P. Chen and G. Zhang, Carbon-based spintronics. Sci China-Phys Mech Astron, p.207, 2013.

M. Bocrath, Luttinger-liquid behaviour in carbon nanotubes, Nature, vol.80, issue.6720, pp.598-601, 1999.
DOI : 10.1103/PhysRevLett.80.2881

S. Ncube, G. Chimowa, Z. Chiguvare, and S. Bhattacharyya, Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes, Journal of Applied Physics, vol.62, issue.2, p.24306, 2014.
DOI : 10.1103/PhysRevB.78.205422

G. Chimowa, S. Ncube, and S. Bhattacharyya, Observation of impedance oscillations in single-walled carbon nanotube bundles excited by high-frequency signals, EPL (Europhysics Letters), vol.111, issue.3, p.36001, 2015.
DOI : 10.1209/0295-5075/111/36001

. Leturcq, Franck???Condon blockade in suspended carbon nanotube quantum dots, Nature Physics, vol.49, issue.5, pp.327-331, 2009.
DOI : 10.1038/nphys1234

URL : https://hal.archives-ouvertes.fr/hal-00575346

H. W. Postma, Carbon Nanotube Single-Electron Transistors at Room Temperature, Science, vol.293, issue.5527, p.293, 2001.
DOI : 10.1126/science.1061797

Z. Yao, H. W. Postma, . Ch, L. Balents, and C. Deer, Carbon nanotube intramolecular junctions, Nature, vol.402, pp.273-276, 1999.

P. Jarillo-herrero, Orbital Kondo effect in carbon nanotubes, Nature, vol.65, issue.258, pp.484-488, 2005.
DOI : 10.1103/PhysRevB.65.045317

URL : http://arxiv.org/pdf/cond-mat/0504059

J. Nygård, D. H. Cobden, and P. Lindelof, Kondo physics in carbon nanotubes, Nature, vol.273, issue.258, pp.342-346, 2000.
DOI : 10.1126/science.273.5274.483

J. Paase, Non-equilibrium singlet???triplet Kondo effect in carbon nanotubes, Nature Physics, vol.70, issue.7, pp.460-464, 2006.
DOI : 10.1103/PhysRevB.70.155301

J. Pillet, Andreev bound states in supercurrent-carrying carbon nanotubes revealed, Nature Physics, vol.49, issue.12, pp.965-969, 2010.
DOI : 10.1103/PhysRevB.79.134518

URL : http://arxiv.org/pdf/1005.0443

J. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, and M. Monthioux, Carbon nanotube superconducting quantum interference device, Nature Nanotechnology, vol.424, issue.1, pp.53-59, 2006.
DOI : 10.1038/nature01797

URL : https://hal.archives-ouvertes.fr/hal-00700071

V. Mouri, Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices, Science, vol.12, issue.1, pp.1003-1010, 2012.
DOI : 10.1021/nl203380w

.. M. Poto, I. G. Au, H. Shtriman, Y. Oreg, and D. Goldhaber-gordon, Observation of the two-channel Kondo effect, Nature, vol.40, issue.7, pp.167-171, 2007.
DOI : 10.1051/jphys:01980004103019300

V. Saalova, A. B. Woo, Y. Oth, and S. , Electronic transport in carbon nanotubes: From individual nanotubes to thin and thic networs, Phys. ev. B, vol.74, p.85403, 2006.

H. Imamura, S. Taahashi, and S. Maeawa, Spin-dependent Coulomb blocade in ferromagnet/normal-metal/ferromagnet double tunnel junctions, Phys. ev. B, vol.59, pp.6017-6020, 1999.
DOI : 10.1103/physrevb.59.6017

URL : http://arxiv.org/pdf/cond-mat/9809058

S. Taahashi and S. Maeawa, Effect of Coulomb Blockade on Magnetoresistance in Ferromagnetic Tunnel Junctions, Physical Review Letters, vol.50, issue.196, pp.1758-1760, 1998.
DOI : 10.1103/PhysRevB.50.18436

T. Ida, . Ishibashi, . Tsuagoshi, Y. Aoyagi, and B. W. Alphenaar, Quantum-dot transport in carbon nanotubes, Superlattices and Microstructures, vol.27, issue.5-6, pp.551-554, 2000.
DOI : 10.1006/spmi.2000.0871

URL : http://pyramid.spd.louisville.edu/~eri/papers_pres/bruce1.pdf

Y. Naai, Observation of the intrinsic magnetic susceptibility of highly puriied single-wall carbon nanotubes, Phys. ev. B, vol.92, issue.1, 2015.

A. A. Ovchinniov and V. Atrazhev, Magnetic susceptibility of multilayered carbon nanotubes, Physics of the Solid State, vol.84, issue.10, pp.1769-1773, 1998.
DOI : 10.1103/PhysRevB.50.5680

F. Tsui, L. Jin, and O. Zhou, Anisotropic magnetic susceptibility of multiwalled carbon nanotubes, Applied Physics Letters, vol.73, issue.11, pp.1452-1454, 2000.
DOI : 10.1038/358220a0

S. Zaric, Estimation of Magnetic Susceptibility Anisotropy of Carbon Nanotubes Using Magnetophotoluminescence, Nano Letters, vol.4, issue.11, pp.2219-2221, 2004.
DOI : 10.1021/nl0486012

. Tsuagoshi, B. W. Alphenaar, and H. Ago, Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature, vol.394, issue.6753, pp.572-574, 1999.
DOI : 10.1038/29494

J. Li and Y. Zhang, A simple purication for single-walled carbon nanotubes. Phys. E Low-Dimensional Syst, Nanostructures, vol.28, pp.309-312, 2005.

C. Meyer, C. Morgan, and C. M. Schneider, Scanning tunneling microscopy and spectroscopy of graphene on insulating substrates. Phys. Status Solidi Basic es, pp.2680-2683, 2011.

H. Yang, Nonlocal spin transport in single-walled carbon nanotube networs, Phys. ev. B, vol.85, p.52401, 2012.
DOI : 10.1103/physrevb.85.052401

URL : http://arxiv.org/pdf/1208.1849

B. Zhao, I. Monch, H. Vinzelberg, T. Muhl, and C. M. Schneider, Spin-coherent transport in ferromagnetically contacted carbon nanotubes, Applied Physics Letters, vol.69, issue.17, pp.3114-3116, 2002.
DOI : 10.1063/1.1365445

.. M. Langford, Magnetoresistance and spin diffusion in multi-wall carbon nanotubes, Microelectronic Engineering, vol.84, issue.5-8, pp.1593-1595, 2007.
DOI : 10.1016/j.mee.2007.01.195

M. Urdampilleta, S. Lyatsaya, J. Cleuziou, M. Uben, and W. Wernsdorfer, Supramolecular spin valves, Nature Materials, vol.42, issue.7, pp.502-506, 2011.
DOI : 10.1021/nl801869b

URL : https://hal.archives-ouvertes.fr/hal-00976036

M. Ganzhorn, S. Lyatsaya, M. Uben, and W. Wernsdorfer, Strong spin???phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system, Nature Nanotechnology, vol.8, issue.3, pp.165-169, 2013.
DOI : 10.1063/1.3698395

URL : https://hal.archives-ouvertes.fr/hal-00859871

L. Bogani and W. Wernsdorfer, Molecular spintronics using single-molecule magnets, Nature Materials, vol.96, issue.3, pp.179-186, 2008.
DOI : 10.1557/mrs2000.226

I. Marangon, Covalent functionalization of multi-walled carbon nanotubes with a gadolinium chelate for ecient T1-weighted magnetic resonance imaging, Adv. Funct. Mater, vol.24, pp.7173-7186, 2014.
DOI : 10.1002/adfm.201402234

URL : https://digital.csic.es/bitstream/10261/126886/1/accesoRestringido.pdf

G. Che, B. B. Lashmi, E. Fisher, and C. Martin, Metal-Nanocluster-Filled Carbon Nanotubes:?? Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production, Langmuir, vol.15, issue.3, pp.750-758, 1999.
DOI : 10.1021/la980663i

A. Leonhardt, Synthesis and properties of filled carbon nanotubes, Diamond and Related Materials, vol.12, issue.3-7, pp.790-793, 2003.
DOI : 10.1016/S0925-9635(02)00325-4

E. C. Linganiso, G. Chimowa, P. J. Franlyn, S. Bhattacharyya, and N. J. Coville, The effect of tube filling on the electronic properties of Fe filled carbon nanotubes, Materials Chemistry and Physics, vol.132, issue.2-3, pp.300-303, 2012.
DOI : 10.1016/j.matchemphys.2011.11.016

B. Sitharaman, Supermagnetic gadonanotubes are high-performance MI contrast agents, Chem. Commun. (Cambridge), vol.31, pp.3915-3917, 2005.
DOI : 10.1039/b504435a

S. Reports, Quetz, A. et al. Magnetic Properties and phase transitions of gadolinium-infused carbon nanotubes, J. Appl. Phys, vol.8, issue.113, pp.8057-8094, 2013.

C. Schönenberger, A. Bachtold, C. Strun, J. P. Salvetat, and L. Forró, Interference and Interaction in multi-wall carbon nanotubes, Applied Physics A: Materials Science & Processing, vol.69, issue.3, pp.283-295, 1999.
DOI : 10.1007/s003390051003

F. Tuinstra and J. L. Oenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, vol.24, issue.3, pp.1126-1130, 1970.
DOI : 10.1063/1.1712428

J. S. Ananta, Single-walled carbon nanotube materials as T2-weighted MI contrast agents, J. Phys. Chem. C, vol.113, pp.19365-19368, 2009.
DOI : 10.1021/jp907891n

A. Servant, Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MI cell labelling and tracing, CAABON, vol.97, pp.126-133, 2016.
DOI : 10.1016/j.carbon.2015.08.051

URL : https://doi.org/10.1016/j.carbon.2015.08.051

B. Sitharaman, B. D. Jacobson, Y. Z. Wadghiri, H. Bryant, and J. Fran, The magnetic, relaxometric, and optical properties of gadolinium-catalyzed single walled carbon nanotubes, Journal of Applied Physics, vol.41, issue.13, p.134308, 2013.
DOI : 10.1016/j.carbon.2004.10.010

URL : http://europepmc.org/articles/pmc3631244?pdf=render

P. D. Gorman, J. M. Duuy, S. Power, and M. S. Ferreira, Strain-modiied Y interaction in carbon nanotubes, Phys. ev. B, vol.92, p.35411, 2015.

J. Linovaja and D. Loss, Y interaction in carbon nanotubes and graphene nanoribbons, Phys. ev. B, vol.87, p.45422, 2013.

J. M. Coey, Magnetism and Magnetic materials, 2010.
DOI : 10.1017/CBO9780511845000

B. Nafradi, The Journal of Physical Chemistry Letters, vol.3, issue.22, pp.3291-3296, 2012.
DOI : 10.1021/jz301250j

P. Sheng, E. Sichel, and J. Gittleman, Fluctuation-Induced Tunneling Conduction in Carbon-Polyvinylchloride Composites, Physical Review Letters, vol.1, issue.18, pp.1197-1200, 1978.
DOI : 10.1103/PhysRevB.7.2252

P. Sheng, Fluctuation-induced tunnelling conduction in disordered materials, Phys. ev. B, vol.21, pp.2180-2195, 1980.

M. Salvato, Charge Transport and Tunneling in Single-Walled Carbon Nanotube Bundles, Physical Review Letters, vol.101, issue.24, p.246804, 2008.
DOI : 10.1126/science.288.5465.494

. Amalaannan, e role of structural defects on the transport properties of a few-walled carbon nanotube networs, Appl. Phys. Lett, vol.98, p.192105, 2011.

J. H. Chen, L. Li, W. G. Cullen, E. D. Williams, and M. S. Fuhrer, Tunable Kondo effect in graphene with defects, Nature Physics, vol.7, issue.7, pp.535-538, 2011.
DOI : 10.1021/nl101399r

, @@@@@@@@@@@@@@@@ is work is performed under the CSIR-NLC rental pool project supported by the Nanotechnology Flagship Programme funded by NRF (SA). e support of EMU (Wits), DST/NRF Centre of Excellence in Strong materials and URC (Wits) towards this research is hereby acknowledged. We are thankful to D. Mtsuko, A. Naicker, and R. Erasmus for experimental assistance and N. J. Coville for useful discussions, AMS thanks SA-NRF (93549) and the URC/FRC of UJ. AdeS thanks the South African National Research Foundation

S. N. , performed device fabrication, transport measurements, and spectroscopic analysis. C.C. conducted detailed analysis of transport data. A.dS. performed chemical synthesis of the sample. E.F. did microscopic and elemental analysis of the samples. A.M.S. performed the magnetic characterization. S.B. developed the idea and designed the experimental method

, Supplementary information accompanies this paper at https