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FINITE-TIME STABILIZATION OF AN OVERHEAD CRANE WITH A FLEXIBLE CABLE

BRIGITTE D’ANDRÉA-NOVEL, IVÁN MOYANO, AND LIONEL ROSIER

ABSTRACT. The paper is concerned with the finite-time stabilization of a hybrid PDE-ODE system which
may serve as a model for the motion of an overhead crane with a flexible cable. The dynamics of the
flexible cable is assumed to be described by the wave equation with constant coefficients. Using a nonlinear
feedback law inspired by those given by Haimo in [12] for a second-order ODE, we prove that a finite-time
stabilization occurs for the full system platform + cable. The global well-posedness of the system is also
established by using the theory of nonlinear semigroups.
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1. INTRODUCTION

The stabilization of hybrid PDE-ODE systems has attracted the attention of the control community
since several decades. In [2], the authors derived and investigated a model for the dynamics of a mo-
torized platform of mass M moving along an horizontal bench. A flexible (and nonstretching) cable of
length L was attached to the platform and was holding a load mass m. Assuming that the transversal
and angular displacements were small and that the acceleration of the load mass could be neglected with
respect to the gravity, they obtained the following system:

ztt − (a(x)zx)x = 0, (1.1)
zx(0, t) = 0, (1.2)
z(L, t) = Xp(t), (1.3)

Ẍp(t) = λ (azx)(L, t)+
v
M
, (1.4)

where

a(x) := gx+
gm
ρ

, (1.5)

λ :=
(m+ρL)g

Ma(L)
· (1.6)

In above system, x denotes the curvilinear abscissa (i.e. the arclength) along the cable, z = z(x, t) is the
horizontal displacement at time t of the point on the cable of curvilinear abscissa x, Xp is the abscissa of
the platform, ρ the mass per unit length of the cable, and v the force applied to the platform. As usual,
ztt = ∂ 2z/∂ t2, zxx = ∂ 2z/∂x2 etc., and Ẍp = d2Xp/dt2.

1
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When m� ρL, then gm/ρ � gx for x ∈ (0,L) and it can be assumed that the function a = a(x)
is constant. Note that, with a clockwise orientation of the plane, zx(L, t) ≈ θ(t), where θ denotes the
angular deviation of the cable with respect to the vertical axis at the curvilinear abscissa x = L (i.e. at
the connection point to the platform), which is supposed to be measured (see Fig. 1). After using some
scaling and the following intermediate feedback law

v = Mu− (m+ρL)gzx(L, t), (1.7)

we obtain the simplified system

ztt − zxx = 0, (x, t) ∈ (0,L)× (0,+∞), (1.8)
zx(0, t) = 0, t ∈ (0,+∞), (1.9)

z(L, t) = Xp(t), t ∈ (0,+∞), (1.10)

Ẍp(t) = u, t ∈ (0,+∞). (1.11)

FIGURE 1. The overhead crane with flexible cable

An asymptotic (but not exponential) stabilization of (1.1)-(1.4) was established in [2], while an expo-
nential stabilization was derived after in [3] by using the cascaded structure of the system and a back-
stepping approach. A similar result was obtained for system (1.8)-(1.11) (but with Dirichlet boundary
conditions) in [19]. The dynamics of the load mass was taken into account in [17].

The backstepping approach is a powerful tool for the design of stabilizing controllers in the context
of finite dimensional systems (see for example [21]), but the cascaded structure of flexible mechanical
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systems coupling ODE and PDE is also a useful property in regard to stabilization, as for the overhead
crane with flexible cable. We also refer the reader to [8], where the authors proposed a class of nonlinear
asymptotically stabilizing boundary feedback laws for a rotating body-beam without natural damping.
Let us also mention that in [4] the authors considered the case of a variable length flexible cable.

In [3], if we restrict ourselves to system (1.8)-(1.11), the authors considered the linear feedback law

u =−K−1
(

zxt(L, t)+ kzt(L, t)
)
−µ

(
Ẋp +K−1(zx(L, t)+ kz(L, t)

))
(1.12)

where k,K > 0 and µ > K/2 are some constants, and proved that system (1.8)-(1.12) is exponentially
stable.

Here, we consider instead of the linear feedback law (1.12) the nonlinear feedback law

u =−zxt(L, t)−
(

zt(L, t)+ zx(L, t)
)β

−
(

z(L, t)+
∫ L

0
zt(ξ , t)dξ

)α

, (1.13)

where the constants α and β are such that

0 < β < 1 and α >
β

2−β
· (1.14)

In (1.13), we have set xα := sign(x)|x|α for x ∈ R and α > 0, where

sign(x) :=

 1 if x > 0,
0 if x = 0,
−1 if x < 0.

It is well known that for α ∈ (0,1), the function x→ xα is continuous on R, but not Lipschitz continuous
around 0, and that the ODE ẋ =−xα is finite-time stable; that is, the equilibrium x = 0 is stable and any
trajectory of ẋ = −xα reaches 0 in finite time. Haimo proved in [12] that for α and β as in (1.14), the
second order ODE

ẍ =−ẋβ − xα (1.15)

is finite-time stable. Note that (1.14) is satisfied when e.g. α = 1 and 0 < β < 1.

Remark 1.1. It should be noticed that the finite-time stability of (1.15) holds as well in the limit case
0 < α < 1 and β = 2

1+α−1 . Indeed, the first-order system equivalent to (1.15) reads

ẋ1 = x2,

ẋ2 = −xβ

2 − xα
1 .

It is easy to see that this system is homogeneous of negative degree k := α−1
2 with respect to the dilation

δ r
ε (x1,x2) := (εx1,ε

α+1
2 x2), a property which implies its finite-time stability (see e.g. [5, 6]).

The aim of the paper is to prove the finite-time stability result of theorem 1.1:

Theorem 1.1. System (1.8)-(1.11) with the feedback law (1.13) for α = 1 and β ∈ (0,1) is finite-time
stable.

From now on, we assume that
α = 1.
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Obviously, before studying the stability properties of the closed loop system, we have to investigate
the wellposedness of system (1.8)-(1.11) and (1.13).

The paper is scheduled as follows. In section 2 we derive an abstract evolution equation describing the
dynamics of the system platform + cable and we investigate its wellposedness. The finite-time stability
of the system is next established in Section 3. Finally, we give some illustrative simulation results and
words of conclusion in section 4.

2. WELL-POSEDNESS OF THE SYSTEM

2.1. Introduction of the nonlinear operator. We intend to put the system (1.8)-(1.11) and (1.13) in
the form

wt +Aw = 0, t ∈ (0,+∞), (2.1)

with w = (z,v,b,η), where z and v are functions of x ∈ (0,L) and t ≥ 0 and b,η are real functions of
t ≥ 0. More precisely, introduce the Hilbert space

H := {w = (z,v,b,η) ∈ H1(0,L)×L2(0,L)×R×R; z(L) = b}

endowed with the scalar product

(w1,w2) :=
∫ L

0
[z1

x(x)z
2
x(x)+ v1(x)v2(x)]dx+b1b2 +η

1
η

2, wi = (zi,vi,bi,η i), i = 1,2,

where Hn(0,L) denotes the classical Sobolev space of (classes of ) functions on (0,L) whose derivatives
of order at most n are square integrable. We denote by ‖w‖ = (w,w)

1
2 the associated Hilbertian norm.

Let

D(A) := {w = (z,v,b,η) ∈ H2(0,L)×H1(0,L)×R×R; z(L) = b, zx(0) = 0, η = zx(L)+ v(L)}

and for w = (z,v,b,η) ∈ D(A)

Aw :=
(
− v,−zxx,zx(L)−η ,b+

∫ L

0
v(ξ )dξ +η

β

)
.

Finally, a solution w = (z,v,b,η) of (2.1) solves

zt = v, (2.2)
vt = zxx, (2.3)
ḃ = −zx(L, t)+η , (2.4)

η̇ = −
(
b+

∫ L

0
v(ξ , t)dξ

)
−η

β . (2.5)

Obviously, (2.2)-(2.3) is nothing but the first-order system representing the wave equation (1.8), (2.4) is
equivalent to the condition

η(t) = zx(L, t)+ zt(L, t) = zx(L, t)+ v(L, t). (2.6)

Note that (2.6) is satisfied when w(t) ∈ D(A). Finally, introducing the quantity

φ := b+
∫ L

0
v(x)dx (2.7)
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which is meaningful whenever w = (z,v,b,η) ∈H, we notice that for w = w(t) solving (2.1), we have
that φ = φ(t) solves

φ̇ = ḃ+
∫ L

0
vt(x, t)dx = ḃ+

∫ L

0
zxx(x, t)dx = ḃ+ zx(L, t) = η (2.8)

where we used (1.9) and (2.4). Thus (2.5) can be rewritten as

φ̈ =−φ̇
β −φ . (2.9)

Using (2.6), we obtain also the expression of the nonlinear feedback law (1.13):

u = Ẍp = ztt(L, t) =−zxt(L, t)−
(

zt(L, t)+ zx(L, t)
)β

−
(

z(L, t)+
∫ L

0
zt(ξ , t)dξ

)
=−θ̇ − φ̇

β −φ ,

(2.10)
that is, (1.11) holds with the feedback law u given by (1.13) for α = 1 and β ∈ (0,1).

The first main result in this paper is concerned with the wellposedness of (2.1).

Theorem 2.1. Let β ∈ (0,1) and let A be as above.
1. For any w0 = (z0,v0,b0,η0) ∈ D(A) and any T > 0, there exists a unique solution w = w(t) of the
Cauchy problem

wt +Aw = 0, t ∈ [0,T ], (2.11)

w(0) = w0 (2.12)

such that w ∈W 1,∞([0,T ],H), w(t) ∈ D(A) for all t ∈ [0,T ], the map t ∈ [0,T ]→Aw(t) ∈H is weakly
continuous, and the map t ∈ [0,T ] 7→ w(t) ∈H is weakly differentiable.
2. There exists a number λ = λ (β ) > 0 such that for any w0, ŵ0 ∈ D(A), with corresponding solutions
w, ŵ, it holds

‖w(t)− ŵ(t)‖ ≤ eλ t‖w0− ŵ0‖ ∀t ∈ [0,+∞). (2.13)
3. There is a nonlinear semigroup (S(t))t≥0 on H such that for w0 ∈ D(A), w(t) := S(t)w0 is the strong
solution of (2.11)-(2.12). The estimate (2.13) is still valid when w0, ŵ0 ∈H.

2.2. Proof of Theorem 2.1. We shall use the semigroup theory developed in [7, 14, 18] for equations
involving (nonlinear) operators that are maximal monotone (or accretive). As the operator A is not
monotone for the Hilbertian norm in H, but some translate of it is, we perform the change of variables
w̃ := e−λ tw. We decompose the operator A into its linear and its nonlinear part:

Aw := A0w+Fw, w = (z,v,b,η) ∈ D(A)

with

A0w = (−v,−zxx,zx(L)−η ,b+
∫ L

0
v(ξ )dξ ), Fw = (0,0,0,ηβ ).

Then w̃t =−λe−λ tw+ e−λ twt so that

w̃t +(A0 +λ I)w̃+ e(β−1)λ tFw̃ = 0, w̃(0) = w0. (2.14)

We set
A(t)w̃ := (A0 +λ I)w̃+ e(β−1)λ tFw̃, for w̃ ∈ D(A(t)) := D(A).

We aim to apply the well-posedness theory developed in [14, Section 3 p. 513] to the Cauchy problem

w̃t +A(t)w̃ = 0, w̃(0) = w0. (2.15)
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We have to check that the following assumptions (required in [14]) are satisfied:
(H1): The domain of A(t) is independent of t.

(H2): There is some constant C =C(T ) such that for w ∈ D(A) and s, t ∈ [0,T ],

‖A(t)w−A(s)w‖ ≤C|t− s|(1+‖w‖+‖A(s)w‖); (2.16)

(H3): For any t ∈ [0,T ], the (nonlinear) operator A(t) is maximal monotone.
We know that (H1) is satisfied. For (H2), we notice that

‖A(t)w−A(s)w‖ = ‖
(
e(β−1)λ t − e(β−1)λ s)Fw‖

= |e(β−1)λ (t−s)−1| e(β−1)λ s|η |β

≤ (1−β )λe(1−β )λT |t− s|(‖A(s)w‖+ |λη +b+
∫ L

0
v(ξ )dξ |)

≤ C|t− s|(‖A(s)w‖+‖w‖)
with C := (1− β )λe(1−β )λT (1+ λ ), where we used Cauchy-Schwarz inequality for the integral term.
The verification that (H3) is satisfied for λ large enough is divided into two lemmas.

Lemma 2.1. Assume that λ ≥ 1. Then for all t ∈ [0,T ], the operator A(t) is monotone; that is,

(A(t)w1−A(t)w2,w1−w2)≥ 0 ∀w1,w2 ∈ D(A). (2.17)

Proof. Pick any w1,w2 ∈ D(A) and set w := w1−w2. Then

(A(t)w1−A(t)w2,w1−w2) = ((A0 +λ I)w,w)+ e(β−1)λ t(Fw1−Fw2,w1−w2).

For the second term, we notice that

e(β−1)λ t(Fw1−Fw2,w1−w2) = e(β−1)λ t(η
β

1 −η
β

2 )(η1−η2)≥ 0,

for β > 0. For the first term, integrating by parts gives

(A0w,w) =
∫ L

0
[−vxzx− zxxv]dx+(zx(L)−η)b+

(
b+

∫ L

0
v(ξ )dξ

)
η

= −[zxv]L0 + zx(L)b+η

∫ L

0
v(ξ )dξ

= zx(L)(zx(L)−η +b)+η

∫ L

0
v(ξ )dξ (2.18)

where we used the relation η = zx(L)+ v(L) in the last line. It follows from Young inequality that

|zx(L)(b−η)| ≤ z2
x(L)+

1
4
(b−η)2 ≤ z2

x(L)+
1
2
(b2 +η

2),

|η
∫ L

0
v(ξ )dξ | ≤ 1

2

(
η

2 +
∫ L

0
v(ξ )2dξ

)
.

Combined with (2.18), this yields for λ ≥ 1

((A0 +λ I)w,w)≥ (λ −1)η2 +(λ − 1
2
)b2 +(λ − 1

2
)
∫ L

0
v(ξ )2dξ +λ

∫ L

0
zx(x)2dx≥ 0.

It follows that (2.17) holds for λ ≥ 1. �
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It remains to prove that A(t) is maximal monotone.

Lemma 2.2. Assume that λ ≥ 1. Then for all µ > 0 and t ∈ [0,T ]

R(I +µA(t)) =H, (2.19)

where R(I+µA(t)) := {w0 ∈H; ∃w∈D(A), w0 = (I+µA(t))w} is the range of the operator I+µA(t).

Proof. Note first that (2.19) is equivalent to R(A0 +(µ−1 +λ )I + e(β−1)λ tF) = H. It is thus sufficient
to prove that R(A0 +λ I + e(β−1)λ tF) = H whenever λ > 1. Fix λ > 1 and t ∈ [0,T ]. Pick any w0 =
(z0,v0,b0,η0) ∈H. We have to prove that there exists w = (z,v,b,η) ∈ D(A) such that (A0 + λ )w+

e(β−1)λ tFw = w0; that is,

−v+λ z = z0, (2.20)
−zxx +λv = v0, (2.21)

−η + zx(L)+λb = b0, (2.22)

b+
∫ L

0
v(ξ )dξ + e(β−1)λ t

η
β +λη = η

0. (2.23)

The requirement that w = (z,v,b,η) ∈ D(A) imposes also the conditions

(z,v,b,η) ∈ H2(0,L)×H1(0,L)×R×R, (2.24)
z(L) = b, (2.25)

zx(0) = 0, (2.26)
η = zx(L)+ v(L). (2.27)

First, we note that (2.20)-(2.21) is equivalent to

v = λ z− z0, (2.28)
−zxx +λ

2z = λ z0 + v0. (2.29)

Next, we see that (2.22) & (2.27) are equivalent to (2.27) and

v(L) = λb−b0 (2.30)

and that (2.30) follows from (2.25), (2.28) and the fact that z0(L) = b0, as w0 ∈H. Thus, it is sufficient
to find w = (z,v,b,η) fulfilling the conditions (2.23)-(2.29).

Because of the many coupling terms present in the system, we first solve the subsystem (2.24)-(2.29)
for a given value of b ∈ R, and next check that the condition (2.23) can be satisfied for a certain value of
b.

More precisely, for given b ∈ R, we first solve the elliptic equation (2.29) together with the boundary
conditions (2.25)-(2.26). We obtain some function z ∈ H2(0,L). Next, the function v and the number η

are determined thanks to the conditions (2.27)-(2.28). Finally, the number b is determined by solving the
nonlinear equation (2.23).

Pick first any b ∈ R. To solve (2.29) together with (2.25) and (2.26), we set z = b+ ẑ and search
ẑ ∈V := {y ∈ H1(0,L); y(L) = 0} as a solution of the variational problem:∫ L

0
[ẑxyx +λ

2ẑy]dx =
∫ L

0
(λ z0 + v0−λ

2b)ydx ∀y ∈V. (2.31)
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A straightforward application of Lax-Milgram lemma shows that the problem (2.31) has a unique solu-
tion ẑ∈V , which is also in H2(0,L). Therefore, for any given b∈R, we obtain a solution z∈H2(0,L) of
(2.25), (2.26) and (2.29). Moreover, we can write z = z1+bz2 where the functions zi ∈H2(0,L) (i = 1,2)
do not depend on b (but depend on λ ). Then v and η are given by (2.28) and (2.27), respectively. It re-
mains to prove that (2.23) is satisfied for a convenient choice of b ∈R. We note that the number η , resp.
the expression b+

∫ L
0 v(ξ )dξ +λη , is affine in b, so that we can write for some constants ai, i = 1, ...,4,

η = a1b+a2, b+
∫ L

0
v(ξ )dξ +λη = a3b+a4.

Then, the nonlinear equation (2.23) reads

f (b) := e(β−1)λ t(a1b+a2)
β +a3b+a4 = η

0. (2.32)

If a3 = 0, the only solution of (2.32) is

b =
1
a1

(
[e(1−β )λ t(η0−a4)]

1
β −a2

)
.

If a3 6= 0, since limb→±∞ sign(a3) f (b) =±∞, the intermediate value theorem yields the existence of (at
least) one solution b ∈ R of (2.32). �

We infer from Lemmas 2.1 and 2.2 that the operator A(t) is maximal monotone. Then the assertion
1. in Theorem 2.1 follows from [14, Theorems 1 and 2]. Note that for any given w0

1,w
0
2 ∈ D(A), if we

denote by w̃1 and w̃2 the corresponding solutions of (2.15), then by [14, Theorem 2] we have that

‖w̃1(t)− w̃2(t)‖ ≤ ‖w0
1−w0

2‖, ∀t ≥ 0.

Then the functions w1(t) := eλ tw̃1(t) and w2(t) := eλ tw̃2(t), which solve the Cauchy problem (2.11)-
(2.12) for the initial data w0

1 and w0
2, respectively, satisfy the estimate (2.13). The assertion 2. in Theorem

2.1 follows from (2.13) and the fact that D(A) is dense in H. The proof of Theorem 2.1 is complete. �
Once the wellposedness of the system is established, we have to pay some attention to the regularity

of the feedback law in (1.13). Indeed, for practical reasons (e.g. if one wishes to do some numerics),
it is desirable that the control input u be a function, typically in L2(0,T ), and not merely a distribution.
Fortunately this is true, but this does not follow from the above theory.

For the solution w of (2.11)-(2.12) issuing from w0 ∈ D(A), we have that for all T > 0,

w = (z,v,b,η) ∈W 1,∞(0,T,H), Aw ∈Cw([0,T ],H), (2.33)

where Cw([0,T ],H) denotes the space of weakly continuous functions from [0,T ] to H. From the defini-
tions of H and of A, we infer that

z ∈W 1,∞(0,T,H1(0,L))∩Cw([0,T ],H2(0,L)) (2.34)

v ∈W 1,∞(0,T,L2(0,L))∩Cw([0,T ],H1([0,L]). (2.35)

Note that the regularity of z and v depicted in (2.34)-(2.35) is not sufficient to assert that ztt(L, .) =
vt(L, .) ∈ L2(0,T ), or that ztx(L, .) = vx(L, .) ∈ L2(0,T ). Such properties, however, are true and come
from a classical hidden regularity for the solutions of the wave equation [15, 16].

Corollary 2.1. Let w0 ∈ D(A) and let w(t) = (z,v,b,η)(t) be the corresponding solution of (2.11)-
(2.12). Then ztt(L, .) = vt(L, .) ∈ L2(0,T ) for all T > 0. In particular, all the terms in (1.13) belong to
L2(0,T ) for all T > 0.
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Proof. Note first that v = zt (the weak derivative of z) satisfies

vtt − vxx = 0, (2.36)
vx(0, t) = 0, (2.37)

v(L, t) = ḃ (2.38)

We infer from (2.35) that vx ∈ Cw([0,T ],L2(0,L)), from (2.34) that vt = ztt = zxx ∈ Cw([0,T ],L2(0,L))
and zx(L, .) ∈C0([0,T ]), so that ḃ = η− zx(L, .) ∈C0([0,T ]).

This regularity is not sufficient to justify the integrations by parts we wish to do, and thus we smooth
out the function v by using a convolution in time.

Pick any function ρ ∈C∞(R,R) such that
∫

∞

−∞
ρ(t)dt = 1, ρ(−t) = ρ(t)≥ 0 for all t ∈R and ρ(t) = 0

for all t ∈ R\ (−1,1). For any given h > 0, let ρh(t) := 1
h ρ( t

h) for t ∈ R and

vh(x, t) :=
∫ h

−h
v(x, t− s)ρh(s)ds, (x, t) ∈ [0,L]× [h+∞).

Then vh satisfies

vh,tt − vh,xx = 0, (2.39)
vh,x(0, t) = 0, (2.40)

vh(L, t) =
∫ h

−h
ḃ(t− s)ρh(s)ds, (2.41)

so that vh ∈ C2([h,T − h],L2(0,L))∩C0([h,T − h],H2(0,L)). Multiplying each term in (2.39) by the
Morawetz multiplier xvh,x, we obtain after some integrations by parts that∫ T−h

h
(v2

h,x(L, t)+ v2
h,t(L, t))dt =

∫ T−h

h

∫ L

0
(v2

h,x + v2
h,t)dxdt +

[∫ L

0
xvh,xvh,tdx

]T−h

h
. (2.42)

Using the fact that
∫

∞

−∞
ρh(t)dt = 1, we have that∫ T−h

h

∫ L

0
(v2

h,x + v2
h,t)dxdt ≤

∫ T

0

∫ L

0
(v2

x + v2
t )dxdt ≤ 2T (‖vx‖2

L∞(0,T,L2(0,L))+‖vt‖2
L∞(0,T,L2(0,L))). (2.43)

On the other hand, we have that∣∣∣∣∣
[∫ L

0
xvh,xvh,tdx

]T−h

h

∣∣∣∣∣≤ 2L‖vx‖L∞(0,T,L2(0,L))‖vt‖L∞(0,T,L2(0,L)).

We conclude that∫ T−h

h
(v2

h,x(L, t)+ v2
h,t(L, t))dt ≤ (2T +L)(‖vx‖2

L∞(0,T,L2(0,L))+‖vt‖2
L∞(0,T,L2(0,L))).

Thus ‖vh,t(L, .)‖L2(h,T−h) ≤ K for some constant K > 0. From well-known properties of convolution, we
know that vh(L, t)→ ḃ= v(L, t) uniformly w.r.t. t on any segment [ε,T−ε], and hence vh.t(L, .)→ vt(L, .)
in the distributional sense on (ε,T − ε) for any ε ∈ (0,T/2). We conclude that vt ∈ L2(0,T ) with
‖vt‖L2(0,T ) ≤ K. Using (2.10) and (2.34), we infer that zxt(L, .) ∈ L2(0,T ). �
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3. FINITE STABILITY OF THE COMPLETE SYSTEM

The finite-time stability of the system platform + cable is the second main result in this paper.

Theorem 3.1. The system (2.11)-(2.12) is finite-time stable. More precisely, there exists a nondecreasing
function T : (0,+∞)→ (0,+∞) such that for all R > 0 and all w0 = (z0,v0,b0,η0) ∈H with ‖w0‖ ≤ R,
the solution w(t) = S(t)w0 of (2.11)-(2.12) satisfies

w(t) = 0, ∀t ∈ [T (R),+∞), (3.1)

‖w(t)‖ ≤ eλ t‖w0‖, ∀t ∈ [0,T (R)]. (3.2)

Proof. Assume first that w0 ∈ D(A) and let φ be as in (2.7). Then φ̇ = η by (2.8) and (2.9) holds. Since
system (2.9) is finite-time stable (see [12]), there is a nondecreasing function τ : (0,+∞)→ (0,+∞) with
such that (φ(t),η(t)) = (0,0) for all t ≥ τ(R), if |φ(0)|+ |η(0)| ≤ R. Note that the last assumption is
fulfilled, for

|φ(0)|+ |η(0)| ≤ |b0|+‖v0‖L2(0,L)+ |η0| ≤ ‖w0‖ ≤ R.

Note that z satisfies

ztt − zxx = 0, (x, t) ∈ (0,L)× (0,+∞), (3.3)
η(t) = zx(L, t)+ zt(L, t) = 0, ∀t ≥ τ(R), (3.4)

zx(0, t) = 0, ∀t ≥ 0, (3.5)

φ(t) = z(L, t)+
∫ L

0
zt(ξ , t)dξ = 0, ∀t ≥ τ(R). (3.6)

Note that (3.4) is a transparent boundary condition for the wave equation, which allows the waves to
leave the domain without bounce at x = L.

Introducing as e.g. in [1, 20, 9] the Riemann invariants s := zt + zx and d := zt − zx which solve by
(3.3) the transport equations st − sx = 0 and dt +dx = 0, respectively, we infer from (3.4) that s(x, t) = 0
for x∈ (0,L) and t ≥ τ(R)+L, which, combined with (3.5), yields d(0, t) = 0 for t ≥ τ(R)+L. It follows
that d(x, t) = 0 for x ∈ (0,L) and t ≥ T (R) := τ(R)+2L. We conclude that zt = zx = 0 for x ∈ (0,L) and
t ≥ T (R). Combined with (3.6), this yields z(L, t) = 0 for t ≥ T (R), and thus z(x, t) = 0 for x ∈ (0,L)
and t ≥ T (R).

The estimate (3.2) follows from (2.13) (with ŵ0 = 0). The estimates (3.1)-(3.2) are extended to the
general case (w0 ∈H) by using again (2.13) and the density of D(A) in H. This achieves also the proof
of Theorem 1.1. �

Remark 3.1. (1) Even if τ(0+) = 0, it is only expected that T (0+) = 2L.
(2) Given (z0,v0) ∈ H2(0,L)×H1(0,L) and X0

p ∈ R with X0
p = z0(L) and z0

x(0) = 0, we have to set
b0 =X0

p and η0 = z0
x(L)+v0(L) to apply Theorem 2.1 and obtain a (strong) solution w(t)∈D(A)

for all t ≥ 0. Another choice of η0 would give a solution w(t) solely in H. More generally, given
(z0,v0) ∈ H1(0,L)×L2(0,L) and X0

p ∈ R with X0
p = z0(L), we still have to set b0 = X0

p but we
can pick any η0 ∈ R. The choice η0 = 0 is allowed. With this choice, we obtain by Theorem 2.1
a solution w ∈C([0,+∞),H) for which the conclusion of Theorem 3.1 is valid. Note that w0 is
then bounded in H when (z0,v0) is bounded in H1(0,L)×L2(0,L).
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4. SIMULATION RESULTS AND CONCLUSION

In order to simulate the simplified system (1.8)-(1.11) in closed-loop with the two control laws (1.12)
and (1.13), we have used a modal decomposition and obtained a linear truncated finite dimensional state
formulation of the system similar to the one described in [2]. More precisely, introducing

z̄(x, t) = z(x, t)−Xp(t) = z(x, t)− z(L, t) (4.1)

leads to homogeneous boundary conditions

z̄(L, t) = 0 and z̄x(0, t) = 0. (4.2)

It can be shown that the solution z̄(x, t) can be written as follows:

z̄(x, t) =
+∞

∑
i=0

αi(t)ψi(x) (4.3)

where the ψi(x), i = 0, · · · ,N are given by:

ψi(x) = Ai sin(ωix)+Bi cos(ωix) with ωi =
(2i+1)π

2L
, Ai = 0 , Bi =

√
1∫ L

0 cos2(ωix)dx
=
√

2/L, (4.4)

and the αi(t), i = 0, · · · ,N satisfy:

α̈i +ω
2
i αi =−KiẌp with Ki = (−1)i 2

π

√
2L

2i+1
· (4.5)

The modes ωi and the constants Ai, Bi and Ki have been obtained writing the boundary conditions and
the orthonormalization conditions:∫ L

0
ψ

2
i (x)dx = 1 ,

∫ L

0
ψiψ j(x)dx = 0 for i 6= j, (4.6)

since the ψi’s are known to constitute an orthonormal Hilbert basis in L2(0,L) (see e.g. [10]).
Then, the finite truncated dynamical system with state vector X = (Xp,α0, · · · ,αN , Ẋp, α̇0, · · · , α̇N)

′,
N+1 being the number of modes ωi, has been respectively simulated in closed-loop with the asymptotic
stabilizing control law (1.12) and the finite-time stabilizing control law (1.13).

4.1. The asymptotic stabilization. In this subsection, the linear control law (1.12) is used, which gives:

u =−K−1
(

θ̇ + kẊp

)
−µ

(
Ẋp +K−1(

θ + kXp
))

, (4.7)

where the variable Xp = z(L, t) (the position of the platform) and θ = zx(L, t) (the angular deviation of
the cable) and their time-derivatives are supposed to be measured, so that u is a linear boundary feedback
law.

Remark 4.1. Let us point out that θ = zx(L, t) = z̄x(L, t). Using (4.3) and (4.4), it can be easily checked
that θ (respectively θ̇ ) is an infinite linear combination of the αi (respectively α̇i) as follows:

θ = ∑
+∞

i=0 αi(t)
∂ψi
∂x (L) = ∑

+∞

i=0 ciαi

θ̇ = ∑
+∞

i=0 α̇i(t)
∂ψi
∂x (L) = ∑

+∞

i=0 ciα̇i

with ci =−Bi(−1)iωi with Bi =
√

2/L , ∀i = 0, · · · ,N.

(4.8)
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For simulation purposes, θ and θ̇ are estimated using the truncated expressions of (4.8) where i =
0, · · · ,N.

The behavior of the simplified system (1.8)-(1.11) in closed-loop with this boundary linear feedback
law is displayed on Figure 2 with N + 1 = 10 modes, L = 1m and with the following gains: K = 5,
k = 4, µ = 4. The sampled period is equal to 1ms and the simulation was performed during 100s, using
an implicit Euler numerical scheme as suggested in [11]. The evolution of the variable Xp (resp. θ ) is
displayed at the top-left (resp. top-right) of Figure 2. The control law u is plotted at the bottom-left.

FIGURE 2. The overhead crane in closed-loop with the boundary linear feedback law

4.2. The finite-time stabilization. In this subsection, the linear control law (1.13) is used, which gives:

u =−θ̇ −
(

Ẋp +θ

)β

−
(

Xp +
∫ L

0
zt(ξ , t)dξ

)α

, (4.9)

where the variables Xp = z(L, t) (the position of the platform), θ = zx(L, t) (the angular deviation of the
cable) and their time-derivatives are supposed to be measured. Compared to the linear boundary control
(4.7), the non linear control (4.9) is a distributed one due to the term

∫ L
0 zt(ξ , t)dξ . Using (4.1), (4.3),

and (4.4), this integral term can be written:∫ L

0
zt(ξ , t)dξ = LẊp +

√
2/L

N

∑
i=0

(−1)iα̇i

ωi
. (4.10)

As expected from Theorem 3.1, the behavior of the simplified system (1.8)-(1.11) in closed-loop with

this distributed nonlinear feedback law with α = 1 and β =
1
2

produces a finite-time stabilization as
displayed in Figure 3. In this simulation, we have chosen as for the linear boundary feedback law:
N +1 = 10 modes, L = 1m, the sampled period equal to 1ms and the simulation was performed during
100s, using an implicit Euler numerical scheme. The evolution of the variable Xp (resp. θ ) is displayed
at the top-left (resp. top-right) of Figure 2. The variable φ defined by (2.7) and satisfying (2.9) is plotted
at the bottom-left, while the control law u is plotted at the bottom-right.
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FIGURE 3. The overhead crane in closed-loop with the nonlinear finite-time feedback
law with α = 1 and β = 1/2

The variable φ has a similar behavior to the one of Xp. The case α =
1
2

and β =
1
2

is illustrated in Fig-
ure 4. As expected, the variables are stabilized to zero faster than in the previous Figure 3 (corresponding
to α = 1 and β = 1/2).

FIGURE 4. The overhead crane in closed-loop with the nonlinear finite-time feedback
law with α = 1/2 and β = 1/2
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