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Abstract: Cochlea-scaled entropy (CSE) was proposed as a signal-
based metric for automatic detection of speech regions most important
for intelligibility, but its proposed superiority over traditional linguistic
and psychoacoustical characterisations was not subsequently confirmed.
This paper shows that the CSE concept is closely related to intensity
and as such captures similar speech regions. However, a slight but sig-
nificant advantage of a CSE over an intensity-based characterisation
was observed, associated with a time difference between the two met-
rics, suggesting that the CSE index may capture dynamical properties of
the speech signal crucial for intelligibility.
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1. Introduction

The cochlea-scaled entropy (CSE) metric (Stilp and Kluender, 2010) has been proposed
as a signal-based descriptor of intelligibility. Inspired by the property of sensory sys-
tems which respond primarily to change, the authors hypothesised that the speech
regions most important for recognition by human listeners can be characterised by a
measure of change over time in the auditory channel. For this purpose, they defined
entropy as the running average of successive differences of adjacent spectral slices, pre-
viously transformed to approximate the output of the peripheral auditory system.
Using a noise replacement paradigm, they found that the intelligibility of American
English sentences was linearly correlated with the proportion of entropy replaced, a
pattern that was clearer than when replacing traditionally posited linguistic categories
such as consonants, vowels or transitions between consonants and vowels.

While the correlation between CSE and intelligibility has been extended to
Mandarin Chinese (Jiang et al., 2012), subsequent studies have failed to confirm a spe-
cific role for CSE in accounting for intelligibility above and beyond a simple character-
isation of the sound intensity level (Chen and Loizou, 2012; Shu et al., 2016). Spectral
change was posited by the original authors as the core cue for explaining their findings,
but it appears that the interpretation of spectral change—and the effectiveness of the
metric for predicting intelligibility—is conditioned by specific implementation choices.
That is, in Stilp and Kluender (2010), the CSE is calculated based on a linear measure
of magnitude differences between successive time slices; this contrasts with the classical
logarithmic decibel-scaling generally used in sound perception representations and sen-
sory systems. Indeed, as pointed out by Oxenham et al. (2017), a representation based
on a linear scale of intensity values at the outputs of auditory filters gives greater
importance to lower frequency bands.

The current paper has two aims. The first is to confirm a close link between
the CSE metric and sound intensity, highlighting the importance of the choice of scale
for intensity values. We hypothesised that replacing speech segments in noise would be
most disruptive (and to a similar extent) for segment selection based on either intensity
or CSE using linear-scaled values, and less disruptive when segments are selected based
on CSE with decibel intensity scaling. A second goal is to explore the basis for the
superior intelligibility predictions of the CSE characterisation, by focussing on the
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temporal relationships between the metric and the underlying components of the
speech signal.

2. Methods

The current study uses a noise replacement paradigm, following Stilp and Kluender
(2010), in which selected segments of the speech signal are excised and replaced with
noise. By measuring keyword scores in sentences that have undergone noise replace-
ment, an estimate of the value of the information in the segments replaced by noise
can be obtained. Different metrics will typically select distinct segments for replace-
ment, enabling a comparison of the extent to which those metrics are able to predict
intelligibility.

2.1 Metrics

Three metrics were contrasted: INT, cSE, and cse-y. As in Stilp and Kluender (2010), in
each case the metric is computed in non-overlapping 16 ms frames. The INT metric is
simply the root-mean-square (RMS) of the speech amplitude. The cse and cSE-y metrics
are calculated using a 7-frame running average of the Euclidean distance between adja-
cent across-frequency vectors output by two distinct auditory-inspired representations of
speech. The cse metric uses the “roex” auditory filterbank (Patterson ez al., 1982) while
the cse—y metric is based instead on gammatone filters (Patterson et al, 1988). In the
latter case, the Hilbert envelope at the output of each gammatone filter is computed
and subsequently smoothed via a leaky integrator with an 8§ ms time constant, log-
compressed and downsampled to 16 ms frames. In both cases, 33 auditory filters were
used spanning the range 26-7743 Hz. Note that the input to the distance computation
in the case of the cse metric is linear while for the cse—y metric it is logarithmic. The
outputs of the roex filter and the gammatone auditory filterbank are shown, along with
a spectrogram, in the top three panels of Fig. 1 for an example sentence.

2.2 Stimuli

Sentence material was taken from the MAVA corpus (Aubanel et al., 2017), a record-
ing of 205 phonemically balanced Harvard sentences (Rothauser e al., 1969) spoken
by a native Australian talker, with manually checked annotation at the word and pho-
neme level. Sentences include five keywords and have a mild lexical and semantic pre-
dictability. Manipulation and playback of sentences was done at a sampling rate of
16 kHz.

Following Stilp and Kluender (2010), noise replacement segments were deter-
mined based on epochs when each metric took on high or low values, leading to a set
of six conditions denoted HI-INT, LO-INT, HI-CSE, LO-CSE, HI-CSE-y, and Lo-CSE-y. The pro-
cedure for determining the high-valued segments was based on the following iterative
process. The global maximum of the metric across the sentence was chosen as the cen-
tre of the first segment selected for noise replacement. The segment (of length 7 frames)

Spectrogram 8

(kHz) 61
ad
2

Roex filters 30
(channel)

Gammatone
filterbank
(channel)

Metrics
(normalised)

ILa\rge Isize Iin Istockings Iis Ihard to sell .
T—T TT 1 1 T L T T 1T T T T T [ T T T T T 1T T T
| aa rjhs ay z ihn s tohk ih ngz ith zhhaardt as eh |
1 2 3
time (s)

Fig. 1. (Color online) An illustration of spectro-temporal representations of the sentence “A large size in stock-
ings is hard to sell” (top 3 panels) alongside values for the metrics tested in the current study (lower panel). The
horizontal bars in the lower panel indicate the high-valued segments selected for noise replacement for each met-
ric. Word and phoneme-level annotation is shown at the bottom.
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and 5 frames on either side were then removed from consideration, and the next highest
point in the metric was chosen. The procedure was repeated until no more segments
could be selected. The inverse process was used to determine low value segments (i.e.,
choosing the smallest value of the metric at each point). The results of this procedure
are visualised in the lower panel of Fig. 1, which shows segments for conditions HI-INT,
HI-CSE, and HI-csE-y computed for the example sentence.

The above procedure typically selects 6 or more segments per utterance, but at
some point the selected high-valued segments start to overlap with the low-valued
segments. For the current material we determined a cross-over point at around 7 seg-
ments. To maximise the contrast amongst segments selected by the high and low var-
iants, the procedure was truncated after the selection of 6 segments.

In addition to the experimental conditions derived from the three metrics, two
control conditions were constructed. In the RANDOM condition, 6 segments meeting the
above adjacency constraints were selected. In the UNPROCESSED control condition, no
segments were removed (i.e., sentences were presented intact).

Selected segments were replaced by speech-shaped noise with a RMS value
equal to that of the sentence after leaving out the segments to be replaced. Noise
replacement was performed via an overlap-add procedure in which the speech signal
was reduced to zero by 20ms half-Hanning windows centred on segment endpoints
and the masker was correspondingly amplified to unity using inverted half-Hanning
windows centred on the same points. Speech-shaped noise whose long-term spectrum
matched that of the talker who produced the corpus was constructed by filtering white
noise with a 200-pole LPC filter computed from all sentences of the corpus.

2.3 Participants and procedure

Thirty six participants (five males) were recruited from the undergraduate student popula-
tion of Western Sydney University. All participants provided informed consent, were
native Australian speakers and none reported hearing problems; all received course credit
for their participation. All research procedures were approved by the Human Research
Ethics Committee of Western Sydney University (ref. H9495). Five participants were dis-
carded after failing to meet a criterion level of performance (correctly identifying at least
75% of the words in the unprocessed condition). Participants were seated in sound iso-
lated booths and listened to the stimuli through Beyerdynamic DT770 Pro closed head-
phones on a MacBook Pro running a custom MATLAB/PSYCHTOOLBOX script.

Participants heard a total of 176 sentences (22 sentences in each of the 8 condi-
tions) grouped into 4 blocks of 44 sentences. After each sentence participants typed
what they heard before proceeding to the next sentence. Participants could only listen
to the sentence once and were able to take a short break after each block. Sentence
order was randomised and condition order was balanced across participants so that for
each participant, each sentence occurred only once in the experiment and each condi-
tion occurred only once in each successive group of eight sentences. Before the main
test, listeners heard eight practice sentences (one for each condition) in a random
order. None of the practice sentences occurred in the main experiment. The experiment
took approximatively 45 min to complete.

3. Results
3.1 Listeners’ responses

Figure 2 shows listeners’ responses expressed as the mean proportion of keywords cor-
rect in each condition. From a baseline proportion of 0.93 correctly recognised keywords
in the unprocessed condition, randomly replacing 112ms segments by noise led to a
mean score of 0.77. Both INT and cSE metrics were successful in capturing important
information in speech, since selecting only low-valued regions in both of these metrics
led to a mild decrease in intelligibility (0.85 in both cases) while replacing high-valued
segments by noise was more disruptive (0.68 and 0.64, respectively). In contrast, selecting
either high- or low-valued segments using the cse-y metric had no impact on listeners’
scores, with an average score equivalent to a random selection (0.77 and 0.76, respec-
tively). One notable result is that replacing high-valued segments based on the csE metric
was more damaging than equivalent segments selected by the INT or csE-y metrics.

A generalised linear mixed-effect model was fitted to the sentence scores
[R package LME4, Bates et al. (2015)], predicting the probability of correctly identifying
the keywords of the sentence. Experimental condition was taken as a fixed effect with
8 levels and the intercepts for participant and sentence as random effects. Random
effects standard deviations for participant and sentence were 0.53 and 0.77, respectively.
Post hoc multiple comparisons between conditions using Tukey contrasts revealed that
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Fig. 2. (Color online) Listeners’ responses expressed as the proportion of correctly recognised keywords in each
condition. Error bars represent = 1 standard error of the mean across N =31 participants.

all but four pair-wise comparisons between conditions were statistically significant [all
2 <0.001; p-values reported here and elsewhere are adjusted p-values computed with
single-step method as defined in the R package murTcomp, Hothorn et al (2008)]. In
particular, word recognition in the HI-cSE condition was significantly lower than in the
HI-INT condition (z=-8.76, p <0.001). The non-significant comparisons were [RANDOM,
HI-CSE-}], [RANDOM, LO-CSE-y], [HI-CSE-), LO-CSE-)], and [Lo-INT, LO-CSE] (all p > 0.8).

3.2 Temporal alignment of HI-cSE and HI-INT

All three metrics are based on criteria relating to the temporal dynamics of some mea-
sure of sound intensity, ultimately leading to information at discrete time instants which
can be directly compared. Since HI-CSE and HI-INT segments are mainly associated with
the more energetic vowel sounds of a sentence, the temporal location of segments
selected by each metric in relation to vowels was examined in more detail. To evaluate
the relative temporal alignment of Hi-cSE and HI-INT segments, we computed the time
difference between the segment center and the onset of the vowel closest to the segment
center, in a window that ranged from 150 ms prior to the vowel onset to 250 ms follow-
ing the onset. The upper panel of Fig. 3 plots the time to vowel onset distribution for
HI-CSE and HI-INT segments, and includes the HI-cSE-y segments for comparison.

On average, both HI-cSE and HI-INT segments occur in the portion of speech sig-
nal just following vowel onset, with Hi-cSE segments located earlier than HI-INT seg-
ments. The distributions are not normally distributed (Shapiro test: CSE: W =0.86,
» <0.001; Intensity: W =0.88, p<0.001) and are all leptokurtic (cse: kurtosis=8.1; INT:
kurtosis=10.1). A Wilcoxon rank sum test with continuity correction revealed that

. HI-INT
Bl --cse
. HI-CSE-y

Count
o

1.004

0.754

— INT
— CSE
0.501 - - Z(Roex)
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Relative amplitude (normalised)

-0.1 0.0 01 0.2
time to vowel onset (s)

Fig. 3. (Color online) Temporal alignment of the three metrics in relation to vowel onset. Upper panel: distribu-

tion of 112ms high-valued segments’ temporal midpoints in relation to the closest vowel onset. Lower panel:
temporal profile of the three metrics and of the auditory representations they are based on.
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Hi-cSE and HI-INT distributions have significantly different true locations (W =410930,
»<0.001). Median values are 42.5ms for Hi-cSE and 56.4 ms for HI-INT, a difference of
nearly 14 ms.

The lower panel of Fig. 3 represents the temporal profile around vowel onsets
of the across-frequency sum of the auditory representations and their first order deriva-
tives—the latter quantities being the indices cse and cse-y. The profiles of the two
auditory representations without the derivative step are very similar both to each other
and to that for plain intensity. However, applying the smoothed first-order derivative
on these auditory representations as in the cSE and cse-y metrics results in a marked
difference. In particular, the cse-y profile is very different from the sum across gamma-
tone filter envelopes on which it is based, having a form typical of a first-order deriva-
tive. In contrast, the CSE profile is quite similar to its roex base, the key difference
being in the timing of the local extrema, which occur earlier.

The original study by Stilp and Kluender (2010) used both 112 and 80 ms anal-
ysis windows representing typical vowel-like and consonant-like segment durations in
American English, respectively. While participants of the current study were not tested
using the latter condition, the above analysis with an 80ms windows was repeated,
revealing that the relative properties of the distributions remained identical: the HI-CSE
distribution had a negative mode, followed by HI-cSE and HI-INT, both with a positive
mode and in increasing order. In particular, a Wilcoxon ranksum test between HI-CSE
and HI-INT showed that these distributions had true different locations (=363 280,
p<0.001) with HI-cSE segments occurring about 18 ms earlier than HI-INT segments rela-
tive to vowel onsets.

4. Discussion

The current study had two objectives: first, to validate the close link between the CSE
metric and sound intensity; and second, to examine the relative timing of intensity and
CSE-based metrics to explain possible differences. In line with previously reported
results (Oxenham et al., 2017; Shu et al., 2016), we found that the CSE metric com-
puted on linearly scaled intensity values of auditory roex filter outputs follows closely
the variations of a simple sound intensity characterisation of the speech signal and, as
such, speech segments selected by local extrema of the two metrics overlap most of the
time. Further, an implementation of the CSE metric employing a more widely used
intensity scaling as a precursor to computing spectral change, namely, the auditory-
transformed gammatone filterbank and log-transformed decibel intensity values did
not predict sentence intelligibility, and in fact had the same impact on intelligibility as
a random selection of segments. The effect of the choice of scale, also observed by
Oxenham et al. (2017), further confirms that spectral change, as measured by the first-
order derivative of some energy measure of the speech signal, is not the main determi-
nant of speech segments important for speech recognition. In fact, highly transitional
speech portions as selected by the Hi-csE-y metric (visible in Fig. 1) are not the most
intense ones, and therefore are susceptible to noise-masking in real-life environments.
Indeed, it is the case that intensity, a first-order indicator of robustness in the face of
energetic masking, seems to be a more efficient predictor of intelligibility than a mea-
sure of spectral change taken across the full frequency range of auditory speech percep-
tion (see Fig. 1).

Despite the close link between CSE and sound intensity, we found a small but
significant difference in intelligibility disruption, effectively making the CSE index
superior to other signal characterisations of speech segments as measured by the dis-
ruptive comprehension paradigm, and as claimed by Stilp and Kluender (2010). This
trend is also visible in Fig. 2 of Oxenham et al. (2017). We found a systematic shift in
the temporal alignment of HI-CSE and HI-INT segments relative to nearby vowel onsets,
with CSE peaks occurring slightly earlier than intensity peaks. It appears that the
greater disruptive power of replacing HI-CSE segments might be explained by a greater
overlap on average with vowel onsets compared to HI-INT segments (see upper panel of
Fig. 3). Further studies are needed to test the disruptive power of systematically vary-
ing segment selection in relation to the temporal location of intensity peaks. The
importance of consonant-vowel transitions, centred on vowel onsets, has also been
tested (Fogerty and Kewley-Port, 2009), with the CSE index argued to be a superior
predictor (Stilp and Kluender, 2010), although a direct comparison of CSE vs linguisti-
cally based segment selection has not been tested. The temporal locus between vowel
onset and peak intensity has also been identified as a crucial time instant in rhythmic
descriptions of speech perception. The perceptual center, or p-center (Morton et al.,
1976) has been defined as the “perceptual moment of occurrence” of a speech unit and
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represents the time instant at which listeners would place a beat associated with the
speech unit. The temporal midpoint of the rise of amplitude following vowel onset has
been proposed as a reasonable acoustic correlate of the p-center, with other factors
such as syllable structure and speaking rate also playing a role (Scott, 1993; Cummins
and Port, 1998). It is perhaps not surprising that replacing this time instant with noise,
as was effectively done in the current study, is highly disruptive, as a consequence of
both masking robust bottom-up acoustic cues to speech segmentation and interfering
with higher-level rhythmic aspects of speech processing.

5. Conclusion

The current study adds to the evidence of recent investigations using different sets of
sentences and languages which together provide a coherent picture of the CSE metric.
The metric relies on a non-classical computation of spectral change, based on linear
rather than logarithmic (decibel) scaling of intensity values. As such, it is closely related
to sound intensity, but with a marked temporal difference: CSE peaks occur significantly
earlier than intensity peaks in English. The disparity in temporal alignment may be asso-
ciated with a small but significant advantage in capturing important speech information,
since replacing high-CSE segments with noise disrupts intelligibility to a greater extent
than when replacing high-intensity segments.
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