Bark and Leaf Fusion Systems to Improve Automatic Tree Species Recognition

Sarah Bertrand 1 Rihab Ben Ameur 2 Guillaume Cerutti 3 Didier Coquin 2 Lionel Valet 2 Laure Tougne 1
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
3 VIRTUAL PLANTS - Modeling plant morphogenesis at different scales, from genes to phenotype
CRISAM - Inria Sophia Antipolis - Méditerranée , INRA - Institut National de la Recherche Agronomique, Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] : UMR51
Abstract : For everyone, the identification of tree is a difficult task. The main organ of the plant used generally to identify a tree is the leaf. However, due to the large variability of the shapes of leaves, it is difficult to obtain good recognition results. Moreover, sometimes the bark is a very distinctive feature and we think it may be possible to improve the recognition rate by considering it. The main purpose of this article is to investigate how we can combine the features extracted respectively from the leaf and the bark images to recognize the tree the photos come from. An important point is the consideration of the confusion matrix that can be constructed between several species, when the form of a leaf or the shape of a bark is common to a number of tree species. So, we present various strategies of fusion including belief functions and compare them on a public database of 72 species of trees and shrubs, which can be find in metropolitan France.
Type de document :
Article dans une revue
Ecological Informatics, Elsevier, 2018, 〈10.1016/j.ecoinf.2018.05.007〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01811039
Contributeur : Sarah Bertrand <>
Soumis le : vendredi 8 juin 2018 - 14:43:27
Dernière modification le : vendredi 21 septembre 2018 - 16:14:04

Identifiants

Citation

Sarah Bertrand, Rihab Ben Ameur, Guillaume Cerutti, Didier Coquin, Lionel Valet, et al.. Bark and Leaf Fusion Systems to Improve Automatic Tree Species Recognition. Ecological Informatics, Elsevier, 2018, 〈10.1016/j.ecoinf.2018.05.007〉. 〈hal-01811039〉

Partager

Métriques

Consultations de la notice

177