M. Abkarian and A. Viallat, Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation, On the importance of the deformability of red blood cells in blood flow, vol.460, pp.211-222, 2002.

J. M. Charrier, S. Shrivastava, and R. Wu, Free and constrained inflation of elastic membranes in relation to thermoforming nonaxisymmetric problems, J Strain Anal Eng Des, vol.24, issue.2, pp.55-74, 1989.
DOI : 10.1243/03093247v242055

M. Chen and F. J. Boyle, Investigation of membrane mechanics using spring networks: application to red-blood-cell modelling, Mater Sci Eng C, vol.43, pp.506-516, 2014.
DOI : 10.1016/j.msec.2014.07.043

URL : https://arrow.dit.ie/cgi/viewcontent.cgi?article=1042&context=engschmecart

C. Chnafa, S. Mendez, and F. Nicoud, Image-based large-eddy simulation in a realistic left heart, Comput Fluids, vol.94, pp.173-187, 2014.
DOI : 10.1016/j.compfluid.2014.01.030

URL : https://hal.archives-ouvertes.fr/hal-00943609

A. Chorin, Numerical solution of the Navier-Stokes equations, Math Comput, vol.22, pp.745-762, 1968.

D. Cordasco, Y. Bagchi, and P. , Comparison of erythrocyte dynamics in shear flow under different stress-free configurations, Phys Fluids, vol.26, p.41902, 2014.

M. Dao, C. T. Lim, and S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers, J Mech Phys Solids, vol.51, pp.2259-2280, 2003.

M. Dao, J. Li, and S. Suresh, Molecularly based analysis of deformation of spectrin network and human erythrocyte, Mater Sci Eng C, vol.26, pp.1232-1244, 2006.

P. Dimitrakopoulos, Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: effects of the constitutive law and membrane modeling, Phys Rev E, vol.85, p.41917, 2012.

D. E. Discher, N. Mohandas, and E. A. Evans, Molecular maps of red cell deformation: hidden elastic and in situ connectivity, Science, vol.266, pp.1032-1035, 1994.

S. K. Doddi and P. Bagchi, Lateral migration of a capsule in a plane Poiseuille flow in a channel, Int J Multiph Flow, vol.34, pp.966-986, 2008.

J. Dupire, M. Abkarian, and A. Viallat, A simple model to understand the effect of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow, Soft Matter, vol.11, pp.8372-8382, 2015.

C. D. Eggleton and A. S. Popel, Large deformation of red blood cell ghosts in a simple shear flow, Phys Fluids, vol.10, issue.8, pp.1834-1845, 1998.

E. A. Evans, New membrane concept applied to the analysis of fluid shear-and micropipette-deformed red blood cells, Biophys J, vol.13, pp.941-954, 1973.

E. A. Evans and Y. C. Fung, Improved measurements of the erythrocyte geometry, Microvasc Res, vol.4, pp.335-347, 1972.
DOI : 10.1016/0026-2862(72)90069-6

A. Farutin, T. Biben, and C. Misbah, 3D numerical simulations of vesicle and inextensible capsule dynamics, J Comput Phys, vol.275, pp.539-568, 2014.
DOI : 10.1016/j.jcp.2014.07.008

URL : https://hal.archives-ouvertes.fr/hal-00841996

D. A. Fedosov, B. Caswell, and G. Karniadakis, Systematic coarsegraining of spectrin-level red blood cell models, Comput Methods Appl Mech Eng, vol.199, pp.1937-1948, 2010.
DOI : 10.1016/j.cma.2010.02.001

URL : http://europepmc.org/articles/pmc3864857?pdf=render

D. A. Fedosov, B. Caswell, and G. E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophys J, vol.98, pp.2215-2225, 2010.
DOI : 10.1016/j.bpj.2010.02.002

URL : https://doi.org/10.1016/j.bpj.2010.02.002

D. A. Fedosov, H. Noguchi, and G. Gompper, Multiscale modeling of blood flow: from single cells to blood rheology, Biomech Model Mechanobiol, vol.13, pp.239-258, 2014.
DOI : 10.1007/s10237-013-0497-9

W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z Naturforsch, vol.28, pp.693-703, 1973.
DOI : 10.1515/znc-1973-11-1209

URL : http://www.degruyter.com/downloadpdf/j/znc.1973.28.issue-11-12/znc-1973-11-1209/znc-1973-11-1209.xml

S. Hénon, A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys J, vol.76, pp.1145-1151, 1999.

K. Khairy and J. Howard, Minimum-energy vesicle and cell shapes calculated using spherical harmonics parameterization, Soft Matter, vol.7, pp.2138-2143, 2011.
DOI : 10.1039/c0sm01193b

URL : http://pubs.rsc.org/en/content/articlepdf/2011/sm/c0sm01193b

T. Klöppel and W. A. Wall, A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes, Biomech Model Mechanobiol, vol.10, pp.445-459, 2011.

D. V. Le, J. White, J. Peraire, K. M. Lim, and B. C. Khoo, An implicit immersed boundary method for three-dimensional fluidmembrane interactions, J Comput Phys, vol.228, pp.8427-8445, 2009.

J. Li, M. Dao, C. T. Lim, and S. Suresh, Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte, Biophys J, vol.88, pp.3707-3719, 2005.

G. Lim, M. Wortiz, and R. Mukhopadhyay, Stomatocyte-discocyteechinocyte sequence of the human red blood cell: evidence for the bilayer-couple hypothesis from membrane mechanics, Proc Natl Acad Sci, vol.99, issue.26, p.769, 2002.

G. Lim, M. Wortiz, and R. Mukhopadhyay, Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane, soft matter, issue.2, 2008.

M. Malandain, N. Maheu, and V. Moureau, Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines, J Comput Phys, vol.238, pp.32-47, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01657525

M. Martins-afonso, S. Mendez, and F. Nicoud, On the damped oscillations of an elastic quasi-circular membrane in a two-dimensional incompressible fluid, J Fluid Mech, vol.746, pp.300-331, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00957710

S. Mendez, E. Gibaud, and F. Nicoud, An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers, J Comput Phys, vol.256, issue.1, pp.465-483, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00871557

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers, Mech Chem Biosyst, vol.1, issue.3, pp.169-180, 2004.

N. Mohandas and P. G. Gallagher, Red cell membrane: past, present, and future, Blood, vol.112, issue.10, pp.3939-3948, 2008.

V. Moureau, P. Domingo, and L. Vervisch, Design of a massively parallel CFD code for complex geometries, Comp Rend Méc, vol.339, issue.2-3, pp.141-148, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01672172

Z. Peng, A. Mashayekh, and Q. Zhu, Erythrocyte responses in lowshear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton, J Fluid Mech, vol.742, pp.96-118, 2014.

Z. Peng, S. Salehyar, and Q. Zhu, Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states, J Fluid Mech, vol.771, pp.449-467, 2015.

C. S. Peskin, The immersed boundary method, Acta Number, vol.11, pp.479-517, 2002.

A. Pinelli, I. Z. Naqavi, U. Piomelli, and J. Favier, Immersed-boundary methods for general finite-difference and finite-volume NavierStokes solvers, J Comput Phys, vol.229, pp.9073-9091, 2010.
DOI : 10.1016/j.jcp.2010.08.021

URL : https://hal.archives-ouvertes.fr/hal-00951516

I. V. Pivkin and G. E. Karniadakis, Accurate coarse-grained modeling of red blood cells, Phys Rev Lett, vol.101, p.118105, 2008.
DOI : 10.1103/physrevlett.101.118105

J. Sigüenza, S. Mendez, and F. Nicoud, Characterisation of a dedicated mechanical model for red blood cells: numerical simulations of optical tweezers experiment, Comput Methods Biomech Biomed Eng, vol.17, pp.28-29, 2014.

J. Sigüenza, S. Mendez, D. Ambard, F. Dubois, J. F. Mozul et al., Validation of an immersed thick boundary method for simulating fluid-structure interactions of deformable membranes, J Comput Phys, vol.322, pp.723-746, 2016.

K. Sinha and M. D. Graham, Dynamics of a single red blood cell in simple shear flow, Phys Rev E, vol.92, p.42710, 2015.

R. Skalak, A. Tozeren, R. P. Zarda, and S. Chien, Strain energy function of red blood cell membranes, Biophys J, vol.13, pp.245-264, 1973.

Y. Sui, Y. T. Chew, P. Roy, Y. P. Cheng, and H. T. Low, Dynamic motion of red blood cells in simple shear flow, Phys Fluids, vol.20, p.112106, 2008.

S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao et al., Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomater, vol.1, pp.15-30, 2005.

O. H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chem Technol, vol.66, issue.5, pp.754-771, 1993.

O. Y. Zhong-can and W. Helfrich, Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys Rev A, vol.39, issue.10, pp.5280-5288, 1989.

V. Zmijanovic, S. Mendez, V. Moureau, and F. Nicoud, About the numerical robustness of biomedical benchmark cases: interlaboratory FDA's idealized medical device, Int J Numer Methods Biomed Eng, vol.33, issue.1, pp.1-17, 2017.