R. Duncan and R. Gaspar, Nanomedicine(s) under the Microscope, Molecular Pharmaceutics, vol.8, issue.6, pp.2101-2141, 2011.
DOI : 10.1021/mp200394t

O. C. Farokhzad and R. Langer, Impact of Nanotechnology on Drug Delivery, ACS Nano, vol.3, issue.1, pp.16-20, 2009.
DOI : 10.1021/nn900002m

S. R. Grobmyer, D. L. Morse, B. Fletcher, L. G. Gutwein, P. Sharma et al., The promise of nanotechnology for solving clinical problems in breast cancer, Journal of Surgical Oncology, vol.25, issue.126, pp.317-325, 2011.
DOI : 10.1002/jmri.20852

C. Buzea, I. I. Pacheco, and K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases, vol.2, issue.4, 2007.
DOI : 10.1116/1.2815690

URL : http://avs.scitation.org/doi/pdf/10.1116/1.2815690

A. B. Djuri?ic´, Y. H. Djuri?ic´djuri?ic´, A. Leung, X. Y. Ng, P. K. Xu et al., Toxicity of Metal Oxide Nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artefacts, Small, vol.191, issue.1, pp.26-44, 2015.
DOI : 10.1016/j.toxlet.2009.05.020

N. Lewinski, V. Colvin, and R. Drezek, Cytotoxicity of nanoparticles, pp.26-49, 2008.

A. Nel, T. Xia, L. Mädler, and N. Li, Toxic Potential of Materials at the Nanolevel, Science, vol.311, issue.5761, pp.622-627, 2006.
DOI : 10.1126/science.1114397

V. Srivastava, D. Gusain, and Y. C. Sharma, Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles, Industrial & Engineering Chemistry Research, vol.54, issue.24, pp.6209-6233, 2015.
DOI : 10.1021/acs.iecr.5b01610

M. Farré, K. Gajda-schrantz, L. Kantiani, and D. Barceló, Ecotoxicity and analysis of nanomaterials in the aquatic environment, Analytical and Bioanalytical Chemistry, vol.45, issue.1, pp.81-95, 2009.
DOI : 10.1289/ehp.7021

M. A. Maurer-jones, I. L. Gunsolus, C. J. Murphy, and C. L. Haynes, Toxicity of Engineered Nanoparticles in the Environment, Analytical Chemistry, vol.85, issue.6, pp.3036-3049, 2013.
DOI : 10.1021/ac303636s

A. Pietroiusti, A. Magrini, and L. Campagnolo, New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials, Toxicology and Applied Pharmacology, vol.299, pp.90-95, 2016.
DOI : 10.1016/j.taap.2015.12.017

L. Rowenczyk, C. Duclairoir-poc, M. Barreau, C. Picard, N. Hucher et al., Impact of coated TiO 2 -nanoparticles used in sunscreens on two representative strains of the human microbiota: Effect of the particle surface nature and aging, Colloids and Surfaces B: Biointerfaces, vol.158, pp.339-348, 2017.
DOI : 10.1016/j.colsurfb.2017.07.013

C. M. Beddoes, C. P. Case, and W. H. Briscoe, Understanding nanoparticle cellular entry: A physicochemical perspective, Advances in Colloid and Interface Science, vol.218, pp.48-68, 2015.
DOI : 10.1016/j.cis.2015.01.007

T. M. Tolaymat, A. M. Badawy, A. Genaidy, K. G. Scheckel, T. P. Luxton et al., An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers, Science of The Total Environment, vol.408, issue.5, pp.999-1006, 2010.
DOI : 10.1016/j.scitotenv.2009.11.003

T. Silva, L. R. Pokhrel, B. Dubey, T. M. Tolaymat, K. J. Maier et al., Particle size, surface charge and concentration dependent ecotoxicity of three organocoated silver nanoparticles: Comparison between general linear modelpredicted and observed toxicity, Sci. Total Environ, pp.468-469, 2014.
DOI : 10.1016/j.scitotenv.2013.09.006

A. Simon-deckers, S. Loo, M. Mayne-l-'hermite, N. Herlin-boime, N. Menguy et al., Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria, Environmental Science & Technology, vol.43, issue.21, pp.43-8423, 2009.
DOI : 10.1021/es9016975

URL : https://hal.archives-ouvertes.fr/hal-00430587

M. Mathelié-guinlet, L. Béven, F. Moroté, D. Moynet, C. Grauby-heywang et al., Probing the threshold of membrane damage and cytotoxicity effects induced by silica nanoparticles in Escherichia coli bacteria, Advances in Colloid and Interface Science, vol.245, pp.81-91, 2017.
DOI : 10.1016/j.cis.2017.04.012

I. Lynch, A. Salvati, and K. A. Dawson, What does the cell see?, Nature Nanotechnology, vol.3, issue.9, 2009.
DOI : 10.1038/nnano.2009.248

G. Pyrgiotakis, C. O. Blattmann, and P. Demokritou, Real-Time Nanoparticle???Cell Interactions in Physiological Media by Atomic Force Microscopy, ACS Sustainable Chemistry & Engineering, vol.2, issue.7, pp.1681-1690, 2014.
DOI : 10.1021/sc500152g

URL : https://doi.org/10.1021/sc500152g

X. Zhu, J. Wang, X. Zhang, Y. Chang, and Y. Chen, ), Nanotechnology, vol.20, issue.19, pp.957-4484, 2009.
DOI : 10.1088/0957-4484/20/19/195103

L. Wang, C. Hu, and L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, International Journal of Nanomedicine, vol.12, pp.1227-1249, 2017.
DOI : 10.2147/IJN.S121956

C. Kaweeteerawat, A. Ivask, R. Liu, H. Zhang, C. H. Chang et al., Correlates with Conduction Band and Hydration Energies, Environmental Science & Technology, vol.49, issue.2, pp.1105-1112, 2015.
DOI : 10.1021/es504259s

C. Lee, J. Y. Kim, W. I. Lee, K. L. Nelson, J. Yoon et al., Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli, Environmental Science & Technology, vol.42, issue.13, pp.4927-4933, 2008.
DOI : 10.1021/es800408u

URL : http://europepmc.org/articles/pmc2536719?pdf=render

Y. Li, W. Zhang, J. Niu, and Y. Chen, Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles, ACS Nano, vol.6, issue.6, pp.5164-5173, 2012.
DOI : 10.1021/nn300934k

T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf et al., Comparison of the Abilities of Ambient and Manufactured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm, Nano Letters, vol.6, issue.8, pp.1794-1807, 2006.
DOI : 10.1021/nl061025k

O. Bondarenko, A. Ivask, A. Käkinen, and A. Kahru, Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action, Environmental Pollution, vol.169, pp.81-89, 2012.
DOI : 10.1016/j.envpol.2012.05.009

Z. Xiu, Q. Zhang, H. L. Puppala, V. L. Colvin, and P. J. Alvarez, Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles, Nano Letters, vol.12, issue.8, pp.4271-4275, 2012.
DOI : 10.1021/nl301934w

I. Sondi and B. Salopek-sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a??model for Gram-negative bacteria, Journal of Colloid and Interface Science, vol.275, issue.1, pp.177-182, 2004.
DOI : 10.1016/j.jcis.2004.02.012

P. Sahoo, P. S. Murthy, S. Dhara, V. P. Venugopalan, A. Das et al., Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy, Journal of Nanoparticle Research, vol.273, issue.8, pp.11051-11064, 2013.
DOI : 10.1021/nn3010087

Y. Ibuki and T. Toyooka, Nanoparticle Uptake Measured by Flow Cytometry, pp.157-166
DOI : 10.1007/978-1-62703-002-1_11

L. K. Adams, D. Y. Lyon, and P. J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Research, vol.40, issue.19, pp.3527-3532, 2006.
DOI : 10.1016/j.watres.2006.08.004

T. J. Beveridge, Structures of gram-negative cell walls and their derived membrane vesicles, J. Bacteriol, vol.181, pp.4725-4733, 1999.

J. J. Thwaites and N. H. Mendelson, Mechanical Behaviour of Bacterial Cell Walls, Adv. Microb. Physiol, vol.32, pp.173-222, 1991.
DOI : 10.1016/S0065-2911(08)60008-9

M. Tokarska-rodak, M. Kozio?-montewka, K. Skrzypiec, T. Chmielewski, E. Mendyk et al., Analysis of nanomechanical properties of Borrelia burgdorferi spirochetes under the influence of lytic factors in an in vitro model using atomic force microscopy, Post??py Higieny i Medycyny Do??wiadczalnej, vol.69, pp.69-1222, 2015.
DOI : 10.5604/17322693.1179650

B. Park and N. I. , Variations in the nanomechanical properties of virulent and avirulent Listeria monocytogenes, Soft Matter, vol.187, issue.6, pp.3898-3909, 2010.
DOI : 10.1051/jphys:01977003808098300

V. Vadillo-rodriguez, S. R. Schooling, and J. R. Dutcher, In Situ Characterization of Differences in the Viscoelastic Response of Individual Gram-Negative and Gram-Positive Bacterial Cells, Journal of Bacteriology, vol.191, issue.17, pp.5518-552500528, 2009.
DOI : 10.1128/JB.00528-09

N. I. Abu-lail and T. A. Camesano, The effect of solvent polarity on the molecular surface properties and adhesion of Escherichia coli, Colloids and Surfaces B: Biointerfaces, vol.51, issue.1, pp.62-70, 2006.
DOI : 10.1016/j.colsurfb.2006.05.009

G. Francius, P. Polyakov, J. Merlin, Y. Abe, J. Ghigo et al., Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of escherichia coli cells subjected to osmotic stress, PLoS One, vol.6, 2011.
DOI : 10.1371/journal.pone.0020066

URL : https://hal.archives-ouvertes.fr/pasteur-01393507

F. Gaboriaud, S. Bailet, E. Dague, and F. Jorand, Surface Structure and Nanomechanical Properties of Shewanella putrefaciens Bacteria at Two pH values (4 and 10) Determined by Atomic Force Microscopy, Journal of Bacteriology, vol.187, issue.11, pp.3864-3868, 2005.
DOI : 10.1128/JB.187.11.3864-3868.2005

URL : http://jb.asm.org/content/187/11/3864.full.pdf

C. B. Volle, M. A. Ferguson, K. E. Aidala, E. M. Spain, and M. E. Núñez, 109J, Langmuir, vol.24, issue.15, pp.8102-8110, 2008.
DOI : 10.1021/la8009354

A. Raman, S. Trigueros, A. Cartagena, A. P. Stevenson, M. Susilo et al., Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy, Nature Nanotechnology, vol.7799, issue.12, pp.809-814, 2011.
DOI : 10.1016/S0167-7799(99)01304-9

N. P. Mortensen, J. D. Fowlkes, C. J. Sullivan, D. P. Allison, N. B. Larsen et al., Effects of Colistin on Surface Ultrastructure and Nanomechanics of Pseudomonas aeruginosa Cells, Langmuir, vol.25, issue.6, pp.3728-3733, 2009.
DOI : 10.1021/la803898g

A. Da-silva and O. Teschke, Effects of the antimicrobial peptide PGLa on live Escherichia coli, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1643, issue.1-3, pp.95-103, 2003.
DOI : 10.1016/j.bbamcr.2003.10.001

A. Zdybicka-barabas, S. Sta, ?. Czek, P. Mak, K. Skrzypiec et al., Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.6, pp.1449-1456, 1828.
DOI : 10.1016/j.bbamem.2013.02.004

URL : https://doi.org/10.1016/j.bbamem.2013.02.004

G. Longo and S. Kasas, Effects of antibacterial agents and drugs monitored by atomic force microscopy, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.8, issue.3, pp.230-244, 2014.
DOI : 10.1038/nnano.2013.120

S. Aguayo, N. Donos, D. Spratt, and L. Bozec, Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells, Nanotechnology, vol.26, issue.6, pp.957-4484, 62001.
DOI : 10.1088/0957-4484/26/6/062001

A. V. Bolshakova, O. I. Kiselyova, and I. V. Yaminsky, Microbial Surfaces Investigated Using Atomic Force Microscopy, Biotechnology Progress, vol.20, issue.6, pp.1615-1622, 2004.
DOI : 10.1021/bp049742c

F. Gaboriaud and Y. F. Dufrêne, Atomic force microscopy of microbial cells: Application to nanomechanical properties, surface forces and molecular recognition forces, Colloids and Surfaces B: Biointerfaces, vol.54, issue.1, pp.10-19, 2007.
DOI : 10.1016/j.colsurfb.2006.09.014

D. J. Muller, Biochemistry, vol.47, issue.31, pp.7986-7998, 2008.
DOI : 10.1021/bi800753x

H. Butt, B. Cappella, and M. , Force measurements with the atomic force microscope: Technique, interpretation and applications, Surface Science Reports, vol.59, issue.1-6, pp.1-152, 2005.
DOI : 10.1016/j.surfrep.2005.08.003

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, Atomic force microscopy probing of cell elasticity, Micron, vol.38, issue.8, pp.824-833, 2007.
DOI : 10.1016/j.micron.2007.06.011

A. Simon, T. Cohen-bouhacina, M. C. Porté, J. P. Aimé, J. Amédée et al., Characterization of dynamic cellular adhesion of osteoblasts using atomic force microscopy, Cytometry Part A, vol.19, issue.1, pp.54-90, 2003.
DOI : 10.1016/S0927-7765(00)00145-4

URL : https://hal.archives-ouvertes.fr/hal-01550890

K. Amako, K. Murata, and A. Umeda, Observed by the Rapid-Freezing and Substitution Fixation Method, Microbiology and Immunology, vol.127, issue.1, pp.95-99, 1983.
DOI : 10.1083/jcb.81.2.275

R. Brayner, R. Ferrari-iliou, N. Brivois, S. Djediat, M. F. Benedetti et al., Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium, Nano Letters, vol.6, issue.4, pp.866-870, 2006.
DOI : 10.1021/nl052326h

W. Tan, K. Wang, X. He, X. J. Zhao, T. Drake et al., Bionanotechnology based on silica nanoparticles, Medicinal Research Reviews, vol.58, issue.5, pp.621-638, 2004.
DOI : 10.1007/s12043-002-0211-4

J. Wehling, E. Volkmann, T. Grieb, A. Rosenauer, M. Maas et al., A critical study: Assessment of the effect of silica particles from 15 to 500??nm on bacterial viability, Environmental Pollution, vol.176, pp.292-299, 2013.
DOI : 10.1016/j.envpol.2013.02.001

L. B. Capeletti, L. F. De-oliveira, K. De, A. Gonçalves, J. F. De-oliveira et al., Tailored Silica???Antibiotic Nanoparticles: Overcoming Bacterial Resistance with Low Cytotoxicity, Langmuir, vol.30, issue.25, pp.7456-7464, 2014.
DOI : 10.1021/la4046435

C. Fruijtier-pölloth, The toxicological mode of action and the safety of synthetic amorphous silica???A nanostructured material, Toxicology, vol.294, issue.2-3, pp.61-79, 2012.
DOI : 10.1016/j.tox.2012.02.001

I. Gammoudi, M. Mathelie-guinlet, F. Morote, L. Beven, D. Moynet et al., Morphological and nanostructural surface changes in Escherichia coli over time, monitored by atomic force microscopy, Colloids and Surfaces B: Biointerfaces, vol.141, pp.355-364, 2016.
DOI : 10.1016/j.colsurfb.2016.02.006

URL : https://hal.archives-ouvertes.fr/hal-01342320

A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, and C. F. Quate, Forces in atomic force microscopy in air and water, Applied Physics Letters, vol.7, issue.26, pp.2651-2653, 1989.
DOI : 10.1111/j.1365-2818.1988.tb01388.x

A. J. Engler, F. Rehfeldt, S. Sen, and D. E. Discher, Microtissue Elasticity: Measurements by Atomic Force Microscopy and Its Influence on Cell Differentiation, Methods Cell Biol, issue.07, pp.521-545, 2007.
DOI : 10.1016/S0091-679X(07)83022-6

G. Thomas, N. A. Burnham, T. A. Camesano, and Q. Wen, Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy, Journal of Visualized Experiments, issue.76, 2013.
DOI : 10.3791/50497

A. V. Bolshakova, O. I. Kiselyova, A. S. Filonov, O. Y. Frolova, Y. L. Lyubchenko et al., Comparative studies of bacteria with an atomic force microscopy operating in different modes, Ultramicroscopy, vol.86, issue.1-2, pp.121-128, 2001.
DOI : 10.1016/S0304-3991(00)00075-9

A. Cerf, J. Cau, C. Vieu, and E. Dague, Nanomechanical Properties of Dead or Alive Single-Patterned Bacteria, Langmuir, vol.25, issue.10, pp.5731-5736, 2009.
DOI : 10.1021/la9004642

F. Gaboriaud, B. S. Parcha, M. L. Gee, J. A. Holden, and R. A. Strugnell, Spatially resolved force spectroscopy of bacterial surfaces using force-volume imaging, Colloids and Surfaces B: Biointerfaces, vol.62, issue.2, pp.206-213, 2008.
DOI : 10.1016/j.colsurfb.2007.10.004

G. Longo, L. M. Rio, C. Roduit, A. Trampuz, A. Bizzini et al., Force volume and stiffness tomography investigation on the dynamics of stiff material under bacterial membranes, Journal of Molecular Recognition, vol.400, issue.3, pp.278-284, 2012.
DOI : 10.1038/21918

M. Hu, J. Wang, H. Zhao, S. Dong, and J. Cai, Nanostructure and nanomechanics analysis of lymphocyte using AFM: From resting, activated to apoptosis, Journal of Biomechanics, vol.42, issue.10, pp.1513-1519, 2009.
DOI : 10.1016/j.jbiomech.2009.03.051

R. J. Emerson and T. A. Camesano, Nanoscale Investigation of Pathogenic Microbial Adhesion to a Biomaterial, Applied and Environmental Microbiology, vol.70, issue.10, pp.6012-6022, 2004.
DOI : 10.1128/AEM.70.10.6012-6022.2004

URL : http://aem.asm.org/content/70/10/6012.full.pdf

L. Arnal, D. O. Serra, N. Cattelan, M. F. Castez, L. Vázquez et al., Envelope, Langmuir, vol.28, issue.19, pp.7461-7469, 2012.
DOI : 10.1021/la300811m

A. Méndez-vilas, A. M. Gallardo-moreno, and M. L. González-martín, Atomic Force Microscopy of Mechanically Trapped Bacterial Cells, Microscopy and Microanalysis, vol.89, issue.01, pp.55-64, 2007.
DOI : 10.1007/s002320001037

M. Arnoldi, M. Fritz, E. Bäuerlein, M. Radmacher, E. Sackmann et al., Bacterial turgor pressure can be measured by atomic force microscopy, Physical Review E, vol.10, issue.1, pp.62-1034, 2000.
DOI : 10.1021/la00022a068

C. J. Sullivan, S. Venkataraman, S. T. Retterer, D. P. Allison, and M. J. Doktycz, Comparison of the indentation and elasticity of E. coli and its spheroplasts by AFM, Ultramicroscopy, vol.107, issue.10-11, pp.934-942, 2007.
DOI : 10.1016/j.ultramic.2007.04.017

C. B. Volle, M. A. Ferguson, K. E. Aidala, E. M. Spain, and M. E. Núñez, Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy, Colloids and Surfaces B: Biointerfaces, vol.67, issue.1, pp.32-40, 2008.
DOI : 10.1016/j.colsurfb.2008.07.021

S. B. Velegol and B. E. Logan, Contributions of Bacterial Surface Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves, Langmuir, vol.18, issue.13, pp.5256-5262, 2002.
DOI : 10.1021/la011818g

P. Eaton, J. C. Fernandes, E. Pereira, M. E. Pintado, and F. X. Malcata, Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus, Ultramicroscopy, vol.108, issue.10, pp.1128-1134, 2008.
DOI : 10.1016/j.ultramic.2008.04.015

G. Francius, O. Domenech, M. P. Mingeot-leclercq, and Y. F. Dufrêne, Direct Observation of Staphylococcus aureus Cell Wall Digestion by Lysostaphin, Journal of Bacteriology, vol.190, issue.24, pp.7904-790901116, 2008.
DOI : 10.1128/JB.01116-08

URL : http://jb.asm.org/content/190/24/7904.full.pdf

C. Formosa, M. Grare, E. Jauvert, A. Coutable, J. B. Regnouf-de-vains et al., Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain, Scientific Reports, vol.64, issue.1, 2012.
DOI : 10.1063/1.1143970

URL : https://hal.archives-ouvertes.fr/hal-01650390

A. Da, S. Junior, and O. Teschke, Dynamics of the antimicrobial peptide PGLa action on <Emphasis Type=''Italic " >Escherichia coli</Emphasis> monitored by atomic force microscopy, World J. Microbiol. Biotechnol, vol.21, pp.1103-1110, 2005.

M. Meincken, D. L. Holroyd, and M. Rautenbach, Atomic Force Microscopy Study of the Effect of Antimicrobial Peptides on the Cell Envelope of Escherichia coli, Antimicrobial Agents and Chemotherapy, vol.49, issue.10, pp.4085-4092, 2005.
DOI : 10.1128/AAC.49.10.4085-4092.2005

F. Quilès, S. Saadi, G. Francius, J. Bacharouche, and F. Humbert, In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1858, issue.1, pp.75-84, 1858.
DOI : 10.1016/j.bbamem.2015.10.015

B. Ramalingam, T. Parandhaman, and S. K. Das, ACS Applied Materials & Interfaces, vol.8, issue.7, pp.4963-4976, 2016.
DOI : 10.1021/acsami.6b00161

S. Jan, F. Baron, M. Alabdeh, W. Chaari, N. Grosset et al., Biochemical and Micrographic Evidence of Escherichia coli Membrane Damage during Incubation in Egg White under Bactericidal Conditions, Journal of Food Protection, vol.56, issue.9, pp.1523-1529, 2013.
DOI : 10.4315/0362-028X-71.10.1988

URL : https://hal.archives-ouvertes.fr/hal-00868467

T. Hugel, M. Grosholz, H. Clausen-schaumann, A. Pfau, H. Gaub et al., Elasticity of Single Polyelectrolyte Chains and Their Desorption from Solid Supports Studied by AFM Based Single Molecule Force Spectroscopy, Macromolecules, vol.34, issue.4, pp.1039-1047, 2001.
DOI : 10.1021/ma0009404

Y. Wei and R. A. Latour, Surface Interactions, Langmuir, vol.26, issue.24, pp.18852-18861, 2010.
DOI : 10.1021/la103685d