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Abstract— This paper presents a novel analog turbo decoding 
architecture allowing analog decoders for long frame lengths to 
be implemented on a single chip. This is made possible by 
suitably using slicing techniques which allow hardware reuse and 
re-configurability. The architecture is applied to a DVB-RCS-like 
code. It shows a reduction of occupied chip area by a factor of ten 
when compared to a conventional slice design with no significant 
performance degradation. A single 27mm² 0.25µm BiCMOS 
decoder can then decode any frame length from 40 up to 1824 
bits. 

I. INTRODUCTION 
Analog decoding has been plagued by the prohibitively 

large chip area required to implement decoders for long frame 
lengths and their lack of re-configurability. This increase in 
occupied chip area is due to the fact that the decoder usually 
has as many decoding sections as symbols to decode in a 
frame. This explains why most of the papers published so far 
deal with non-industrial codes. Only recently, three decoders 
have been proposed for industrial standards: UMTS (3GPP) in 
[1], IEEE 802.16a standard in [2] and DVB-RCS-like codes in 
[3]. Only the first two were implemented on chip and tested; 
the third one was only simulated. Nevertheless, these decoders 
were designed in order to tackle some of the shortest frame 
lengths of their targeted standard and are not re-configurable. 

A possible solution to this size increase was introduced in 
[4]: sliding windows. In this architecture, the turbo decoder 
“sees” only a small portion of the frame to decode at a time, 
thus reducing the number of implemented decoding sections.  
A clear advantage of this solution is that the decoder is able to 
decode any frame length. However, in this architecture, while 
the computation of the extrinsic information is done by an 
analog core, the continuous exchange of extrinsic information 
between the two constituent decoders is lost. The exchange of 
extrinsic information is done iteratively. Moreover, the scheme 
requires data converters which are notoriously power hungry 
and slow. 

This paper proposes an alternative solution which offers 
significant on-chip area reduction, keeps a (partial) continuous 
exchange of extrinsic information to help with convergence [3]  
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Figure 1.  A p-slice turbo encoder. 

and is re-configurable: semi-iterative analog turbo decoding. 
As an example, the semi-iterative architecture is applied to 
design a double-binary turbo decoder. A comparison in terms 
of size and performance is done between the fully-parallelized 
analog slice decoder as presented in [3] and its equivalent 
semi-iterative analog decoder. 

The paper is organized as follows. Part II deals with 
conventional design using slices. Part III presents the semi-
iterative analog decoder with the help of a simple example. 
Part IV explains how re-configurability can be easily 
implemented with this architecture. Part V compares the two 
types of decoders in terms of area and discusses the on-chip 
area reduction achieved. Finally, part VI presents some 
simulation results.  

II. CONVENTIONAL DESIGN USING SLICES 
Fully-parallelized analog slice turbo encoding/decoding 

was presented in [3] and it will be briefly explained here. In 
this scheme, a frame of length k is sliced down into p shorter 
ones of equal length m=k/p. As shown in Fig. 1, the resulting 
sub-frames are independently encoded by a circular recursive 
systematic convolutional (CRSC) encoder. The overall frame is 
then interleaved, sliced and encoded by the second encoder. 
The complete decoder is made up of 2p elementary APP 
decoders, two per slice to decode. In [5], an elementary APP 
decoder was designed for a frame length of 24 double-binary 
symbols and was used to design the 48 double-binary symbols  
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Figure 2.  Semi-iterative architecture, 2-slice example. 

slice turbo decoder proposed in [3]. Implementing the turbo 
decoder this way only facilitates its design. This solution does 
not yield a surface reduction due to the number of elementary 
decoders required to decode a long frame. The only way to 
achieve a significant area reduction is to reduce the parallel 
processing of the data as in the architecture presented below in 
the following section. 

III. SEMI-ITERATIVE DECODING 
The architecture of the semi-iterative decoder is shown in 

Fig. 2. It fully exploits the slicing technique to reduce the 
required number of elementary decoders to two, regardless of 
the number of slices. Analog memories, implemented as track-
and-holds, and multiplexers are added to the structure. The 
decoding process is iterative and performs turbo iterations. The 
number of iteration depends on the performance sought for. 
Each turbo iteration is divided into steps. There are as many 
steps as slices. Turbo iterations and steps are detailed next.  

For the sake of simplicity, a 2-slice example is taken, Fig. 
2. The slice decoders are APP decoders. This example 
performs the same decoding as presented in [3]. Before the 
decoding process begins, the full frame is received and stored. 
The extrinsic memories A and B in Fig. 2 are set to values 
representing equiprobable data. A two-slice encoding yields 
two sub-frames: |Syst1|Y11|Y21| and |Syst2|Y12|Y22|, with Y21 and 
Y22 resulting from the encoding of the interleaved frame, 
Π(Syst1 Syst2). With two sub-frames, each turbo iteration is 
made up of two steps.  

Turbo iteration: 
Step 1  
 By means of multiplexers MUXin1 and MUXin2, Syst1 

and Y11 are fed to Slice Decoder #1. This decoder 
outputs the extrinsic data Extr11 which are loaded into 
the analog memories. Since the extrinsic memories are 
sized up to equal the length of the overall systematic 
data, half of the memory remains at equiprobable 
values. All the extrinsic data loaded in extrinsic  

memory bank A are then interleaved and multiplexer 
Muxextr2 selects half of them, which are used by the 
second slice decoder. Some of these data are being 
computed and tracked by the analog memories, and 
others have fixed values representing equiprobable data. 

In the meantime, the second slice decoder provides 
the extrinsic data Extr21 (linked to the interleaved Syst1, 
Π(Syst1)). Extr21 data are tracked by the first half of  
extrinsic memory bank B, the second half being filled in 
with equiprobable data. The Extr21 data are 
deinterleaved before being fed back to the first decoder 
as in a usual turbo scheme. The loop is now closed and 
there is a continuous exchange of information between 
the two decoders. The extrinsic data eventually 
converge to stable values, at which stage they are held 
in memory and the next step can start. 

Step 2  
 During step 2, all the multiplexers have switched from 

one input set to the other and the second slice is fed to 
the decoder that is: Syst2, Y12, Y22. The only difference 
with step 1 lies in the content of the memories which 
now contain the extrinsic data Extr11 and Extr12 
computed during step 1. This further enhances the 
decoding of the second slice since the two decoders 
benefit from the extrinsic data computed for the first 
slice. 

 

Once the first turbo iteration has been performed, the whole 
frame is decoded. However, it is better to run at least another 
turbo iteration to improve the overall result. This is necessary 
since during decoding step 1, the decoders did not benefit from 
any extrinsic data relative to the second slice. This second 
turbo iteration will eventually modify Extr11 and Extr12 and 
make them converge toward more reliable values. The number 
of turbo iterations can be increased but, as in a digital decoder, 
it is not necessary to run more than half a dozen to get the best 
results. This was confirmed by running behavioral simulations. 
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Figure 3.  Reconfigurable circular slice decoder. Decoding section as defined 
in [5]. 



 
Figure 4.  Semi-iterative architecture, element dimensions. 

As can be seen from the above example, the iterative 
process introduced by this architecture does not affect the 
continuous exchange of extrinsic information which helps with 
convergence [3]. This is a key feature of the semi-iterative 
decoder. 

The architecture can be easily extended to any number of 
slices p; a turbo iteration is then composed of p steps and 
during each step the semi-iterative analog decoder processes 
1/p of the overall data. Providing that the slice length remains 
the same, the slice decoder need not to be redesigned. Only the 
multiplexers and the memories have to be changed. MUXextr1 
and MUXextr2 are p to 1 multiplexers and MUXMEM1 and 
MUXMEM2 are 1 to p multiplexers. The number of memory 
cells in either memory bank A or B is p, the number of slices, 
times m, the number of extrinsic data to store per slice. This 
increase in the number of storage elements is much smaller 
than that of duplicating the elementary decoder in the case of a 
fully parallelized architecture as shown in part V. The 
hardware required to decode large frame length is thus 
significantly reduced. 

IV. RECONFIGURABILITY 
An important aspect required by industry is the capability 

of a single-chip decoder to accept various frame lengths. When 
using slices this can be easily implemented. First, the 
elementary slice decoder must be designed for the longest slice 
length. Since the code is circular, the slice decoder is 
implemented as a ring. It is fairly easy to reduce the ring size 
depending on the slice length by means of switches as shown 
in Fig. 3. The ring size is selected by means of an N-bit word: 
sel_size. Second, the extrinsic analog memory blocks and the 
multiplexers represented in Fig. 3 must be sized up according 
to the longest slice length. Then, when working with a shorter 
frame length only the memory accesses have to be changed.  

 
Figure 5.  Total on-chip area comparison vs slice number for a fully parallelized 
and a semi-iterative implementation. The point on each curve corresponds to the 

decoding of 864 double-binary symbols frames with 24 slices. 

To complete the scheme, programmable interleavers as in 
[6] can be used. 

V. AREA STUDY 
The architecture is now applied to decode a DVB-RCS-like 

code, with frame length between 20 and 912 symbols. The 
comparison is made for two types of decoders designed for the 
same 0.25µm BiCMOS process: a fully-parallelized decoder 
and a semi-iterative one. The area estimations for a decoding 
section and a memory cell are based on the double-binary 
decoder circuit designed in [5]. Referring to Fig. 2 and Fig. 4, 
the size of the decoder elements are given next as a function of 
the number of slices p and the number of systematic data per 
slice m. 

Common to both decoders are the elementary APP decoder 
and the input memory cells. A decoding section has an area of  
L×l=0.124mm²; details about its design are given in [5]. The 
elementary decoder area is thus L×l×m. The area of a single 
input memory cell is 2565µm². It is made of two track-and-
hold circuits put in parallel. While the first one holds the 
previous input value, the second samples the next frame. There 
are 2(p×m) memory cells for the systematic part and 2(p×m) 
cells per redundant part for a coding rate of one half. 

An extra feature of the semi-iterative decoder is the 
extrinsic memory. Each decoding section deals with a double-
binary symbol. Each of its four possible values are weighted by 
an extrinsic probability. The four extrinsic data output per 
decoding section are needed by the other decoder and thus each 
is stored in a memory cell which has an area a² = 625µm². 
Hence, the total area of the extrinsic memory cells is given by 
2×4×p×m×a². 

Fig. 5 compares the total turbo decoder area for two 
decoders implementing either the fully-parallelized or the  
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Figure 6.  Area comparison, element wise, fully-parallelized decoder as in [3] 

vs semi iterative decoder for a 864 double-binary symbol frame length (0.25µm 
BiCMOS process). 

semi-iterative architectures versus the number of required 
slices. In this figure, the interleavers are hard-wired using four  

metal layers. Taking the example of implementing the turbo 
decoder for the longest frame length of the DVB-RCS 
standard, i.e. 864 double-binary symbols, a fully-parallelized 
slice architecture occupies a 265mm² area while the semi-
iterative requires only a 27mm² area. There is thus a reduction 
of on-chip area by a factor of ten! 

Fig. 6 details the area per decoder’s elements required to 
decode the longest frame of the DVB-RCS standard with 24 
slices. It clearly shows the dramatic area reduction, the biggest 
gain coming, of course, from the slice decoders area required. 
Other significant gains in area are shown for the input 
interleaver and the extrinsic interleavers. The area of the latter, 
which includes the extrinsic memories and the multiplexers, is 
0.14mm², too small to appear in the figure. Finally, the input 
memories occupy, of course, the same area since for both 
decoders, the whole frame has to be stored in memory before 
the decoding can take place. 

VI. SIMULATION RESULTS 
In this section, a performance comparison between three 

decoders decoding 48 double-binary symbol frames using two 
slices is made. The first decoder is a digital slice decoder, it 
uses floating point number representation and runs for 5 
iterations. The second decoder is the analog decoder presented 
in [3]. It is fully parallel. The third decoder is a semi-iterative 
analog decoder. It runs for five turbo iterations. Behavioral 
simulations were run to obtain the Bit and Frame Error Rate 
curves shown in Fig. 7. As can be seen from this figure, the 
decoding performance of the semi-iterative analog decoder lies 
in between the performance of the fully parallelized analog 
slice decoder and the performance of the digital counterpart. 
Therefore, the proposed solution presents no significant 
performance degradation. 

 
Figure 7.  Performance comparison  (behavioral).  

VII. CONCLUSION 
This paper has presented a novel semi-iterative analog 

turbo decoding architecture. It offers a significant reduction in 
occupied on-chip area when compared to previous 
architectures with no significant performance degradation. This 
was made possible by reducing parallel processing using slices 
and at the price of introducing iterations. At each iteration, the 
semi-iterative process keeps a partial continuous exchange of 
extrinsic information to improve the decoding speed and the 
correction performance. This is a key feature of the semi-
iterative analog decoding which thus provides a good 
compromise between on-chip area and data rate. Finally, the 
semi-iterative architecture is fully re-configurable to allow a 
single 27mm2 chip to treat different frame lengths, from 40 to 
1824 bits as in the example of this paper. 
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