R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol, vol.58, issue.1, pp.267-288, 1996.

S. S. Chen and D. L. Donoho, Atomic decomposition by basis pursuit, SPIE, 1995.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector, The Annals of Statistics, vol.37, issue.4, pp.1705-1732, 2009.
DOI : 10.1214/08-AOS620

URL : https://hal.archives-ouvertes.fr/hal-00401585

N. Städler, P. Bühlmann, and S. Van-de-geer, ???1-penalization for mixture regression models, TEST, vol.101, issue.2, pp.209-256, 2010.
DOI : 10.1007/978-1-4757-2545-2

A. B. Owen, A robust hybrid of lasso and ridge regression, Contemporary Mathematics, vol.443, pp.59-72, 2007.
DOI : 10.1090/conm/443/08555

P. J. Huber, Robust Statistics, 1981.

A. Belloni, V. Chernozhukov, and L. Wang, Square-root lasso: pivotal recovery of sparse signals via conic programming, Biometrika, vol.7, issue.4, pp.791-806, 2011.
DOI : 10.1214/07-AOS520

T. Sun and C. Zhang, Scaled sparse linear regression, Biometrika, vol.7, issue.39, pp.879-898, 2012.
DOI : 10.1214/08-AOS659

S. Reid, R. Tibshirani, and J. Friedman, A study of error variance estimation in Lasso regression, Statistica Sinica, vol.26, issue.1, pp.35-67, 2016.
DOI : 10.5705/ss.2014.042

E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, and J. Salmon, Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression, NCMIP, 2017.
DOI : 10.1088/1742-6596/904/1/012006

URL : https://hal.archives-ouvertes.fr/hal-01404966

S. R. Becker, E. J. Candès, and M. C. Grant, Templates for convex cone problems with applications to sparse signal recovery, Mathematical Programming Computation, vol.1, issue.1, pp.165-218, 2011.
DOI : 10.1137/070703983

URL : http://www.acm.caltech.edu/%7Eemmanuel/papers/TFOCS.pdf

P. Tseng, Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization, Journal of Optimization Theory and Applications, vol.109, issue.3, pp.475-494, 2001.
DOI : 10.1023/A:1017501703105

URL : http://www.math.washington.edu/~tseng/papers/archive/bcr_jota.pdf

J. Friedman, T. J. Hastie, H. Höfling, and R. Tibshirani, Pathwise coordinate optimization, The Annals of Applied Statistics, vol.1, issue.2, pp.302-332, 2007.
DOI : 10.1214/07-AOAS131

URL : http://doi.org/10.1214/07-aoas131

L. Ghaoui, V. Viallon, and T. Rabbani, Safe feature elimination in sparse supervised learning, J. Pacific Optim, vol.8, issue.4, pp.667-698, 2012.

O. Fercoq, A. Gramfort, and J. Salmon, Mind the duality gap: safer rules for the lasso, ICML, pp.333-342, 2015.

R. Engle, Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, Econometrica, vol.50, issue.4, pp.987-1007, 1982.
DOI : 10.2307/1912773

R. J. Carroll and D. Ruppert, Transformation and weighting in regression, 1988.
DOI : 10.1007/978-1-4899-2873-3

M. Kolar and J. Sharpnack, Variance function estimation in high-dimensions, ICML, pp.1447-1454, 2012.

J. Daye, J. Chen, and H. Li, High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis, Biometrics, vol.35, issue.1, pp.316-326, 2012.
DOI : 10.1214/009053607000000127

URL : http://europepmc.org/articles/pmc3218221?pdf=render

J. Wagener and H. Dette, Bridge estimators and the adaptive lasso under heteroscedasticity, Mathematical Methods of Statistics, vol.67, issue.2, pp.109-126, 2012.
DOI : 10.1111/j.1467-9868.2005.00503.x

URL : https://eldorado.tu-dortmund.de/bitstream/2003/28898/1/DP_2011_SFB823_Wagener_Dette.pdf

A. S. Dalalyan, M. Hebiri, K. Meziani, and J. Salmon, Learning heteroscedastic models by convex programming under group sparsity, ICML, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00813908

R. Tibshirani, J. Bien, J. Friedman, T. J. Hastie, N. Simon et al., Strong rules for discarding predictors in lasso-type problems, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.67, issue.2, pp.245-266, 2012.
DOI : 10.1111/j.1467-9868.2005.00503.x

URL : http://europepmc.org/articles/pmc4262615?pdf=render

Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Programming, vol.269, issue.1, pp.127-152, 2005.
DOI : 10.1007/s10107-004-0552-5

URL : http://www.core.ucl.ac.be/services/psfiles/dp03/dp2003-12.pdf

P. L. Combettes and C. L. Müller, Perspective functions: Proximal calculus and applications in highdimensional statistics, J. Math. Anal. Appl, 2016.
DOI : 10.1016/j.jmaa.2016.12.021

URL : https://doi.org/10.1016/j.jmaa.2016.12.021

J. Lederer and C. L. Müller, Don't fall for tuning parameters: Tuning-free variable selection in high dimensions with the TREX, AAAI, pp.2729-2735, 2015.

S. Boyd and L. Vandenberghe, Convex optimization, 2004.

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, pp.365-411, 2004.
DOI : 10.1016/S0047-259X(03)00096-4

URL : https://doi.org/10.1016/s0047-259x(03)00096-4

G. Obozinski, B. Taskar, and M. I. Jordan, Joint covariate selection and joint subspace selection for multiple classification problems, Statistics and Computing, vol.8, issue.68, pp.231-252, 2010.
DOI : 10.1007/978-0-387-21606-5

URL : https://link.springer.com/content/pdf/10.1007%2Fs11222-008-9111-x.pdf

G. Lasso-for-sparse-multimodal-regression, P. Bühlmann, and J. Mandozzi, High-dimensional variable screening and bias in subsequent inference, with an empirical comparison, Computational Statistics, vol.29, issue.3, pp.407-430, 2014.

S. Baillet, Magnetoencephalography for brain electrophysiology and imaging, Nature Neuroscience, vol.2016, issue.3, pp.327-339
DOI : 10.1073/pnas.0809353105

D. P. Wipf, J. P. Owen, H. Attias, K. Sekihara, and S. S. Nagarajan, Estimating the location and orientation of complex, correlated neural activity using MEG, NIPS, pp.1777-1784, 2008.
DOI : 10.1016/j.neuroimage.2009.06.083

URL : http://europepmc.org/articles/pmc4083006?pdf=render

S. Haufe, V. V. Nikulin, A. Ziehe, K. Müller, and G. Nolte, Combining sparsity and rotational invariance in EEG/MEG source reconstruction, NeuroImage, vol.42, issue.2, pp.726-738, 2008.
DOI : 10.1016/j.neuroimage.2008.04.246

URL : http://ida.first.fhg.de/publications/HauNikZieMueNol08.pdf

A. Gramfort, D. Strohmeier, J. Haueisen, M. S. Hämäläinen, and M. Kowalski, Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations, NeuroImage, vol.70, pp.410-422, 2013.
DOI : 10.1016/j.neuroimage.2012.12.051

URL : https://hal.archives-ouvertes.fr/hal-00773276

W. Ou, M. Hämaläinen, and P. Golland, A distributed spatio-temporal EEG/MEG inverse solver, NeuroImage, vol.44, issue.3, pp.932-946, 2009.
DOI : 10.1016/j.neuroimage.2008.05.063

URL : http://europepmc.org/articles/pmc2730457?pdf=render

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., MNE software for processing MEG and EEG data, NeuroImage, vol.86, pp.446-460, 2014.
DOI : 10.1016/j.neuroimage.2013.10.027

URL : http://europepmc.org/articles/pmc3930851?pdf=render