is low (Ma ≤ 0.03). The air flow can be assumed to be incompressible and
isotherm.
The results will be given in dimensionless form based on D, U∞ and ρair. The origin of the
frame of reference is taken at the center of the base area of the hemisphere, where x denotes
the streamwise, y the spanwise and z the vertical (wall-normal) direction.

3.2. Numerical methodology and setup

To predict the turbulent flow based on the large-eddy simulation technique, an enhanced version
of the 3D finite-volume fluid solver FASTEST-3D is used [5]. The discretization is based
on a curvilinear, block-structured body-fitted grid with a colocated variable arrangement.
The technique of flux blending [8] is applied for the spatial discretization of the convective
fluxes to stabilize the simulation (solely 5% first-order accurate upwind scheme combined
with 95% second-order accurate central scheme as in [31]). The temporal discretization is of
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Figure 4: Surface-mounted hemisphere within a turbulent boundary layer [31].

second-order accuracy relying on a classical predictor-corrector scheme. The solver is efficiently
parallelized based on the domain decomposition technique relying on non-blocking Message-
Passing-Interface (MPI) communications [23].
Since LES is used, the large scales of the turbulent flow field are resolved directly, whereas
the non-resolvable small scales have to be taken into account by a subgrid-scale (SGS) model.
Owing to the moderate Reynolds number considered and the fine grid applied, the SGS model
is expected to have a limited influence on the results. A preliminary study on the effect of
the SGS model [31] for the classical Smagorinsky [28] combined with the Van-Driest damping
function, the dynamic Smagorinsky [11] and the WALE model [18] demonstrated that the
Smagorinsky model is appropriate for this case. Thus, it is used here applying the standard
parameter Cs = 0.1 and Van-Driest damping.
To simulate the flow using a block-structured mesh, the chosen computational domain is a large
hemispherical expansion (radius 10D) with its origin at the center of the hemisphere. The final
high-quality grid contains 30.72 × 106 control volumes (CVs) and is denoted reference grid.
The maxima of the time-averaged z+ values (wall-normal direction) on the wall are below 0.25.
The aspect ratio of the cells on the hemispherical body are low. This yields a dimensionless
cell size in the two tangential directions below 29, which fits to the classical recommendation
for a wall-resolved LES by Piomelli and Chasnov [19]. For this fine grid a small time step
of ∆t∗ = ∆t U∞ /D = 3.084 × 10−5 is required ensuring a CFL-number below unity. To
investigate the effect of the grid resolution, the grid is coarsened leading to a medium grid
composed of 4.3× 106 CVs. Similar to the reference grid the viscous sublayer is fully resolved
and the first cell center is approximately located at a distance of ∆z/D ≈ 5× 10−5 from the
wall. The aspect ratio of the cells on the hemispherical body remains nearly the same as
on the fine grid and thus is in the range between 1 and 10. The geometric stretching ratios
are slightly increased compared to the reference grid but kept below 1.1. Based on these
parameters the dimensionless cell sizes in the wall-normal and tangential directions still fit to
the recommendations [19] for wall-resolved LES. Due to the grid coarsening the LES time step
can be increased to ∆t∗ = ∆t U∞ /D = 1.028 × 10−4.
Since the predictions on both grids are a wall-resolved LES, the bottom of the domain and the
surface of the hemisphere are no-slip walls. The outer surface of the hemispherical expansion is
divided into an inlet and outlet patches. At the outlet a combination of a convective boundary
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Figure 5: Inflow properties of the turbulent boundary layer at the inlet of the test section (x/D = −1.5).

condition and a zero velocity gradient boundary is applied. The latter is used in those regions
not strongly influenced by vortical flow structures. The convective velocity is set according to
the 1/7 power law. For further details about the boundary conditions, please refer to Wood et
al. [31].
For the generation of the synthetic inflow data the time-averaged velocities and Reynolds
stresses measured in the experiment (see Fig. 5) are taken. Since it was not possible to
determine all Reynolds stress components in the direct vicinity of the wall, these measurements
have been complemented by DNS data of Schlatter et al. [24]. Furthermore, the open question
remains, how to set appropriate time and length scales. Although these quantities typically
vary in a turbulent boundary layer as a function of the wall distance, the digital filter concept
of Klein et al. [14] solely allows to define a constant value within the entire boundary layer.
Thus, a reasonable compromise is required. In the present case, only the turbulent structures
injected at z/D < 0.5 (z+ < 1140) will impact on the bluff body and therefore will mainly
drive the flow around the hemisphere. Moreover, looking at the distribution of the turbulence
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intensity (see Fig. 5(c)), the most intensive structures will be at z/D . 0.3 (z+ . 680). The
dominant structures present in a turbulent boundary layer are the streaks and the hairpin
vortices. Since the streaks are confined near the wall (between 5 < z+ < 50 in the buffer
layer), it was decided in Wood et al. [31] to generate synthetic turbulent structures of the size
of typical hairpin vortices. The hairpin structures have a characteristic streamwise dimension
of ∆x+ = 200 [3] or 300 [15] near the wall and of ∆x+ = 140 in the logarithmic region, a
spanwise extension of about ∆y+ = 100 [2] and a height between ∆z+ = 200 and 400 [2].
Owing to the different length scales a reasonable compromise has to be found. Using the
classical length scale specification for the log-law region L = κ z applied in the mixing length
concept by Prandtl, the integral length scale in wall-normal direction is computed at z+ = 100
with κ = 0.41. It leads to L/D = 2.06 × 10−2. This value is also applied for the spanwise and
streamwise integral length scale producing synthetic turbulent structures with a dimensionless
size of about ∆x+ = ∆y+ = ∆z+ = 4Lρuτ/µ ≈ 185 in each direction (see Section 2.1). This
is a good compromise between the size of the hairpin structures in streamwise, spanwise and
wall-normal direction. The dimensionless integral time scale is deduced with the help of the
Taylor hypothesis and set to T U∞/D = LU∞/(Du(z+ = 100)) = 2.79 × 10−2.
Moreover, the size of these macrostructures are larger than or equal to the cell size of the
reference (∆x+ = 75) and medium grids (∆x+ = 180), respectively. As already mentioned in
Section 2.1, a too small value of the integral length scale leads to small structures which can
not be resolved. Therefore, a compromise has to be found between the integral length scale
and the grid resolution.
For both STIG–D and STIG–R methods, the 3D influence area is defined by one of the two
Gaussian distributions described in Section 2.3. In the present setup the integral length scale in
streamwise direction L is rather small. Even on the reference grid Linf = 2L is slightly shorter
than twice the cell size of the injection plane. Therefore, the source term has to be scaled
according to the second scenario given by Eq. (11). In the present case Linf/D = 4.12× 10−2,
whereas ∆d0/D = 3.33×10−2 and 8.0×10−2 for the reference and the medium grid, respectively.
It leads to SCFD

φ (xi) ≈ 0.81Ssyn
φ for the reference grid and to SCFD

φ (xi) ≈ 0.33Ssyn
φ for the

medium grid.
For both methods the synthetically generated data are limited to 480,000 time steps (cor-
responding to about 15 dimensionless time units), so that the same inflow data have to be
reused several times during the whole simulation. In order to store the entire time series about
160 GBytes are for example required for the reference grid. The values are reasonable since
only two-dimensional planes of the inflow data have to be stored. Furthermore, compared to
the main LES predictions the CPU-time requirements for the generation of the inflow data are
marginal (only about 0.33% for the reference grid). This is due to the fact that the original
formulation of Klein et al. [14] was replaced by the much more efficient procedure suggested
by Kempf et al. [13] surrogating the cubic dependence of the computational effort from the
support of the filter by a linear relation.

4. Results and discussion

The unsteady flow patterns past a hemisphere can be classified into several regions. These
regions are named based on the terminology used by Savory and Toy in their experiments
investigating the effect of different turbulent boundary layers approaching a wall-mounted
hemisphere [21, 22]. Figure 6 exemplarily highlights these regions based on the instantaneous
pressure distribution and vorticity magnitude in the symmetry plane at an arbitrarily chosen
instant in time. The hemispherical bluff body acts as an obstacle which leads to a positive
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pressure gradient in front of the hemisphere so that the boundary layer separates from the
ground forming the horseshoe vortex system (1). Upstream of the hemisphere this horseshoe
vortex system dominates. The stagnation area on the surface of the hemisphere is located at
about 15 degrees above the ground plate (2). The flow is accelerated along the contour of the
hemisphere (3). At about the apex of the hemisphere the flow detaches (4). As a consequence
of the flow separation a shear layer (5) and a recirculation area appear. The latter is separated
from the outer field by a dividing streamline. Strong shear layer vorticity can be observed
leading to the generation of Kelvin-Helmholtz vortices (6) which travel downstream in the
flow field. In the reattachment region (7) the flow impinges on the wall and a splatting
effect occurs, redistributing momentum from the wall-normal direction to the streamwise and
spanwise directions.

Figure 6: Snapshot of the instantaneous flow in the symmetry plane of the hemisphere: Visualization of flow
regions and characteristic flow features: (1) horseshoe vortex system, (2) stagnation point, (3) acceleration of
the flow, (4) separation point, (5) dividing streamline, (6) shear layer vorticity, (7) reattachment point. (Top:
Pressure; Bottom: Vorticity magnitude).

4.1. Evaluation of the two injection techniques STIG–D and STIG–R

To evaluate the performance of the STIG–D and STIG–R methods described in Section 2,
two wall-resolved LES are carried out on the reference grid. In Section 4.2 this analysis is
complemented by an investigation on the influence of the grid resolution. The numerical
results are time-averaged and compared with the experimental LDA data [31]. The LDA
measurements are averaged over a long time period of about 1370 dimensionless time units
(based on U∞ and D), whereas the LES results (on the reference grid) are averaged over a
shorter period of approximately 150 dimensionless time units. Relying on the investigations of
Garćıa-Villalba et al. [10] this is sufficient for converged statistics of the first and second-order
moments.
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4.1.1. Time-averaged results in the symmetry x-z-plane

The present study focuses on the detailed analysis of the time-averaged velocity field and
the associated time-averaged Reynolds stresses in the symmetry plane (see Figs. 7, 8 and 9)
combined with time-averaged wall-streamlines depicted in Fig. 10. This approach permits to
clearly identify the previously mentioned characteristic flow regions named according to the
investigations of Savory and Toy [21, 22]. Please note that the size and location of these regions
in the present results can not be directly compared with those of Savory and Toy, since the
inflow conditions (Reynolds number, turbulence intensity and height of the boundary layer)
significantly differ. Thus, only the terminology is relevant here.
Figure 7 presents the comparison of the time-averaged first-order moments obtained by the
LDA measurements2 and the LES predictions with either the injection method STIG–D or
STIG–R for the inflow turbulence within the computational domain at x/D ≈ −1.5. Fur-
thermore, the second-order moments are compared in Fig. 8. Figure 9 shows the profiles of
the same quantities at specific locations in the symmetry plane in order to provide a critical
quantitative comparison.
First, the oncoming flow upstream of the hemisphere in the region −1.5 ≤ x/D ≤ −0.75 is
analyzed. The experimental results show that the thickness of the approaching boundary layer
is matching the height of the hemisphere well with z/D ≈ 0.5 at x/D = −1.5. A comparable
velocity distribution is visible in both large-eddy simulations. However, some differences in the
mean velocity profiles between both methods appear after the injection plane for x/D ≥ −1
as visible in Fig. 9(a). The results corresponding to the enhanced STIG–R method (red line)
are in better agreement with the measurements (black symbols). The discrepancies in the
streamwise and wall-normal velocities are even more obvious in the horseshoe vortex area
at x/D ≈ −0.6 (see Figs. 9(a) and 9(b)). The size of the horseshoe vortex system directly
depends on the turbulence intensity of the approaching flow [31]: With increasing turbulence
intensity the overall size of the vortex system is reduced. Comparing Fig. 8(c) with Fig. 8(b)
or the corresponding profiles in Fig. 9(c) highlights the fact that the STIG–R method leads
to a slightly closer agreement of the streamwise velocity fluctuations with the LDA data.
Consequently, the horseshoe vortex system computed by STIG–R is attenuated and fits better
to the experiments (see Figs. 7(d), 7(e) and 7(f)). A rough estimation3 of the position of
the detachment point yields xEXP

detach/D ≈ −1.0 in the measurements. In the simulations values
of xSTIG–D

detach /D = −1.22 and xSTIG–R
detach /D = −0.82 are predicted. Note that a summary of these

characteristics is given in Table 1.
As obvious in Fig. 10 depicting the streamlines close to the surface of the plate and the
hemisphere, the entire width of the horseshoe vortex system and of the associated vortical
structures in the wake are also reduced by the application of STIG–R in comparison to STIG–D.
Here the differences in the results between both injection techniques become clearly visible.
As explained in [31] the horseshoe vortex system in front of the obstacle is composed of pairs of
counter-rotating vortices. For STIG–D two pairs of vortices are present, whereas only one vor-
tex pair is visible for STIG–R. The position of the stagnation point is also slightly influenced by
the STIG method. With the enhanced STIG–R method it moves upward from θSTIG–D

stag = 161◦

to θSTIG–R
stag = 163◦, where θ is defined mathematically positive from the back. Thus, the results

of the STIG–R injection technique are in closer agreement with the experimental reference

2 Measurements were carried out in the symmetry plane for −1.5 ≤ x/D ≤ 2 and a measuring grid consisting
of 2041 measuring points. For further details we refer to [31].

3The LDA measuring grid has a streamwise grid spacing of ∆x/D = 0.05 above the hemisphere and
∆x/D = 0.1 before and after the obstacle allowing to roughly determine the relevant positions.
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(a) 0.21 u/U∞ + x/D.

(b) 0.55 w/U∞ + x/D.

(c) 3 u′u′/U2
∞ + x/D.

(d) 5 w′w′/U2
∞ + x/D.

(e) 5 u′w′/U2
∞ + x/D.

Figure 9: Comparison of the experimental (black symbols) and numerical (blue lines: STIG–D, red lines:
STIG–R) time-averaged velocities and Reynolds stresses in the symmetry x–z–plane at y/D = 0 and x/D =
{−1.5,−1,−0.6,−0.25, 0, 0.25, 0.5, 1, 1.5} (only every second measurement point is displayed) (reference grid).
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(a) LES STIG–D

(b) LES STIG–R

Figure 10: Comparison of the time-averaged wall-streamlines near the bottom wall and the surface of the
hemisphere (reference grid).

data θEXP
stag ≈ 166◦.

For both techniques a good agreement is achieved in the next region to be discussed, i.e.,
the acceleration area (see Fig. 9). Here, the flow is attached to the wall (see Fig. 10). The
incoming turbulence intensities do not play a key role. Thus, no differences are visible between
the results obtained by both STIG techniques.
Another interesting location is the separation point on the surface of the hemisphere in the
midplane. It marks an important characteristic for the validation of numerical simulations. Its
position depends on various influencing parameters (Reynolds number, turbulence intensity of
the boundary layer and surface roughness). The predicted flow detaches in the midplane at
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an angle of θSTIG–D
sep ≈ 96◦ and θSTIG–R

sep ≈ 92◦ for the LES based on the STIG–D and STIG–R
injection methods, respectively. Compared to the LDA measurements (θEXP

sep ≈ 90◦) the LES
with STIG–R produces once more slightly better results.
The separated flow evolves into a free shear layer. This phenomenon can be observed as a
strong velocity gradient between the outer flow field and the recirculation area in the wake.
For all quantities in this characteristic region (0 ≤ x/D ≤ 0.5) depicted in Fig. 9 the corre-
sponding results predicted with the STIG–R (red line) are always in closer agreement with the
measurements than the data of STIG–D (blue lines). The size of the recirculation area can be
evaluated by the reattachment point of the time-averaged flow in the symmetry plane. The
measurements roughly give xEXP

reattach/D ≈ 1.04. Both LES predict a slightly too long recircula-
tion area with xSTIG–D

reattach/D = 1.39 and xSTIG–R
reattach/D = 1.25 (see Fig. 10). These minor differences

in the length of the recirculation area between experimental and numerical results are in ac-
cordance with the observation that the flow separates earlier in the simulations (∆θ = 6◦ for
STIG–D and 2◦ for STIG–R). As expected the outcome of STIG–R fits better to the reference
data.
The zones of the recirculation area are nearly identical as visible in Fig. 10. However, some
differences are noticed in the distributions of the Reynolds stresses (Figs. 8 and 9). The
zones of high magnitudes of the normal Reynolds stresses u′u′/U2

∞ and the Reynolds shear
stresses u′w′/U2

∞ are slightly shorter for STIG–R than for STIG–D. Moreover, a significant
enhancement of the shape and the amplitude of the wall-normal Reynolds stresses w′w′/U2

∞ is
observed in Fig. 9(d) for STIG–R in relation to the experimental data. That also holds true
for the Reynolds shear stress u′w′/U2

∞ depicted in Fig. 9(e). Thus, the overall distribution
of the first and second-order moments behind the bluff body are improved by the enhanced
injection method STIG–R compared to the STIG–D technique both relying on the identical
data generated by the digital filter method.

4.1.2. Investigation on the synthetic turbulence in the upstream region

Concluding the discussion in the previous section, it is obvious that the flow predicted by the
STIG–R method on the reference grid fits better to the measurements than the one obtained
by the STIG–D method on the same grid and with the same physical influence area given by
Eq. (11). In order to analyze the reason for this behavior in more detail, an investigation on
the distribution of the turbulence quantities just after the STIG injection plane is carried out.

Figure 11 depicts the turbulence level Tuinflow =
√

1
3

(
u′u′ + v′v′ + w′w′

)
/U∞ measured by LDA

and computed with LES at x/D = −1.5. Regarding the distribution of the experimental values
of Tuinflow some components of the Reynolds stresses could not be measured in the vicinity of
the flat plate for z/D < 8 × 10−2 and thus are missing. As mentioned before, to fill this gap
DNS data from Schlatter et al. [24] are used below this height.
Obviously, the STIG–D method induces a significantly lower level of turbulence (error of about
60% in the lower part), whereas the STIG–R results agree quite well with the reference data.
This significant deviation for STIG–D leads to the already mentioned differences in the incom-
ing flow in front of the hemisphere:

• Slightly stronger turbulent fluctuations u′u′/U2
∞ reach the hemispherical body when ap-

plying the STIG–R method (compare Figs. 8(b) and 8(c) or the profiles in Fig. 9(c)).

• Based on STIG–R the stronger mixing process leads to a shorter horseshoe vortex system
in front of the hemisphere (compare Figs. 7(e) and 7(f)). Only one pair of counter-
rotating vortices is observed in Fig. 7(c) for this case. As clearly visible from the top
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Turbulence intensity [%]

z
/D

0 2 4 6 8 10
0

0.25

0.5

0.75

1

STIG­D method
STIG­R method

EXP (Wood et al., 2016)

Figure 11: Experimental and numerical time-averaged turbulence level Tuinflow at x/D = −1.5 (reference grid).

view in Fig. 10 the entire width of the horseshoe vortex system and the associated flow
patterns are smaller.

Overall the STIG–R injection method yields a better representation of the flow field in all
regions compared to the STIG–D technique. Therefore, the remaining analysis is restricted to
the enhanced STIG–R method.

4.2. Influence of the grid resolution on the injection process

Two approaches exist to build the 3D influence area as mentioned in Section 2. Based on a
grid, which is fine in comparison to the integral length scale, the Gaussian weighting (Eq. (9))
is applied as it was the case for the airfoil configuration presented in Schmidt and Breuer [26].
In the present case the integral length scale is smaller than the cell size (i.e., Linf < 2∆d0) even
on the reference grid with more than 30 million CVs. Therefore, the scaling approach accord-
ing to Eq. (11) is applied. Since the reference grid delivers results in very close agreement with
the measurements, it does not make sense to refine the grid in order to study the influence of
the resolution on the outcome. However, a grid coarsening reduces the CPU-time consump-
tion which is of special interest for the planned, even more resource consuming coupled FSI
simulations. Therefore, the medium grid described in Section 3.2 is used for this purpose. The
grid coarsening has an effect on the injection of the synthetic data: As the cell size increases
on each side of the injection plane, the scaling factor 1.3063L/∆d0 has to be adjusted and
leads to SCFD

φ ≈ 0.33 Ssyn
φ in the present case. The rest of the computational setup remains

the same.
Figure 12 compares the time-averaged streamlines and velocity components in the symmetry
x–z–plane at y/D = 0 computed on the medium and the reference grid. Accordingly, Fig. 13
summarizes the time-averaged Reynolds stresses in the symmetry plane computed on both
grids. As before profiles of the first and second-order moments at specific locations in the
symmetry plane are compared in Fig. 14. The reference results are averaged over a period of
approximately 150 dimensionless time units, which is sufficient as explained above. Neverthe-
less, due to the reduced CPU-time consumption, the results on the medium mesh are averaged
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(a) Time-averaged streamlines (reference grid). (b) Time-averaged streamlines (medium grid).

(c) u/U∞ (reference grid). (d) u/U∞ (medium grid).

(e) w/U∞ (reference grid). (f) w/U∞ (medium grid).

Figure 12: Comparison of the time-averaged streamlines and velocity components in the symmetry x–z–plane
at y/D = 0 predicted by LES on the reference and medium grid applying the STIG–R method.

over a longer time interval (more than 200 dimensionless time units) to provide even smoother
statistics.
The different characteristic regions are correctly predicted on the medium grid (see Figs. 12
and 13). Despite some limited discrepancies in the profiles as visible in Fig. 14 the size and
location of the horseshoe vortex system remains very similar: The approaching boundary
layer detaches from the ground at xSTIG–R medium

detach /D = −0.85 on the medium grid compared
to xSTIG–R fine

detach /D = −0.82 in the reference case. The stagnation point at the bottom front of
the hemisphere is predicted at about θSTIG–R medium

stag = 162◦ on the medium grid and at about
θSTIG–R fine

stag = 163◦ on the fine grid. The recirculation areas are almost identical: The flow de-
taches at an angle of θSTIG–R medium

sep = 90◦ for the simulation on the medium grid and at an angle
of θSTIG–R fine

sep = 92◦ on the fine grid. The flow reattaches at about xSTIG–R medium
reattach /D = 1.27 in

case of the medium grid and at about xSTIG–R fine
reattach /D = 1.25 in the reference case. In the vicinity

of the hemisphere the time-averaged velocity components and the Reynolds stresses computed
on the medium grid are in close agreement with the reference data. Some discrepancies appear
for the Reynolds stresses in the wake at x/D ≈ 1. Nevertheless, except of this region a good
agreement of the medium and fine-grid results is achieved regarding the time-averaged veloc-
ity components and Reynolds stresses. That clearly demonstrates that the STIG–R injection
method combined with the adequate physical influence area leads to results which are in close
agreement with the measurements and do not strongly depend on the grid resolution.
Table 1 summarizes the LES results obtained by the two different injection methods and on the
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(a) u′u′/U2
∞ (reference grid). (b) u′u′/U2

∞ (medium grid).

(c) w′w′/U2
∞ (reference grid). (d) w′w′/U2

∞ (medium grid).

(e) u′w′/U2
∞ (reference grid). (f) u′w′/U2

∞ (medium grid).

Figure 13: Comparison of the time-averaged Reynolds stresses in the symmetry x–z–plane at y/D = 0
predicted by LES on the reference and medium grid applying the STIG–R method.

Table 1: Flow characteristics predicted by LES on the reference and medium grid and with the STIG–D or
STIG–R method compared with the experimental data [31]. All values are determined in the midplane.

Flow characteristics LES Exp. [31]
reference grid medium grid

STIG–D STIG–R STIG–R
Detachment xdetach/D -1.22 -0.82 -0.85 ≈ -1.0
Stagnation θstag 161◦ 163◦ 162◦ ≈ 166◦

Separation θsep 96◦ 92◦ 90◦ ≈ 90◦

Reattachment xreattach/D 1.39 1.25 1.27 ≈ 1.04

two grids. In comparison with the experimental data [31] it is obvious that the STIG–R method
performs better than STIG–D for the same adequate influence area given by Eq. (11). STIG–R
is able to inject synthetic turbulent data correctly even if the integral length scale is smaller
than the cell size. This is an important feature, particularly, in case of practical applications
with complex geometries and corresponding grid resolutions which are often not optimal in
all regions. Furthermore, it has been demonstrated that the predicted results on the medium
grid are reliable, since the first and second-order moments are in very good agreement with
the reference data. Thus, the STIG–R injection method is not sensitive to the grid resolution.
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(a) 0.21 u/U∞ + x/D.

(b) 0.55 w/U∞ + x/D.

(c) 3 u′u′/U2
∞ + x/D.

(d) 5 w′w′/U2
∞ + x/D.

(e) 5 u′w′/U2
∞ + x/D.

Figure 14: Comparison of the time-averaged velocities and Reynolds stresses in the symmetry x–z–plane at
y/D = 0 and x/D = {−1.5,−1,−0.6,−0.25, 0, 0.25, 0.5, 1, 1.5} on the reference (red lines) and medium (green
lines) grid applying the STIG–R method.
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5. Conclusions

In the present study two injection methods based on a source term formulation [27, 26] are eval-
uated and extended. Their purpose is to mimic realistic inflow conditions for eddy-resolving
simulations in case of flow predictions especially for external flows, where typical grids do not
allow to prescribe synthetically generated turbulence directly at the inlet of the computational
domain due to strong damping effects. Thus, to circumvent this problem the turbulent fluc-
tuations are injected closer to the zone of interest inside the domain. The first formulation
(STIG–D) exhibits two drawbacks. It does not preserve the autocorrelations and requires an
ad-hoc modification of the 3D influence area in order to get the correct level of turbulence
after the injection plane as shown in Wood et al. [31]. The enhanced source term formulation
STIG–R is known to preserve the autocorrelations [26]. However, in the study by Schmidt
and Breuer [26] the streamwise integral length scale was larger than the cell size, so that the
3D influence area could be easily defined using a Gaussian weighting function with a width
equal to twice the integral length scale. The present work evaluates the enhanced STIG–R
formulation combined with a novel extension of the 3D influence area for the case that the
integral length scale in streamwise direction is smaller than the grid resolution. This situation
is often encountered in practical applications. The numerical results of both injection methods
are analyzed based on the flow around a wall-mounted hemisphere and compared with the
experimental data [31].
Both STIG–D and STIG–R techniques combined with a physically motivated 3D influence area
predict all characteristic features of the flow. However, the enhanced STIG–R method leads
to a better agreement with the experimental data in the entire computational domain. The
upstream region is particularly sensitive, since the incoming turbulence has a direct impact
on the vortical structures developing in the vicinity of the obstacle. STIG–R represents the
incoming flow more accurately. A slightly shorter horseshoe vortex system is induced. Only
one pair of counter-rotating vortices is observed contrary to two pairs of vortices for the case
with STIG–D. The application of STIG–R also leads to improvements in the separation and
reattachment regions. The flow detaches from the hemisphere further downstream leading to
a size of the recirculation area fitting better to the experimental data. The main reason for
these deviations is the significantly low level of turbulence induced by STIG–D in the region
close to the injection plane. Therefore, the enhanced injection technique STIG–R is considered
clearly superior to STIG–D.
To evaluate the performance of STIG–R combined with the physically determined 3D influence
area for a broader application range, an investigation based on a coarsened grid is carried out.
For this medium grid the integral length scale is considerably smaller than the cell size of the
injection plane. Consequently, the source terms have to be redefined according to the suggested
formulation taking the integral length scale into account. The resulting time-averaged first and
second-order moments show a very good agreement with the reference data illustrating on the
one hand the potential of the present enhanced injection method STIG–R and on the other
hand its insensitivity with respect to the grid resolution.
Finally, it has to be noted that the injection method is not restricted to the digital filter
concept but can be combined with other techniques to generate (synthetic) turbulent inflow
data. Furthermore, it is not restricted to large-eddy simulations but can be applied in all kinds
of eddy-resolving methods.
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