
HAL Id: hal-01809339
https://hal.science/hal-01809339

Submitted on 6 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-Iterative Analog Turbo Decoding
Matthieu Arzel, Fabrice Seguin, Cyril Lahuec, Michel Jezequel

To cite this version:
Matthieu Arzel, Fabrice Seguin, Cyril Lahuec, Michel Jezequel. Semi-Iterative Analog Turbo Decod-
ing. ISCAS 2006 : International Symposium on Circuits and Systems, Kos, Greece, May 21-24, May
2006, Kos, Greece. pp.3562 - 3565. �hal-01809339�

https://hal.science/hal-01809339
https://hal.archives-ouvertes.fr

Semi-Iterative Analog Turbo Decoding

Matthieu ARZEL, Fabrice SEGUIN, Cyril LAHUEC and Michel JÉZÉQUEL
GET/ENST de Bretagne/PRACOM, CNRS-TAMCIC

Technopôle Brest Iroise, CS 83818 – 29238
BREST CEDEX 3, Brittany, France

Abstract— This paper presents a novel analog turbo decoding
architecture allowing analog decoders for long frame lengths to
be implemented on a single chip. This is made possible by
suitably using slicing techniques which allow hardware reuse and
re-configurability. The architecture is applied to a DVB-RCS-like
code. It shows a reduction of occupied chip area by a factor of ten
when compared to a conventional slice design with no significant
performance degradation. A single 27mm² 0.25µm BiCMOS
decoder can then decode any frame length from 40 up to 1824
bits.

I. INTRODUCTION
Analog decoding has been plagued by the prohibitively

large chip area required to implement decoders for long frame
lengths and their lack of re-configurability. This increase in
occupied chip area is due to the fact that the decoder usually
has as many decoding sections as symbols to decode in a
frame. This explains why most of the papers published so far
deal with non-industrial codes. Only recently, three decoders
have been proposed for industrial standards: UMTS (3GPP) in
[1], IEEE 802.16a standard in [2] and DVB-RCS-like codes in
[3]. Only the first two were implemented on chip and tested;
the third one was only simulated. Nevertheless, these decoders
were designed in order to tackle some of the shortest frame
lengths of their targeted standard and are not re-configurable.

A possible solution to this size increase was introduced in
[4]: sliding windows. In this architecture, the turbo decoder
“sees” only a small portion of the frame to decode at a time,
thus reducing the number of implemented decoding sections.
A clear advantage of this solution is that the decoder is able to
decode any frame length. However, in this architecture, while
the computation of the extrinsic information is done by an
analog core, the continuous exchange of extrinsic information
between the two constituent decoders is lost. The exchange of
extrinsic information is done iteratively. Moreover, the scheme
requires data converters which are notoriously power hungry
and slow.

This paper proposes an alternative solution which offers
significant on-chip area reduction, keeps a (partial) continuous
exchange of extrinsic information to help with convergence [3]

CRSC
Encoder

Π

Information symbols

Syst 1

CRSC
Encoder

Syst 2 Syst p... Syst 1 Syst 2 Syst p...

Y11 Y12 Y1p...

Y21 Y22 Y2p...

k m p= ´ k m p= ´

m m

()n k p-

(n k)-

(n k)-

()n k p-

Figure 1. A p-slice turbo encoder.

and is re-configurable: semi-iterative analog turbo decoding.
As an example, the semi-iterative architecture is applied to
design a double-binary turbo decoder. A comparison in terms
of size and performance is done between the fully-parallelized
analog slice decoder as presented in [3] and its equivalent
semi-iterative analog decoder.

The paper is organized as follows. Part II deals with
conventional design using slices. Part III presents the semi-
iterative analog decoder with the help of a simple example.
Part IV explains how re-configurability can be easily
implemented with this architecture. Part V compares the two
types of decoders in terms of area and discusses the on-chip
area reduction achieved. Finally, part VI presents some
simulation results.

II. CONVENTIONAL DESIGN USING SLICES
Fully-parallelized analog slice turbo encoding/decoding

was presented in [3] and it will be briefly explained here. In
this scheme, a frame of length k is sliced down into p shorter
ones of equal length m=k/p. As shown in Fig. 1, the resulting
sub-frames are independently encoded by a circular recursive
systematic convolutional (CRSC) encoder. The overall frame is
then interleaved, sliced and encoded by the second encoder.
The complete decoder is made up of 2p elementary APP
decoders, two per slice to decode. In [5], an elementary APP
decoder was designed for a frame length of 24 double-binary
symbols and was used to design the 48 double-binary symbols

This work was partly funded by Brest Métropole Océane under the “Fond
de Concours au Développement de la Recherche“

S lic e D e c o d e r
 # 1

S lic e D e c o d e r
 # 2

E x tr in s ic M e m . A
(a n a lo g)

ΠE x t r in s ic M e m . B
(a n a lo g)

Π − 1
Π

Y 1 1 + Y 1 2

S y s t1 + S y s t2

Y 2 1 + Y 2 2

E x tr 1 n

E x t r 2 n

M U X in 4

M U X in 1

M U X in 2

M U X e x tr2

M U X e x tr1

M U X in 3

M U X M E M 1

M U X M E M 2

Figure 2. Semi-iterative architecture, 2-slice example.

slice turbo decoder proposed in [3]. Implementing the turbo
decoder this way only facilitates its design. This solution does
not yield a surface reduction due to the number of elementary
decoders required to decode a long frame. The only way to
achieve a significant area reduction is to reduce the parallel
processing of the data as in the architecture presented below in
the following section.

III. SEMI-ITERATIVE DECODING
The architecture of the semi-iterative decoder is shown in

Fig. 2. It fully exploits the slicing technique to reduce the
required number of elementary decoders to two, regardless of
the number of slices. Analog memories, implemented as track-
and-holds, and multiplexers are added to the structure. The
decoding process is iterative and performs turbo iterations. The
number of iteration depends on the performance sought for.
Each turbo iteration is divided into steps. There are as many
steps as slices. Turbo iterations and steps are detailed next.

For the sake of simplicity, a 2-slice example is taken, Fig.
2. The slice decoders are APP decoders. This example
performs the same decoding as presented in [3]. Before the
decoding process begins, the full frame is received and stored.
The extrinsic memories A and B in Fig. 2 are set to values
representing equiprobable data. A two-slice encoding yields
two sub-frames: |Syst1|Y11|Y21| and |Syst2|Y12|Y22|, with Y21 and
Y22 resulting from the encoding of the interleaved frame,
Π(Syst1 Syst2). With two sub-frames, each turbo iteration is
made up of two steps.

Turbo iteration:
Step 1
 By means of multiplexers MUXin1 and MUXin2, Syst1

and Y11 are fed to Slice Decoder #1. This decoder
outputs the extrinsic data Extr11 which are loaded into
the analog memories. Since the extrinsic memories are
sized up to equal the length of the overall systematic
data, half of the memory remains at equiprobable
values. All the extrinsic data loaded in extrinsic

memory bank A are then interleaved and multiplexer
Muxextr2 selects half of them, which are used by the
second slice decoder. Some of these data are being
computed and tracked by the analog memories, and
others have fixed values representing equiprobable data.

In the meantime, the second slice decoder provides
the extrinsic data Extr21 (linked to the interleaved Syst1,
Π(Syst1)). Extr21 data are tracked by the first half of
extrinsic memory bank B, the second half being filled in
with equiprobable data. The Extr21 data are
deinterleaved before being fed back to the first decoder
as in a usual turbo scheme. The loop is now closed and
there is a continuous exchange of information between
the two decoders. The extrinsic data eventually
converge to stable values, at which stage they are held
in memory and the next step can start.

Step 2
 During step 2, all the multiplexers have switched from

one input set to the other and the second slice is fed to
the decoder that is: Syst2, Y12, Y22. The only difference
with step 1 lies in the content of the memories which
now contain the extrinsic data Extr11 and Extr12
computed during step 1. This further enhances the
decoding of the second slice since the two decoders
benefit from the extrinsic data computed for the first
slice.

Once the first turbo iteration has been performed, the whole
frame is decoded. However, it is better to run at least another
turbo iteration to improve the overall result. This is necessary
since during decoding step 1, the decoders did not benefit from
any extrinsic data relative to the second slice. This second
turbo iteration will eventually modify Extr11 and Extr12 and
make them converge toward more reliable values. The number
of turbo iterations can be increased but, as in a digital decoder,
it is not necessary to run more than half a dozen to get the best
results. This was confirmed by running behavioral simulations.

Decoding
section

Decoding
section

Decoding
section

Decoding
section

Decoding
section

Decoding
section

Decoding
section

Decoding
section

Decoding
section

Decoding
section

input
LLRs sel_size(N-1) sel_size(N)

sel_size(N-1) sel_size(N)

Hard
Dec.

output
LLR

Figure 3. Reconfigurable circular slice decoder. Decoding section as defined
in [5].

Figure 4. Semi-iterative architecture, element dimensions.

As can be seen from the above example, the iterative
process introduced by this architecture does not affect the
continuous exchange of extrinsic information which helps with
convergence [3]. This is a key feature of the semi-iterative
decoder.

The architecture can be easily extended to any number of
slices p; a turbo iteration is then composed of p steps and
during each step the semi-iterative analog decoder processes
1/p of the overall data. Providing that the slice length remains
the same, the slice decoder need not to be redesigned. Only the
multiplexers and the memories have to be changed. MUXextr1
and MUXextr2 are p to 1 multiplexers and MUXMEM1 and
MUXMEM2 are 1 to p multiplexers. The number of memory
cells in either memory bank A or B is p, the number of slices,
times m, the number of extrinsic data to store per slice. This
increase in the number of storage elements is much smaller
than that of duplicating the elementary decoder in the case of a
fully parallelized architecture as shown in part V. The
hardware required to decode large frame length is thus
significantly reduced.

IV. RECONFIGURABILITY
An important aspect required by industry is the capability

of a single-chip decoder to accept various frame lengths. When
using slices this can be easily implemented. First, the
elementary slice decoder must be designed for the longest slice
length. Since the code is circular, the slice decoder is
implemented as a ring. It is fairly easy to reduce the ring size
depending on the slice length by means of switches as shown
in Fig. 3. The ring size is selected by means of an N-bit word:
sel_size. Second, the extrinsic analog memory blocks and the
multiplexers represented in Fig. 3 must be sized up according
to the longest slice length. Then, when working with a shorter
frame length only the memory accesses have to be changed.

Figure 5. Total on-chip area comparison vs slice number for a fully parallelized
and a semi-iterative implementation. The point on each curve corresponds to the

decoding of 864 double-binary symbols frames with 24 slices.

To complete the scheme, programmable interleavers as in
[6] can be used.

V. AREA STUDY
The architecture is now applied to decode a DVB-RCS-like

code, with frame length between 20 and 912 symbols. The
comparison is made for two types of decoders designed for the
same 0.25µm BiCMOS process: a fully-parallelized decoder
and a semi-iterative one. The area estimations for a decoding
section and a memory cell are based on the double-binary
decoder circuit designed in [5]. Referring to Fig. 2 and Fig. 4,
the size of the decoder elements are given next as a function of
the number of slices p and the number of systematic data per
slice m.

Common to both decoders are the elementary APP decoder
and the input memory cells. A decoding section has an area of
L×l=0.124mm²; details about its design are given in [5]. The
elementary decoder area is thus L×l×m. The area of a single
input memory cell is 2565µm². It is made of two track-and-
hold circuits put in parallel. While the first one holds the
previous input value, the second samples the next frame. There
are 2(p×m) memory cells for the systematic part and 2(p×m)
cells per redundant part for a coding rate of one half.

An extra feature of the semi-iterative decoder is the
extrinsic memory. Each decoding section deals with a double-
binary symbol. Each of its four possible values are weighted by
an extrinsic probability. The four extrinsic data output per
decoding section are needed by the other decoder and thus each
is stored in a memory cell which has an area a² = 625µm².
Hence, the total area of the extrinsic memory cells is given by
2×4×p×m×a².

Fig. 5 compares the total turbo decoder area for two
decoders implementing either the fully-parallelized or the

0

50

100

150

200

250

Slice decoders Extr.
interleavers

Input
interleaver

Input memory.

ar
ea

 (m
m

²)

Fully-parallelized decoder

Semi-iterative decoder

Figure 6. Area comparison, element wise, fully-parallelized decoder as in [3]

vs semi iterative decoder for a 864 double-binary symbol frame length (0.25µm
BiCMOS process).

semi-iterative architectures versus the number of required
slices. In this figure, the interleavers are hard-wired using four

metal layers. Taking the example of implementing the turbo
decoder for the longest frame length of the DVB-RCS
standard, i.e. 864 double-binary symbols, a fully-parallelized
slice architecture occupies a 265mm² area while the semi-
iterative requires only a 27mm² area. There is thus a reduction
of on-chip area by a factor of ten!

Fig. 6 details the area per decoder’s elements required to
decode the longest frame of the DVB-RCS standard with 24
slices. It clearly shows the dramatic area reduction, the biggest
gain coming, of course, from the slice decoders area required.
Other significant gains in area are shown for the input
interleaver and the extrinsic interleavers. The area of the latter,
which includes the extrinsic memories and the multiplexers, is
0.14mm², too small to appear in the figure. Finally, the input
memories occupy, of course, the same area since for both
decoders, the whole frame has to be stored in memory before
the decoding can take place.

VI. SIMULATION RESULTS
In this section, a performance comparison between three

decoders decoding 48 double-binary symbol frames using two
slices is made. The first decoder is a digital slice decoder, it
uses floating point number representation and runs for 5
iterations. The second decoder is the analog decoder presented
in [3]. It is fully parallel. The third decoder is a semi-iterative
analog decoder. It runs for five turbo iterations. Behavioral
simulations were run to obtain the Bit and Frame Error Rate
curves shown in Fig. 7. As can be seen from this figure, the
decoding performance of the semi-iterative analog decoder lies
in between the performance of the fully parallelized analog
slice decoder and the performance of the digital counterpart.
Therefore, the proposed solution presents no significant
performance degradation.

Figure 7. Performance comparison (behavioral).

VII. CONCLUSION
This paper has presented a novel semi-iterative analog

turbo decoding architecture. It offers a significant reduction in
occupied on-chip area when compared to previous
architectures with no significant performance degradation. This
was made possible by reducing parallel processing using slices
and at the price of introducing iterations. At each iteration, the
semi-iterative process keeps a partial continuous exchange of
extrinsic information to improve the decoding speed and the
correction performance. This is a key feature of the semi-
iterative analog decoding which thus provides a good
compromise between on-chip area and data rate. Finally, the
semi-iterative architecture is fully re-configurable to allow a
single 27mm2 chip to treat different frame lengths, from 40 to
1824 bits as in the example of this paper.

REFERENCES
[1] D. Vogrig, A. Gerosa, A. Neviani, A. Graell i Amat, G. Montorsi, S.

Benedetto, “A 0.35-µm CMOS analog turbo decoder for the 40-bit rate
1/3 UMTS channel code”, in IEEE J. of Solid-State Circuits, vol. 40,
n° 3, pp. 753-762.

[2] C. Winstead, “Analog iterative error control decoders”, Ph.D thesis,
University of Alberta, 2005.

[3] M. Arzel, C. Lahuec, F. Seguin, D. Gnaedig and M. Jézéquel, “Analog
slice turbo decoding”, in Proc. IEEE International Symposium on
Circuits And Systems 2005, Kobe, Japan, pp. 332-335, May 23-26, 2005.

[4] M. Moerz, “Analog sliding window decoder for mixed signal turbo
decoder”, in Proc. ITG Conf. Source and Channel Coding, Erlangen, pp.
63-70, February 2004.

[5] M. Arzel, C. Lahuec, M. Jézéquel and F. Seguin, “Analogue decoding of
duo-binary codes”, in Proc. International Symposium on Information
Theory and its Applications 2004, Parma, Italy, pp. 332-335, October
10-13, 2004.

[6] V. C. Gaudet, R. J. Gaudet, P. G. Gulak, “Programmable interleaver
design for analog iterative decoders”, in IEEE Trans. on Circuits and
Systems II, vol. 49, n° 7, pp. 457-464.

