A Topological Invariant for Modular Fusion Categories

Abstract : The modular data of a modular category C, consisting of the S-matrix and the T-matrix, is known to be a incomplete invariant of C. More generally, the invariants of framed links and knots defined by a modular category as part of a topological quantum field theory can be viewed as numerical invariants of the category. Among these invariants, we study the invariant defined by the Borromean link colored by three objects. Thus we obtain a tensor that we call B. We derive a formula for the Borromean tensor for the twisted Drinfeld doubles of finite groups. Along with T , it distinguishes the p non-equivalent modular categories of the form Z(Vec^ω_G) for G the non-abelian group of order pq, which are not distinguished by the modular data.
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

Contributeur : Peter Schauenburg <>
Soumis le : jeudi 7 juin 2018 - 21:13:10
Dernière modification le : mardi 12 juin 2018 - 14:25:45
Document(s) archivé(s) le : samedi 8 septembre 2018 - 15:00:38


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01810449, version 1
  • ARXIV : 1806.03158



Ajinkya Kulkarni, Michaël Mignard, Peter Schauenburg. A Topological Invariant for Modular Fusion Categories. 2018. 〈hal-01810449〉



Consultations de la notice


Téléchargements de fichiers