N

N
N

HAL

open science

WCET measurment using modified path testing
Nicky Williams

» To cite this version:

Nicky Williams. WCET measurment using modified path testing. 5th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, July 5, 2005, Palma de Mallorca, Spain, 2005, Palma de Mallorca,

Spain. hal-01810200

HAL Id: hal-01810200
https://hal.science/hal-01810200

Submitted on 20 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01810200
https://hal.archives-ouvertes.fr

WCET measurement using modified path testing

Nicky Williams
CEA/Saclay
DRT/LIST/DTSI/SOL/LSL
91191Gif sur Yvette, FRANCE
Nicky.Williams@cea.fr

Abstract

Prediction of Worst Case Execution Time (WCET) is
made increasingly difficult by the recent developments in
microprocessor architectures. Instead of predicting the
WCET using techniques such as static analysis, the effective
execution time can be measured when the program is run
on the target architecture or a cycle-accurate simulator.
However, exhaustive measurements on all possible input
values are usually prohibited by the number of possible
input values. As a first step towards a solution, we propose
path testing using the PathCrawler tool to automatically
generate test inputs for all feasible execution paths in C
source code. For programs containing too many execution
paths for this approach to be feasible, we propose to modify
PathCrawler’s strategy in order to cut down on the number
of generated tests while still ensuring measurement of the
path with the longest execution time.

1 Introduction

Prediction of Worst Case Execution Time (WCET) is
made increasingly difficult by the recent developments in
processor architectures [3]. This is because the execution
time of an instruction in the source code has become
strongly dependent on the state of the machine at the time
the instruction is executed because events such as data
cache misses and bad branch prediction use up many more
cycles than individual instructions. These events are diffi-
cult to predict by static analysis of the program code, espe-
cially when the precise architecture of the processor is not
divulged by the manufacturer. Moreover, static analyses
must continually keep up with the latest architectural inno-
vations.

2 First step to a solution : path testing

The structural testing field provides a first step towards
an alternative to pure static analysis. The 100%-feasible-

path structural test criterion guarantees that at least one test
case is executed for each feasible execution path in the
source code of the program under test. Suppose that the
longest effective execution time is found for a test set which
satisfies this criterion. This will be the WCET if we can
suppose that execution of the same path in the source code,
starting from the same initial state of the machine, will al-
ways give the same execution time. In fact, we need to
make the following assumptions, each of which requires
careful analysis to be sure that a safe WCET is obtained:

1. Each feasible execution path in the source code gives
rise to at most one feasible execution path in the bi-
nary code (even if it is not the same path): this is true
for most compilers and options.

2. The execution time of a feasible execution path in the
binary code is the same for all input values which
cause the execution of this path: in fact the execution
time of some instructions such as division or square
root may vary for different values of input data but it
should be possible to measure this variation and either
choose input values accordingly or else add a penalty
to the measured execution time for each such instruc-
tion in the path. Cache behaviour may also cause this
condition to be violated, e.g. if an execution path con-
tains successive references to elements of a data struc-
ture with variable indices and the data structure is large
enough to provoke a cache miss for some values of the
indices but not for others. Input values should there-
fore be chosen so as to maximise the difference be-
tween index values of the same data structure used in
neighbouring references.

3. For each test case it is possible to set the machine to
some worst possible initial state concerning cache be-
haviour, branch prediction, etc before running the
test: in fact, it is impossible to prove which initial state
is the worst possible for a given test case without de-
tailed knowledge of the microprocessor. However, by
using our knowledge of the test case (branches, ad-
dressed variables,...) and broad characterisations of
cache and dynamic branch prediction behaviour we



can construct a program to be run just before the pro-
gram under test and put it into what should be the
worst possible state. Cache and branch prediction algo-
rithms are based on past behaviour so such a program
might aim to fill the caches with useless data and in-
structions and repeatedly run the program under test on
paths with branches which are the opposite of those in
the test case. Note that in the case of embedded, reac-
tive, cyclical systems, the initial state of the machine is
often the state in which it was left by the last execution
of the same program. In this case, all possible se-
quences of previous test cases which create the initial
conditions for a given case can be either run (if not too
numerous) or analysed to find which seems to be the
worst.

4. Variations in external system behaviour such as bus
activity, DRAM refresh, do not influence execution
time: in fact, the measured time may have to be
weighted to account for such aspects [1][7].

3 The PathCrawler tool for automatic

generation of path tests

We have developed the PathCrawler prototype tool to
automatically generate test inputs to cover 100% of feasible
execution paths in a C program. It takes as inputs the C
source code and a specification of the legitimate input val-
ues. This consists of a list of the input variables and the
range of values and dimensions they may have, as well as
any preconditions to avoid run-time errors. Indeed, the ef-
fective input parameters of a C function cannot always be
deduced from its code: not all of the formal parameters may
be effectively referenced, some may have their value
changed but their value on input may never be read and,
conversely, values of some global variables may be read by
the code. Moreover, in the case of structured variables and
pointers, it may only be the values of certain elements or

fields that are read on input, or the values accessed by
pointer de-references. This why PathCrawler currently cal-
culates the set of all possible input parameters (fields, ele-
ments, de-references, etc of formal parameters and global
variables of the program under test), which may contain
many elements which are not in fact input parameters, and
then asks for the user’s help in reducing the set.

PathCrawler also starts with the default input range of
each input parameter given by its type declaration. For ex-
ample, it is supposed that each integer input could take any
value from —2°' to 2*'-1. However, the user has the oppor-
tunity to reduce these ranges if the effective values of the
inputs will always be much more restricted. In this way the
user can also define different modes or scenarios for which
the WCET is to be measured. Finally, the program may
contain operations which will cause a runtime error if ap-
plied to certain values (e.g. division by zero). The user can
specify a pre-condition (using a limited form of quantifica-
tion in the case of array elements) to restrict input values to
those which avoid such runtime errors or exclude other ille-
gitimate program inputs. Note that no annotations of source
or object code are necessary. The output of the PathCrawler
tool is a set of test inputs with the execution path covered
by each.

PathCrawler is based on a novel approach to test case
generation which is illustrated in Figure 1. It starts with an
instrumentation of the source code so as to recover the sym-
bolic execution path each time that the program under test is
executed. The instrumented code is executed for the first
time using a “test-case” which can be any set of inputs from
the domain of legitimate values. PathCrawler recovers the
corresponding symbolic path and transforms it into a path
predicate which defines the “domain” of the path covered
by the first test-case, i.e. the set of input values which would
cause the same path to be followed (see Figure 2). The next
test-case is found by solving the constraints defining the
legitimate input values outside the domain of the path which

Figure 1 : the PathCrawler test generation process

| _definition domain of program }

path predicates
of previous tests

difference
‘ domain not yet covered ‘ conjunction
constraint solving
path predicate
‘ source code ‘ ‘ input values for next test ‘
. . N . titution
Instrumentation injection of input values substitutio

" compilation
‘ instrumented source l i

‘ instrumented object ‘

execution :
execution path




Figure 2:Incremental coverage of the input domain

is already covered. The instrumented code is then executed
on this test-case and so on, until all the feasible paths have
been covered. In Figure 2 SD, is the set of legitimate inputs,
t; is the first test case generated, PP, is defined by the
predicate of the path covered by ¢, SD, is the difference
between SD, and PP, t, the second test case generated, PP,
defined by the predicate of the path covered by #, and SD, is
the difference between SD, and PP,.

PathCrawler could be implemented to treat source code
in any imperative programming language. The current pro-
totype [8] treats a wide range of ASCII C programs, which
may include arrays and pointers but it cannot yet treat type
unions, pointers to functions and recursive functions.

The inputs for each successive test case are found using
constraint solving techniques. For integer, Boolean and
character variables constraint solving is NP-complete in the
worst case, but PathCrawler uses heuristics which give
much lower complexity in practice. Note that this is the
complexity of the search for inputs for a given path if it is
feasible, or of the determination of its infeasibility if not.
Constraint solving can determine which paths are infeasible
and so can automatically discover the maximum number of
iterations of a loop (by determining the infeasibility of paths
with too many iterations). This is why the user does not
need to provide the maximum number of iterations.

Current constraint-solving techniques for floating-point
variables model them using real numbers, which poses the
problem of potential loss of precision during constraint
resolution. Also, constraint solving based on real numbers
has a complexity which is undecidable in non-linear cases.
However, current research on constraint solving for floating
point numbers proposes using a finite representation in or-
der to avoid these problems [5].

PathCrawler adopts an approach to test-case generation
which combines static and dynamic analysis so as to avoid
the problems encountered by other, purely static or dy-
namic, approaches, as explained in [8]. The result is a very
efficient generation of test inputs: for one example program
described in [8] 20993 tests were generated and 15357 in-
feasible path prefixes detected in approximately 116 sec-

onds of CPU execution time on a 2GHz PC running under
Linux.

4 The next step: measuring fewer execution
paths

Path testing avoids exhaustive testing of all inputs but
some programs have too many feasible execution paths to
be able to measure all of them. This is why some hybrid
approaches to WCET prediction propose a combination of
decomposition of the program and measurement of the ef-
fective execution time of each component [4][6].

We are exploring a different approach which is not based
on path decomposition but instead takes advantage of the
fact that PathCrawler’s test generation strategy can be modi-
fied so as to decide not to generate inputs for certain paths,
meaning that the excluded paths will not be tested. The de-
cision can be based on information obtained beforehand
(e.g. by static analysis of the control flow graph) or dynami-
cally (e.g. by additional instrumentation) when the program
is run on the other test cases.

We would like to use this possibility to define a new
strategy which cuts down the number of paths for which test
cases are generated, but guarantees coverage of the path
with the longest execution time, so that the WCET is still
safe. The idea is to first modify the strategy in order to fa-
vour early generation of test cases covering the paths with
the most instructions in the hope that these will include
some of the paths with longer execution times. Before gen-
erating a test for each new path prefix, PathCrawler would
then determine which paths in the control flow graph could
have this prefix. If any of those paths were sure to have a
shorter execution time than an already measured path, then
they could be excluded from test generation.

The problem is to identify the paths which certainly have
a shorter execution time than a given path. Of course this is
not always possible but the combinatorial explosion in the
number of paths in a program can be partly due to very mi-
nor differences between paths. Even in the presence of fea-
tures such as memory caches and branch prediction, we can
suppose that the execution time of a path depends on the
instructions in the path, including the variables referenced
by each instruction, and their order. The order of instruc-
tions may be modified during compilation or execution but
in some cases we should be able to suppose that it will be
modified in the same way for the different paths. In these
cases, a path which contains a subset of the instructions and
variable references, in the same order, of another already
measured path, cannot have more memory cache misses or
bad branch predictions than the measured path. It therefore
cannot have a longer execution time.



The most obvious example of this is two paths which are
identical except in the number of iterations they perform of
a loop with a variable number of iterations and with no
branches in the body of the loop. Note that the parts of the
path before, after and inside the loop must be identical. It
seems safe to assume in this case that the path with fewer
iterations has a shorter execution time than the other one. If
the execution time of the path with more iterations has al-
ready been measured then there is no need to generate a test
for the other path.

Other examples of common code constructions which re-

sult in paths which are very similar are :

a) the maximum: if (a > b) then max = a else max =b;

b) alimit: if (a > limit) then a = limit;

(but note that in these cases we may need to take into ac-
count the possibility of a bad branch prediction in one of the
paths and not the other). We should also be able to identify
paths which differ only by instructions which have the same
execution time in the same context, e.g. x =a+b;and x =a
—b;

Further study is needed to define a full set of conditions
under which one path has a shorter execution time than an-
other. Static analysis of the control flow graph can then be
used to determine for each path in the graph those paths
which have a shorter execution time, i.e. to impose a partial
order on the paths in the control flow graph. The instrumen-
tation and the test generation strategy of PathCrawler can
then be modified to use this partial order to exclude paths
from test generation.

For example, to eliminate paths differing only in the
number of iterations of a certain loop, we annotate loop
head instructions during instrumentation. PathCrawler’s
strategy is first modified to use these annotations to ensure
that if the path covered by the previous test case contains a
loop with a variable number of iterations then the next test
generated covers a path with a prefix which increases the
number of iterations of this loop. This favours early genera-
tion of paths with more loop iterations. Secondly, the strat-
egy excludes from future test generation all the paths identi-
cal to the already generated ones except for a lower number
of loop iterations.

5 Conclusions

Using PathCrawler to generate a test set to measure
WCET promises the following advantages :

= no need for code annotations;
= most ANSI C programs can be treated,

= to measure the execution time of the whole program
only two observation points are necessary ;

= 1o need to predict micro-architectural events such as
cache miss, pipeline stall, out-of-order execution, as
long as they are deterministic for a given execution
path in the source code.

The feasibility of the approach we suggest relies on the
extent to which the number of tests can be reduced using
simple hypotheses about e.g. cache behaviour and branch
prediction. The safety of the WCET obtained also depends
on the validity of using such hypotheses to exclude paths
and define the initial state(s) for each test case. Further
analysis, as well as experiments on different program exam-
ples, are needed in order to evaluate the categories of pro-
gram or micro-architecture for which a sufficient number of
paths can be eliminated (in less time than it would take to
generate tests for them) to effectively cut the combinatorial
explosion in the number of paths and obtain a safe WCET.

References

[1] Pavel Atanassov and Peter Puschner, Impact of DRAM
Refresh on the Execution Time of Real-Time Tasks, In Proc.
IEEE International Workshop on Application of Reliable
Computing and Communication, Dec. 2001

[2] Guillem Bernat, Antoine Colin and Stefan M. Petters, WCET
Analysis of Probabilistic Hard Real-Time Systems, In Proc.
23" TEEE Real-Time Systems Symposium (RTSSO2), Aus-
tin, Texas, December 2002

[3] Reinhold Heckmann, Marc Langenbach, Stephan Thesing
and Reinhard Wilhelm, The influence of processor architec-
ture on the design and the results of WCET tools, In Proceed-
ings of the IEEE 91(7): 1038-1054 (2003)

[4] Markus Lindgren, Hans Hansson and Henrik Thane, Using
Measurements to Derive the Worst-Case Execution Time, In
Proc. 7™ International Conference on Real-Time Computing
Systems and Applications RTSCA 2000, Cheju Island, South
Korea, December 2000

[5] C.Michel, M. Rueher and Y. Lebbah, Solving Constraints
over Floating-Point Numbers, CP’2001, LNCS vol. 2239,
pp 524-538, Springer Verlag, Berlin, 200

[6] Stefan M. Petters and Georg Farber, Making Worst Case
Execution Time Analysis for Hard Real-Time Tasks on State
of the Art Processors Feasible, In Proc. 6" International
Conference on Real-Time Computing and Applications
RTCSA’99, December 1999

[7] Jiirgen Stohr, Alexander von Biilow and Georg Farber, Con-
trolling the Influence of PCI DMA Transfers on Worst Case
Execution Times of Real-Time Software, In Proc. WCET 04,
Catania, June 2004

[8] Nicky Williams, Bruno Marre, Patricia Mouy and Muriel
Roger, PathCrawler: Automatic generation of path tests by
combining static and dynamic analysis, In Proc. EDCC-5,
April 2005, Budapest



